Publications
Found 8 results
Filters: Author is J.B. Li [Clear All Filters]
“Direct DNA extraction method of an obligate parasitic fungus from infected plant tissue”, vol. 14, pp. 18546-18551, 2015.
, “Effect of human umbilical cord mesenchymal stem cells on endometriotic cell proliferation and apoptosis”, vol. 14, pp. 16553-16561, 2015.
, “Natural variation of rice blast resistance gene Pi-d2”, vol. 14, pp. 1235-1249, 2015.
, “Molecular cloning and characterization of GbDXS and GbGGPPS gene promoters from Ginkgo biloba”, vol. 12. pp. 293-301, 2013.
, Bate N and Twell D (1998). Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37: 859-869.
http://dx.doi.org/10.1023/A:1006095023050
PMid:9678581
de Souza CR, Aragao FJ, Moreira EC, Costa CN, et al. (2009). Isolation and characterization of the promoter sequence of a cassava gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in storage roots. Genet. Mol. Res. 8: 334-344.
http://dx.doi.org/10.4238/vol8-1gmr560
PMid:19440969
Edwards D, Murray JA and Smith AG (1998). Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol. 117: 1015-1022.
http://dx.doi.org/10.1104/pp.117.3.1015
PMid:9662544 PMCid:34917
Gong YF, Liao ZH, Guo BH, Sun XF, et al. (2006). Molecular cloning and expression profile analysis of Ginkgo biloba DXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Planta Med. 72: 329-335.
http://dx.doi.org/10.1055/s-2005-916234
PMid:16557474
Kawoosa T, Singh H, Kumar A, Sharma SK, et al. (2010). Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa. Funct. Integr. Genomics 10: 393-404.
http://dx.doi.org/10.1007/s10142-009-0152-9
PMid:20076984
Kim JH, Lee KI, Chang YJ, and Kim SU (2012). Developmental pattern of Ginkgo biloba levopimaradiene synthase (GbLPS) as probed by promoter analysis in Arabidopsis thaliana. Plant Cell Rep. 31: 1119-1127.
http://dx.doi.org/10.1007/s00299-012-1232-1
PMid:22311479
Kim SM, Kuzuyama T, Kobayashi A, Sando T, et al. (2008). 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda. Planta 227: 287-298.
http://dx.doi.org/10.1007/s00425-007-0616-x
PMid:17763867
Liao Z, Chen M, Gong Y, Guo L, et al. (2004). A new geranylgeranyl diphosphate synthase gene from Ginkgo biloba, which intermediates the biosynthesis of the key precursor for ginkgolides. DNA Seq. 15: 153-158.
http://dx.doi.org/10.1080/10425170410001667348
PMid:15352294
Park HC, Kim ML, Kang YH, Jeon JM, et al. (2004). Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135: 2150-2161.
http://dx.doi.org/10.1104/pp.104.041442
PMid:15310827 PMCid:520786
Planchais S, Perennes C, Glab N, Mironov V, et al. (2002). Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath; CycB1; 1 transcription and identification of putative regulatory proteins. Plant Mol. Biol. 50: 111-127.
http://dx.doi.org/10.1023/A:1016018711532
PMid:12139003
Pufky J, Qiu Y, Rao MV, Hurban P, et al. (2003). The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach. Funct. Integr. Genomics 3: 135-143.
http://dx.doi.org/10.1007/s10142-003-0093-7
PMid:14648238
Redman J, Whitcraft J, Johnson C and Arias J (2002). Abiotic and biotic stress differentially stimulates as-1 element activity in Arabidopsis. Plant Cell Rep. 21: 180-185.
http://dx.doi.org/10.1007/s00299-002-0472-x
Reyes JC, Muro-Pastor MI and Florencio FJ (2004). The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol. 134: 1718-1732.
http://dx.doi.org/10.1104/pp.103.037788
PMid:15084732 PMCid:419845
Sawai S, Shindo T, Sato S, Kaneko T, et al. (2006). Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Sci. 170: 247-257.
http://dx.doi.org/10.1016/j.plantsci.2005.08.027
Smale ST and Kadonaga JT (2003). The RNA polymerase II core promoter. Annu. Rev. Biochem. 72: 449-479.
http://dx.doi.org/10.1146/annurev.biochem.72.121801.161520
PMid:12651739
Strømgaard K and Nakanishi K (2004). Chemistry and biology of terpene trilactones from Ginkgo biloba. Angew. Chem. Int. Ed. 43: 1640-1658.
