Publications

Found 8 results
Filters: Author is J.B. Li  [Clear All Filters]
2013
F. Xu, Huang, X. H., Li, L. L., Deng, G., Cheng, H., Rong, X. F., Li, J. B., and Cheng, S. Y., Molecular cloning and characterization of GbDXS and GbGGPPS gene promoters from Ginkgo biloba, vol. 12. pp. 293-301, 2013.
Bate N and Twell D (1998). Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37: 859-869. http://dx.doi.org/10.1023/A:1006095023050 PMid:9678581   de Souza CR, Aragao FJ, Moreira EC, Costa CN, et al. (2009). Isolation and characterization of the promoter sequence of a cassava gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in storage roots. Genet. Mol. Res. 8: 334-344. http://dx.doi.org/10.4238/vol8-1gmr560 PMid:19440969   Edwards D, Murray JA and Smith AG (1998). Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol. 117: 1015-1022. http://dx.doi.org/10.1104/pp.117.3.1015 PMid:9662544 PMCid:34917   Gong YF, Liao ZH, Guo BH, Sun XF, et al. (2006). Molecular cloning and expression profile analysis of Ginkgo biloba DXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Planta Med. 72: 329-335. http://dx.doi.org/10.1055/s-2005-916234 PMid:16557474   Kawoosa T, Singh H, Kumar A, Sharma SK, et al. (2010). Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa. Funct. Integr. Genomics 10: 393-404. http://dx.doi.org/10.1007/s10142-009-0152-9 PMid:20076984   Kim JH, Lee KI, Chang YJ, and Kim SU (2012). Developmental pattern of Ginkgo biloba levopimaradiene synthase (GbLPS) as probed by promoter analysis in Arabidopsis thaliana. Plant Cell Rep. 31: 1119-1127. http://dx.doi.org/10.1007/s00299-012-1232-1 PMid:22311479   Kim SM, Kuzuyama T, Kobayashi A, Sando T, et al. (2008). 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda. Planta 227: 287-298. http://dx.doi.org/10.1007/s00425-007-0616-x PMid:17763867   Liao Z, Chen M, Gong Y, Guo L, et al. (2004). A new geranylgeranyl diphosphate synthase gene from Ginkgo biloba, which intermediates the biosynthesis of the key precursor for ginkgolides. DNA Seq. 15: 153-158. http://dx.doi.org/10.1080/10425170410001667348 PMid:15352294   Park HC, Kim ML, Kang YH, Jeon JM, et al. (2004). Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135: 2150-2161. http://dx.doi.org/10.1104/pp.104.041442 PMid:15310827 PMCid:520786   Planchais S, Perennes C, Glab N, Mironov V, et al. (2002). Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath; CycB1; 1 transcription and identification of putative regulatory proteins. Plant Mol. Biol. 50: 111-127. http://dx.doi.org/10.1023/A:1016018711532 PMid:12139003   Pufky J, Qiu Y, Rao MV, Hurban P, et al. (2003). The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach. Funct. Integr. Genomics 3: 135-143. http://dx.doi.org/10.1007/s10142-003-0093-7 PMid:14648238   Redman J, Whitcraft J, Johnson C and Arias J (2002). Abiotic and biotic stress differentially stimulates as-1 element activity in Arabidopsis. Plant Cell Rep. 21: 180-185. http://dx.doi.org/10.1007/s00299-002-0472-x   Reyes JC, Muro-Pastor MI and Florencio FJ (2004). The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol. 134: 1718-1732. http://dx.doi.org/10.1104/pp.103.037788 PMid:15084732 PMCid:419845   Sawai S, Shindo T, Sato S, Kaneko T, et al. (2006). Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Sci. 170: 247-257. http://dx.doi.org/10.1016/j.plantsci.2005.08.027   Smale ST and Kadonaga JT (2003). The RNA polymerase II core promoter. Annu. Rev. Biochem. 72: 449-479. http://dx.doi.org/10.1146/annurev.biochem.72.121801.161520 PMid:12651739   Strømgaard K and Nakanishi K (2004). Chemistry and biology of terpene trilactones from Ginkgo biloba. Angew. Chem. Int. Ed. 43: 1640-1658. http://dx.doi.org/10.1002/anie.200300601 PMid:15038029   Tatematsu K, Ward S, Leyser O, Kamiya Y, et al. (2005). Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol. 138: 757-766. http://dx.doi.org/10.1104/pp.104.057984 PMid:15908603 PMCid:1150394   van Beek TA and Montoro P (2009). Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 1216: 2002-2032. http://dx.doi.org/10.1016/j.chroma.2009.01.013 PMid:19195661   Wang Y, Liu GJ, Yan XF, Wei ZG, et al. (2011). MeJA-inducible expression of the heterologous JAZ2 promoter from Arabidopsis in Populus trichocarpa protoplasts. J. Plant Dis. Protect. 118: 69-74.   Xu F, Zhang WW, Sun NN, Li LL, et al. (2011). Effect of chlorocholine chloride on photosynthesis, soluble sugar and terpene trilactones of Ginkgo Biloba. Acta Hort. Sin. 38: 2253-2260.   Zhang ZL, Xie Z, Zou X, Casaretto J, et al. (2004). A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134: 1500-1513. http://dx.doi.org/10.1104/pp.103.034967 PMid:15047897 PMCid:419826
Z. B. Zhang, Zhang, W., Li, R. L., Li, J. B., Zhong, J. F., Zhao, Z. S., and Huang, J. M., Novel splice variants of the bovine PCK1 gene, vol. 12, pp. 4028-4035, 2013.
2012
Y. Yang, Huang, J. M., Ju, Z. H., Li, Q. L., Zhou, L., Li, R. L., Li, J. B., Shi, F. X., Zhong, J. F., and Wang, C. F., Increased expression of a novel splice variant of the complement component 4 (C4A) gene in mastitis-infected dairy cattle, vol. 11, pp. 2909-2916, 2012.
Andersson L, Lunden A, Sigurdardottir S, Davies CJ, et al. (1988). Linkage relationships in the bovine MHC region. High recombination frequency between class II subregions. Immunogenetics 27: 273-280. http://dx.doi.org/10.1007/BF00376122 PMid:2894354   Ast G (2004). How did alternative splicing evolve? Nat. Rev. Genet. 5: 773-782. http://dx.doi.org/10.1038/nrg1451 PMid:15510168   Awdeh ZL and Alper CA (1980). Inherited structural polymorphism of the fourth component of human complement. Proc. Natl. Acad. Sci. U. S. A. 77: 3576-3580. http://dx.doi.org/10.1073/pnas.77.6.3576 PMid:6932037 PMCid:349660   Belt KT, Yu CY, Carroll MC and Porter RR (1985). Polymorphism of human complement component C4. Immunogenetics 21: 173-180. http://dx.doi.org/10.1007/BF00364869 PMid:3838531   Bradley A (2002). Bovine mastitis: an evolving disease. Vet. J. 164: 116-128. http://dx.doi.org/10.1053/tvjl.2002.0724 PMid:12359466   Chacko E and Ranganathan S (2009). Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases. BMC Genomics 10 (Suppl 3): S11. http://dx.doi.org/10.1186/1471-2164-10-S3-S11 PMid:19958474 PMCid:2788363   Cox BJ and Robins DM (1988). Tissue-specific variation in C4 and Slp gene regulation. Nucleic Acids Res. 16: 6857-6870. http://dx.doi.org/10.1093/nar/16.14.6857 PMid:3405752 PMCid:338338   Dahl MR, Thiel S, Matsushita M, Fujita T, et al. (2001). MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity 15: 127-135. http://dx.doi.org/10.1016/S1074-7613(01)00161-3   Dodds AW and Law SK (1990). The complement component C4 of mammals. Biochem. J. 265: 495-502. PMid:2302180 PMCid:1136911   Galante PA, Sakabe NJ, Kirschbaum-Slager N and de Souza SJ (2004). Detection and evaluation of intron retention events in the human transcriptome. RNA 10: 757-765. http://dx.doi.org/10.1261/rna.5123504 PMid:15100430 PMCid:1370565   Garcia-Blanco MA, Baraniak AP and Lasda EL (2004). Alternative splicing in disease and therapy. Nat. Biotechnol. 