http://dx.doi.org/10.1002/anie.200300601
PMid:15038029
Tatematsu K, Ward S, Leyser O, Kamiya Y, et al. (2005). Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol. 138: 757-766.
http://dx.doi.org/10.1104/pp.104.057984
PMid:15908603 PMCid:1150394
van Beek TA and Montoro P (2009). Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 1216: 2002-2032.
http://dx.doi.org/10.1016/j.chroma.2009.01.013
PMid:19195661
Wang Y, Liu GJ, Yan XF, Wei ZG, et al. (2011). MeJA-inducible expression of the heterologous JAZ2 promoter from Arabidopsis in Populus trichocarpa protoplasts. J. Plant Dis. Protect. 118: 69-74.
Xu F, Zhang WW, Sun NN, Li LL, et al. (2011). Effect of chlorocholine chloride on photosynthesis, soluble sugar and terpene trilactones of Ginkgo Biloba. Acta Hort. Sin. 38: 2253-2260.
Zhang ZL, Xie Z, Zou X, Casaretto J, et al. (2004). A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134: 1500-1513.
http://dx.doi.org/10.1104/pp.103.034967
PMid:15047897 PMCid:419826
“Novel splice variants of the bovine PCK1 gene”, vol. 12, pp. 4028-4035, 2013.
, “Increased expression of a novel splice variant of the complement component 4 (C4A) gene in mastitis-infected dairy cattle”, vol. 11, pp. 2909-2916, 2012.
,
Andersson L, Lunden A, Sigurdardottir S, Davies CJ, et al. (1988). Linkage relationships in the bovine MHC region. High recombination frequency between class II subregions. Immunogenetics 27: 273-280.
http://dx.doi.org/10.1007/BF00376122
PMid:2894354
Ast G (2004). How did alternative splicing evolve? Nat. Rev. Genet. 5: 773-782.
http://dx.doi.org/10.1038/nrg1451
PMid:15510168
Awdeh ZL and Alper CA (1980). Inherited structural polymorphism of the fourth component of human complement. Proc. Natl. Acad. Sci. U. S. A. 77: 3576-3580.
http://dx.doi.org/10.1073/pnas.77.6.3576
PMid:6932037 PMCid:349660
Belt KT, Yu CY, Carroll MC and Porter RR (1985). Polymorphism of human complement component C4. Immunogenetics 21: 173-180.
http://dx.doi.org/10.1007/BF00364869
PMid:3838531
Bradley A (2002). Bovine mastitis: an evolving disease. Vet. J. 164: 116-128.
http://dx.doi.org/10.1053/tvjl.2002.0724
PMid:12359466
Chacko E and Ranganathan S (2009). Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases. BMC Genomics 10 (Suppl 3): S11.
http://dx.doi.org/10.1186/1471-2164-10-S3-S11
PMid:19958474 PMCid:2788363
Cox BJ and Robins DM (1988). Tissue-specific variation in C4 and Slp gene regulation. Nucleic Acids Res. 16: 6857-6870.
http://dx.doi.org/10.1093/nar/16.14.6857
PMid:3405752 PMCid:338338
Dahl MR, Thiel S, Matsushita M, Fujita T, et al. (2001). MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity 15: 127-135.
http://dx.doi.org/10.1016/S1074-7613(01)00161-3
Dodds AW and Law SK (1990). The complement component C4 of mammals. Biochem. J. 265: 495-502.
PMid:2302180 PMCid:1136911
Galante PA, Sakabe NJ, Kirschbaum-Slager N and de Souza SJ (2004). Detection and evaluation of intron retention events in the human transcriptome. RNA 10: 757-765.
http://dx.doi.org/10.1261/rna.5123504
PMid:15100430 PMCid:1370565
Garcia-Blanco MA, Baraniak AP and Lasda EL (2004). Alternative splicing in disease and therapy. Nat. Biotechnol. 22: 535-546.
http://dx.doi.org/10.1038/nbt964
PMid:15122293
Giles CM (1984). A new genetic variant for Chido. Vox Sang. 46: 149-156.
http://dx.doi.org/10.1111/j.1423-0410.1984.tb00067.x
PMid:6710967
Guerra-Junior G, Grumach AS, de Lemos-Marini SH, Kirschfink M, et al. (2008). Complement 4 phenotypes and genotypes in Brazilian patients with classical 21-hydroxylase deficiency. Clin. Exp. Immunol. 155: 182-188.