22: 535-546. http://dx.doi.org/10.1038/nbt964 PMid:15122293   Giles CM (1984). A new genetic variant for Chido. Vox Sang. 46: 149-156. http://dx.doi.org/10.1111/j.1423-0410.1984.tb00067.x PMid:6710967   Guerra-Junior G, Grumach AS, de Lemos-Marini SH, Kirschfink M, et al. (2008). Complement 4 phenotypes and genotypes in Brazilian patients with classical 21-hydroxylase deficiency. Clin. Exp. Immunol. 155: 182-188. http://dx.doi.org/10.1111/j.1365-2249.2008.03838.x PMid:19137635 PMCid:2675248   Günther J, Koczan D, Yang W, Nurnberg G, et al. (2009). Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli. Vet. Res. 40: 31. http://dx.doi.org/10.1051/vetres/2009014 PMid:19321125 PMCid:2695127   Hull J, Campino S, Rowlands K, Chan MS, et al. (2007). Identification of common genetic variation that modulates alternative splicing. PLoS Genet. 3: e99. http://dx.doi.org/10.1371/journal.pgen.0030099 PMid:17571926 PMCid:1904363   Ju Z, Wang C, Li Q, Hou M, et al. (2011). Alternative splicing and mRNA expression analysis of bovine SLAMF7 gene in healthy and mastitis mammary tissues. Mol. Biol. Rep. DOI: 10.1007/s11033-011-1198-z. http://dx.doi.org/10.1007/s11033-011-1198-z   Keren H, Lev-Maor G and Ast G (2010). Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11: 345-355. http://dx.doi.org/10.1038/nrg2776 PMid:20376054   Kim E, Magen A and Ast G (2007). Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 35: 125-131. http://dx.doi.org/10.1093/nar/gkl924 PMid:17158149 PMCid:1802581   Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62. http://dx.doi.org/10.1186/1471-2105-6-62 PMid:15780134 PMCid:1274258   Le Hir H, Charlet-Berguerand N, de Franciscis V and Thermes C (2002). 5'-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology 63: 84-91. http://dx.doi.org/10.1159/000065725 PMid:12187076   Liu HX, Cartegni L, Zhang MQ and Krainer AR (2001). A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat. Genet. 27: 55-58. http://dx.doi.org/10.1038/83762 PMid:11137998   Morera AL, Henry M, Garcia-Hernandez A and Fernandez-Lopez L (2007). Acute phase proteins as biological markers of negative psychopathology in paranoid schizophrenia. Actas Esp. Psiquiatr. 35: 249-252. PMid:17592787   Pattanakitsakul S, Zheng JH, Natsuume-Sakai S, Takahashi M, et al. (1992). Aberrant splicing caused by the insertion of the B2 sequence into an intron of the complement C4 gene is the basis for low C4 production in H-2k mice. J. Biol. Chem. 267: 7814-7820. PMid:1373139   Petri M, Watson R, Winkelstein JA and McLean RH (1993). Clinical expression of systemic lupus erythematosus in patients with C4A deficiency. Medicine 72: 236-244. http://dx.doi.org/10.1097/00005792-199307000-00003 PMid:8341140   Rainard P and Poutrel B (1995). Deposition of complement components on Streptococcus agalactiae in bovine milk in the absence of inflammation. Infect. Immun. 63: 3422-3427. PMid:7642272 PMCid:173471   Rio DC (1991). Regulation of Drosophila P element transposition. Trends Genet. 7: 282-287. PMid:1662417   Rupp R and Boichard D (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res. 34: 671-688. http://dx.doi.org/10.1051/vetres:2003020 PMid:14556700   Vergani D, Johnston C, Abdullah N and Barnett AH (1983). Low serum C4 concentrations: an inherited predisposition to insulin dependent diabetes? Br. Med. J. 286: 926-928. http://dx.doi.org/10.1136/bmj.286.6369.926   Wang Z, Zhang S and Wang G (2008). Response of complement expression to challenge with lipopolysaccharide in embryos/larvae of zebrafish Danio rerio: acquisition of immunocompetent complement. Fish Shellfish Immunol. 25: 264-270. http://dx.doi.org/10.1016/j.fsi.2008.05.010 PMid:18657447   Witte DP, Welch TR and Beischel LS (1991). Detection and cellular localization of human C4 gene expression in the renal tubular epithelial cells and other extrahepatic epithelial sources. Am. J. Pathol. 139: 717-724. PMid:1928296 PMCid:1886325   Yang Y, Chung EK, Zhou B, Blanchong CA, et al. (2003). Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size and polygenic variations, hemolytic activities, and body mass index. J. Immunol. 171: 2734-2745. PMid:12928427   Yu CY, Belt KT, Giles CM, Campbell RD, et al. (1986). Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J. 5: 2873-2881. PMid:2431902 PMCid:1167237
Z. L. Zhao, Wang, C. F., Li, Q. L., Ju, Z. H., Huang, J. M., Li, J. B., Zhong, J. F., and Zhang, J. B., Novel SNPs of the mannan-binding lectin 2 gene and their association with production traits in Chinese Holsteins, vol. 11, pp. 3744-3754, 2012.
Agah A, Montalto MC, Young K and Stahl GL (2001). Isolation, cloning and functional characterization of porcine mannose-binding lectin. Immunology 102: 338-343. http://dx.doi.org/10.1046/j.1365-2567.2001.01191.x PMid:11298833 PMCid:1783182   Arora M, Munoz E and Tenner AJ (2001). Identification of a site on mannan-binding lectin critical for enhancement of phagocytosis. J. Biol. Chem. 276: 43087-43094. http://dx.doi.org/10.1074/jbc.M105455200 PMid:11533031   Brown-Augsburger P, Hartshorn K, Chang D, Rust K, et al. (1996). Site-directed mutagenesis of Cys-15 and Cys-20 of pulmonary surfactant protein D. Expression of a trimeric protein with altered anti-viral properties. J. Biol. Chem. 271: 13724-13730. http://dx.doi.org/10.1074/jbc.271.23.13724 PMid:8662732   Capparelli R, Parlato M, Amoroso MG, Roperto S, et al. (2008). Mannose-binding lectin haplotypes influence Brucella abortus infection in the water buffalo (Bubalus bubalis). Immunogenetics 60: 157-165. http://dx.doi.org/10.1007/s00251-008-0284-4 PMid:18330558   Chaneton L, Tirante L, Maito J, Chaves J, et al. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91: 1865-1873. http://dx.doi.org/10.3168/jds.2007-0732 PMid:18420617   Eisen DP and Minchinton RM (2003). Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 37: 1496-1505. http://dx.doi.org/10.1086/379324 PMid:14614673   Fallin D, Cohen A, Essioux L, Chumakov I, et al. (2001). Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Res. 11: 143-151. http://dx.doi.org/10.1101/gr.148401 PMid:11156623 PMCid:311030   Gjerstorff M, Hansen S, Jensen B, Dueholm B, et al. (2004). The genes encoding bovine SP-A, SP-D, MBL-A, conglutinin, CL-43 and CL-46 form a distinct collectin locus on Bos taurus chromosome 28 (BTA28) at position q.1.8-1.9. Anim. Genet. 