http://dx.doi.org/10.1111/j.1365-2249.2008.03838.x
PMid:19137635 PMCid:2675248
Günther J, Koczan D, Yang W, Nurnberg G, et al. (2009). Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli. Vet. Res. 40: 31.
http://dx.doi.org/10.1051/vetres/2009014
PMid:19321125 PMCid:2695127
Hull J, Campino S, Rowlands K, Chan MS, et al. (2007). Identification of common genetic variation that modulates alternative splicing. PLoS Genet. 3: e99.
http://dx.doi.org/10.1371/journal.pgen.0030099
PMid:17571926 PMCid:1904363
Ju Z, Wang C, Li Q, Hou M, et al. (2011). Alternative splicing and mRNA expression analysis of bovine SLAMF7 gene in healthy and mastitis mammary tissues. Mol. Biol. Rep. DOI: 10.1007/s11033-011-1198-z.
http://dx.doi.org/10.1007/s11033-011-1198-z
Keren H, Lev-Maor G and Ast G (2010). Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11: 345-355.
http://dx.doi.org/10.1038/nrg2776
PMid:20376054
Kim E, Magen A and Ast G (2007). Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 35: 125-131.
http://dx.doi.org/10.1093/nar/gkl924
PMid:17158149 PMCid:1802581
Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62.
http://dx.doi.org/10.1186/1471-2105-6-62
PMid:15780134 PMCid:1274258
Le Hir H, Charlet-Berguerand N, de Franciscis V and Thermes C (2002). 5'-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology 63: 84-91.
http://dx.doi.org/10.1159/000065725
PMid:12187076
Liu HX, Cartegni L, Zhang MQ and Krainer AR (2001). A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat. Genet. 27: 55-58.
http://dx.doi.org/10.1038/83762
PMid:11137998
Morera AL, Henry M, Garcia-Hernandez A and Fernandez-Lopez L (2007). Acute phase proteins as biological markers of negative psychopathology in paranoid schizophrenia. Actas Esp. Psiquiatr. 35: 249-252.
PMid:17592787
Pattanakitsakul S, Zheng JH, Natsuume-Sakai S, Takahashi M, et al. (1992). Aberrant splicing caused by the insertion of the B2 sequence into an intron of the complement C4 gene is the basis for low C4 production in H-2k mice. J. Biol. Chem. 267: 7814-7820.
PMid:1373139
Petri M, Watson R, Winkelstein JA and McLean RH (1993). Clinical expression of systemic lupus erythematosus in patients with C4A deficiency. Medicine 72: 236-244.
http://dx.doi.org/10.1097/00005792-199307000-00003
PMid:8341140
Rainard P and Poutrel B (1995). Deposition of complement components on Streptococcus agalactiae in bovine milk in the absence of inflammation. Infect. Immun. 63: 3422-3427.
PMid:7642272 PMCid:173471
Rio DC (1991). Regulation of Drosophila P element transposition. Trends Genet. 7: 282-287.
PMid:1662417
Rupp R and Boichard D (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res. 34: 671-688.
http://dx.doi.org/10.1051/vetres:2003020
PMid:14556700
Vergani D, Johnston C, Abdullah N and Barnett AH (1983). Low serum C4 concentrations: an inherited predisposition to insulin dependent diabetes? Br. Med. J. 286: 926-928.
http://dx.doi.org/10.1136/bmj.286.6369.926
Wang Z, Zhang S and Wang G (2008). Response of complement expression to challenge with lipopolysaccharide in embryos/larvae of zebrafish Danio rerio: acquisition of immunocompetent complement. Fish Shellfish Immunol. 25: 264-270.
http://dx.doi.org/10.1016/j.fsi.2008.05.010
PMid:18657447
Witte DP, Welch TR and Beischel LS (1991). Detection and cellular localization of human C4 gene expression in the renal tubular epithelial cells and other extrahepatic epithelial sources. Am. J. Pathol. 139: 717-724.
PMid:1928296 PMCid:1886325
Yang Y, Chung EK, Zhou B, Blanchong CA, et al. (2003). Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size and polygenic variations, hemolytic activities, and body mass index. J. Immunol. 171: 2734-2745.