35: 333-337. http://dx.doi.org/10.1111/j.1365-2052.2004.01167.x PMid:15265076   Holmskov U, Thiel S and Jensenius JC (2003). Collections and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol. 21: 547-578. http://dx.doi.org/10.1146/annurev.immunol.21.120601.140954 PMid:12524383   Huang J, Wang H, Wang C, Li J, et al. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol. Biol. Rep. 37: 477-483. http://dx.doi.org/10.1007/s11033-009-9669-1 PMid:19672694   Jensen PH, Weilguny D, Matthiesen F, McGuire KA, et al. (2005). Characterization of the oligomer structure of recombinant human mannan-binding lectin. J. Biol. Chem. 280: 11043-11051. http://dx.doi.org/10.1074/jbc.M412472200 PMid:15653690   Kawai T, Suzuki Y, Eda S, Ohtani K, et al. (1997). Cloning and characterization of a cDNA encoding bovine mannan-binding protein. Gene 186: 161-165. http://dx.doi.org/10.1016/S0378-1119(96)00664-6   Kawasaki N, Kawasaki T and Yamashina I (1983). Isolation and characterization of a mannan-binding protein from human serum. J. Biochem. 94: 937-947. PMid:6643429   Larsen F, Madsen HO, Sim RB, Koch C, et al. (2004). Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. J. Biol. Chem. 279: 21302-21311. http://dx.doi.org/10.1074/jbc.M400520200 PMid:14764589   Lillie BN, Brooks AS, Keirstead ND and Hayes MA (2005). Comparative genetics and innate immune functions of collagenous lectins in animals. Vet. Immunol. Immunopathol. 108: 97-110. http://dx.doi.org/10.1016/j.vetimm.2005.07.001 PMid:16098608   Lillie BN, Keirstead ND, Squires EJ and Hayes MA (2006). Single-nucleotide polymorphisms in porcine mannan-binding lectin A. Immunogenetics 58: 983-993. http://dx.doi.org/10.1007/s00251-006-0160-z PMid:17089118   Lillie BN, Keirstead ND, Squires EJ and Hayes MA (2007). Gene polymorphisms associated with reduced hepatic expression of porcine mannan-binding lectin C. Dev. Comp. Immunol. 31: 830-846. http://dx.doi.org/10.1016/j.dci.2006.11.002 PMid:17194476   Ma BY, Nakamura N, Dlabac V, Naito H, et al. (2007). Isolation, cloning, and characterization of a novel phosphomannan-binding lectin from porcine serum. J. Biol. Chem. 282: 12963-12975. http://dx.doi.org/10.1074/jbc.M611820200 PMid:17324926   Madsen HO, Garred P, Kurtzhals JA, Lamm LU, et al. (1994). A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics 40: 37-44. http://dx.doi.org/10.1007/BF00163962 PMid:8206524   Madsen HO, Satz ML, Hogh B, Svejgaard A, et al. (1998). Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J. Immunol. 161: 3169-3175. PMid:9743385   Nepomuceno RR, Henschen-Edman AH, Burgess WH and Tenner AJ (1997). cDNA cloning and primary structure analysis of C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro. Immunity 6: 119-129. http://dx.doi.org/10.1016/S1074-7613(00)80419-7   Neth O, Jack DL, Dodds AW, Holzel H, et al. (2000). Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun. 68: 688-693. http://dx.doi.org/10.1128/IAI.68.2.688-693.2000 PMid:10639434 PMCid:97193   Ohashi T and Erickson HP (2004). The disulfide bonding pattern in ficolin multimers. J. Biol. Chem. 279: 6534-6539. http://dx.doi.org/10.1074/jbc.M310555200 PMid:14660572   Podolsky MJ, Lasker A, Flaminio MJ, Gowda LD, et al. (2006). Characterization of an equine mannose-binding lectin and its roles in disease. Biochem. Biophys. Res. Commun. 343: 928-936. http://dx.doi.org/10.1016/j.bbrc.2006.03.055 PMid:16574074   Qiu H (2002). Modern Dairy Science. Agriculture Press, China, 1-12.   Risch NJ (2000). Searching for genetic determinants in the new millennium. Nature 405: 847-856. http://dx.doi.org/10.1038/35015718 PMid:10866211   Rupp R and Boichard D (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci. 82: 2198-2204. http://dx.doi.org/10.3168/jds.S0022-0302(99)75465-2   Seegers H, Fourichon C and Beaudeau F (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 34: 475-491. http://dx.doi.org/10.1051/vetres:2003027 PMid:14556691   Shi L, Takahashi K, Dundee J, Shahroor-Karni S, et al. (2004). Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus. J. Exp. Med. 199: 1379-1390. http://dx.doi.org/10.1084/jem.20032207 PMid:15148336 PMCid:2211809   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Smithson A, Munoz A, Suarez B, Soto SM, et al. (2007). Association between mannose-binding lectin deficiency and septic shock following acute pyelonephritis due to Escherichia coli. Clin. Vaccine Immunol. 14: 256-261. http://dx.doi.org/10.1128/CVI.00400-06 PMid:17202308 PMCid:1828851   Takahashi R, Tsutsumi A, Ohtani K, Muraki Y, et al. (2005). Association of mannose binding lectin (MBL) gene polymorphism and serum MBL concentration with characteristics and progression of systemic lupus erythematosus. Ann. Rheum. Dis. 64: 311-314. http://dx.doi.org/10.1136/ard.2003.020172 PMid:15647440 PMCid:1755352   Wakamiya N, Okuno Y, Sasao F, Ueda S, et al. (1992). Isolation and characterization of conglutinin as an influenza A virus inhibitor. Biochem. Biophys. Res. Commun. 187: 1270-1278. http://dx.doi.org/10.1016/0006-291X(92)90440-V   Wallis R, Shaw JM, Uitdehaag J, Chen CB, et al. (2004). Localization of the serine protease-binding sites in the collagen-like domain of mannose-binding protein: indirect effects of naturally occurring mutations on protease binding and activation. J. Biol. Chem. 279: 14065-14073. http://dx.doi.org/10.1074/jbc.M400171200 PMid:14724269
2011
Z. H. Ju, Li, Q. L., Huang, J. M., Hou, M. H., Li, R. L., Li, J. B., Zhong, J. F., and Wang, C. F., Three novel SNPs of the bovine Tf gene in Chinese native cattle and their associations with milk production traits, vol. 10, pp. 340-352, 2011.
Ardehali R, Shi L, Janatova J, Mohammad SF, et al. (2003). The inhibitory activity of serum to prevent bacterial adhesion is mainly due to apo-transferrin. J. Biomed. Mater. Res. A 66: 21-28. http://dx.doi.org/10.1002/jbm.a.10493 PMid:12833427   Ashton GC, Fallon GR and Suthcrland DN (1964). Transferrin (β-globulin) type and milk and butterfat production in dairy cows. J. Agric. Sci. 62: 27-34. http://dx.doi.org/10.1017/S0021859600059736   Bashirullah A, Cooperstock RL and Lipshitz HD (2001). Spatial and temporal control of RNA stability. Proc. Natl. Acad. Sci. U. S. A. 98: 7025-7028. http://dx.doi.org/10.1073/pnas.111145698 PMid:11416182 PMCid:34617   Beckman L and Beckman G (1986). Transferrin C2 as an enhancer of cyto- and genotoxic damage. Prog. Clin. Biol. Res. 209B: 221-224. PMid:3749080   Bond R, Kim JY and Lloyd DH (2005). Bovine and canine transferrin inhibit the growth of Malassezia pachydermatis in vitro. Med. Mycol. 43: 447-451. http://dx.doi.org/10.1080/13693780400020154 PMid:16178374   Brandon RB, Giffard JM and Bell K (1999). Single nucleotide polymorphisms in the equine transferrin gene. Anim. Genet. 30: 439-443. http://dx.doi.org/10.1046/j.1365-2052.1999.00546.x PMid:10612233   Casas E, Keele JW, Shackelford SD, Koohmaraie M, et al. (2004). Identification of quantitative trait loci for growth and carcass composition in cattle. Anim. Genet. 35: 2-6. http://dx.doi.org/10.1046/j.1365-2052.2003.01067.x PMid:14731222   Chaneton L, Tirante L, Maito J, Chaves J, et al. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91: 1865-1873. http://dx.doi.org/10.3168/jds.2007-0732 PMid:18420617   Chowdhary BP, Raudsepp T, Fronicke L and Scherthan H (1998). Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res. 8: 577-589. PMid:9647633   Douabin-Gicquel V, Soriano N, Ferran H, Wojcik F, et al. (2001). Identification of 96 single nucleotide polymorphisms in eight genes involved in iron metabolism: efficiency of bioinformatic extraction compared with a systematic sequencing approach. Hum. Genet. 109: 393-401. http://dx.doi.org/10.1007/s004390100599 PMid:11702220   Enns CA and Sussman HH (1981). Physical characterization of the transferrin receptor in human placentae. J. Biol. Chem. 256: 9820-9823. PMid:6268632   Fallin D, Cohen A, Essioux L, Chumakov I, et al. (2001). Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Res. 11: 143-151. http://dx.doi.org/10.1101/gr.148401 PMid:11156623 PMCid:311030   Fletcher J and Huehns ER (1968). Function of transferrin. Nature 218: 1211-1214. http://dx.doi.org/10.1038/2181211a0 PMid:5656647   Gahne B, Juneja RK and Grolmus J (1977). Horizontal polyacrylamide gradient gel electrophoresis for the simultaneous phenotyping of transferrin, post-transferrin, albumin and post-albumin in the blood plasma of cattle. Anim. Blood Groups Biochem. Genet. 8: 127-137. http://dx.doi.org/10.1111/j.1365-2052.1977.tb01637.x PMid:603096   Heringstad B, Klemetsdal G and Ruane J (2000). Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livest. Prod. Sci. 64: 95-106. http://dx.doi.org/10.1016/S0301-6226(99)00128-1   Huang J, Wang H, Wang C, Li J, et al. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol. Biol. Rep. 37: 477-483. http://dx.doi.org/10.1007/s11033-009-9669-1 PMid:19672694   Jansen RP (2001). mRNA localization: message on the move. Nat. Rev. Mol. Cell. Biol. 2: 247-256. http://dx.doi.org/10.1038/35067016 PMid:11283722   Kappes SM, Keele JW, Stone RT, McGraw RA, et al. (1997). A second-generation linkage map of the bovine genome. Genome Res. 7: 235-249. http://dx.doi.org/10.1101/gr.7.3.235 PMid:9074927   Khatib H, Zaitoun I, Chang YM, Maltecca C, et al. (2007). Evaluation of association between polymorphism within the thyroglobulin gene and milk production traits in dairy cattle. J. Anim. Breed. Genet. 124: 26-28. http://dx.doi.org/10.1111/j.1439-0388.2007.00634.x PMid:17302957   Kmiec M (1998). Transferyna- bia ko pe niace wiele ról w organizmie. Przegl. Hodowlany 1: 8-9.   Kruglyak L (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22: 139-144. http://dx.doi.org/10.1038/9642 PMid:10369254   Lambert LA, Perri H, Halbrooks PJ and Mason AB (2005). Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 142: 129-141. http://dx.doi.org/10.1016/j.cbpb.2005.07.007 PMid:16111909   Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62. http://dx.doi.org/10.1186/1471-2105-6-62 PMid:15780134 PMCid:1274258   Liu W, Wang J, Li Q, Ju Z, et al. (2010). Correlation analysis between three novel SNPs of the Src gene in bovine and milk production traits. Mol. Biol. Rep. 37: 3771-3777. http://dx.doi.org/10.1007/s11033-010-0031-4 PMid:20213510   MacGillivray RT, Mendez E, Sinha SK, Sutton MR, et al. (1982). The complete amino acid sequence of human serum transferrin. Proc. Natl. Acad. Sci. U. S. A. 79: 2504-2508. http://dx.doi.org/10.1073/pnas.79.8.2504 PMid:6953407 PMCid:346227   Majewski J and Ott J (2002). Distribution and characterization of regulatory elements in the human genome. Genome Res. 12: 1827-1836. http://dx.doi.org/10.1101/gr.606402 PMid:12466286 PMCid:187578   Mason C (2006). Basic mastitis bacteriology: untangling the pathogens. Ir. Vet. J. 59: 453-459.   Nott A, Meislin SH and Moore MJ (2003). A quantitative analysis of intron effects on mammalian gene expression. RNA 9: 607-617. http://dx.doi.org/10.1261/rna.5250403 PMid:12702819 PMCid:1370426   Poso J and Mantysaari EA (1996). Relationships between clinical mastitis, somatic cell score, and production for the first three lactations of Finnish Ayrshire. J. Dairy Sci. 79: 1284-1291. http://dx.doi.org/10.3168/jds.S0022-0302(96)76483-4   Retzer MD, Kabani A, Button LL, Yu RH, et al. (1996). Production and characterization of chimeric transferrins for the determination of the binding domains for bacterial transferrin receptors. J. Biol. Chem. 271: 1166-1173. http://dx.doi.org/10.1074/jbc.271.2.1166 PMid:8557646   Rupp R and Boichard D (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci. 82: 2198-2204. http://dx.doi.org/10.3168/jds.S0022-0302(99)75465-2   Sanz A, Ordovas L, Serrano C, Zaragoza P, et al. (2010). A single nucleotide polymorphism in the coding region of bovine transferrin is associated with milk fat yield. Genet. Mol. Res. 9: 843-848. http://dx.doi.org/10.4238/vol9-2gmr784 PMid:20449817   Seegers H, Fourichon C and Beaudeau F (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 34: 475-491. http://dx.doi.org/10.1051/vetres:2003027 PMid:14556691   Sevi A, Taibi L, Albenzio M, Annicchiarico G, et al. (2001). Airspace effects on the yield and quality of ewe milk. J. Dairy Sci. 84: 2632-2640. http://dx.doi.org/10.3168/jds.S0022-0302(01)74717-0   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Steppa R, Wójtowskl J, Bielinska S and Keszycka M (2009). Effect of transferrin and haemoglobin polymorphism on hygienic quality of milk in sheep. Züchtungskunde 81: 125-132.   Swanson KM, Stelwagen K, Dobson J, Henderson HV, et al. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci. 92: 117-129. http://dx.doi.org/10.3168/jds.2008-1382 PMid:19109270   Tao Q, Yu MX, Zhao YH and Wang DX (2007). Survey of incidence of cow mastitis in west Liaoning and the integrated control measures. China Cattle Sci. 4: 61-63 (in Chinese).   Wedekind C (1994). Mate choice and maternal selection for specific parasite resistances before; during and after fertilization. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 346: 303-311. http://dx.doi.org/10.1098/rstb.1994.0147 PMid:7708826   Zhang F, Huang J, Li Q, Ju Z, et al. (2010). Novel single nucleotide polymorphisms (SNPs) of the bovine STAT4 gene and their associations with production traits in Chinese Holstein cattle. Afr. J. Biotechnol. 9: 4003-4008.   Zhang YH, Pan YS, Gao Y, Ma Q, et al. (2008). Studies on transferrin and posttremsferr polymorphism and their relationship with performances in red steppe. Agric. Sci. Technol. 9: 109-112.