PMid:12928427
Yu CY, Belt KT, Giles CM, Campbell RD, et al. (1986). Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J. 5: 2873-2881.
PMid:2431902 PMCid:1167237
“Novel SNPs of the mannan-binding lectin 2 gene and their association with production traits in Chinese Holsteins”, vol. 11, pp. 3744-3754, 2012.
,
Agah A, Montalto MC, Young K and Stahl GL (2001). Isolation, cloning and functional characterization of porcine mannose-binding lectin. Immunology 102: 338-343.
http://dx.doi.org/10.1046/j.1365-2567.2001.01191.x
PMid:11298833 PMCid:1783182
Arora M, Munoz E and Tenner AJ (2001). Identification of a site on mannan-binding lectin critical for enhancement of phagocytosis. J. Biol. Chem. 276: 43087-43094.
http://dx.doi.org/10.1074/jbc.M105455200
PMid:11533031
Brown-Augsburger P, Hartshorn K, Chang D, Rust K, et al. (1996). Site-directed mutagenesis of Cys-15 and Cys-20 of pulmonary surfactant protein D. Expression of a trimeric protein with altered anti-viral properties. J. Biol. Chem. 271: 13724-13730.
http://dx.doi.org/10.1074/jbc.271.23.13724
PMid:8662732
Capparelli R, Parlato M, Amoroso MG, Roperto S, et al. (2008). Mannose-binding lectin haplotypes influence Brucella abortus infection in the water buffalo (Bubalus bubalis). Immunogenetics 60: 157-165.
http://dx.doi.org/10.1007/s00251-008-0284-4
PMid:18330558
Chaneton L, Tirante L, Maito J, Chaves J, et al. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91: 1865-1873.
http://dx.doi.org/10.3168/jds.2007-0732
PMid:18420617
Eisen DP and Minchinton RM (2003). Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 37: 1496-1505.
http://dx.doi.org/10.1086/379324
PMid:14614673
Fallin D, Cohen A, Essioux L, Chumakov I, et al. (2001). Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Res. 11: 143-151.
http://dx.doi.org/10.1101/gr.148401
PMid:11156623 PMCid:311030
Gjerstorff M, Hansen S, Jensen B, Dueholm B, et al. (2004). The genes encoding bovine SP-A, SP-D, MBL-A, conglutinin, CL-43 and CL-46 form a distinct collectin locus on Bos taurus chromosome 28 (BTA28) at position q.1.8-1.9. Anim. Genet. 35: 333-337.
http://dx.doi.org/10.1111/j.1365-2052.2004.01167.x
PMid:15265076
Holmskov U, Thiel S and Jensenius JC (2003). Collections and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol. 21: 547-578.
http://dx.doi.org/10.1146/annurev.immunol.21.120601.140954
PMid:12524383
Huang J, Wang H, Wang C, Li J, et al. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol. Biol. Rep. 37: 477-483.
http://dx.doi.org/10.1007/s11033-009-9669-1
PMid:19672694
Jensen PH, Weilguny D, Matthiesen F, McGuire KA, et al. (2005). Characterization of the oligomer structure of recombinant human mannan-binding lectin. J. Biol. Chem. 280: 11043-11051.
http://dx.doi.org/10.1074/jbc.M412472200
PMid:15653690
Kawai T, Suzuki Y, Eda S, Ohtani K, et al. (1997). Cloning and characterization of a cDNA encoding bovine mannan-binding protein. Gene 186: 161-165.
http://dx.doi.org/10.1016/S0378-1119(96)00664-6
Kawasaki N, Kawasaki T and Yamashina I (1983). Isolation and characterization of a mannan-binding protein from human serum. J. Biochem. 94: 937-947.
PMid:6643429
Larsen F, Madsen HO, Sim RB, Koch C, et al. (2004). Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. J. Biol. Chem. 279: 21302-21311.
http://dx.doi.org/10.1074/jbc.M400520200
PMid:14764589
Lillie BN, Brooks AS, Keirstead ND and Hayes MA (2005). Comparative genetics and innate immune functions of collagenous lectins in animals. Vet. Immunol. Immunopathol. 108: 97-110.
http://dx.doi.org/10.1016/j.vetimm.2005.07.001
PMid:16098608
Lillie BN, Keirstead ND, Squires EJ and Hayes MA (2006). Single-nucleotide polymorphisms in porcine mannan-binding lectin A. Immunogenetics 58: 983-993.
http://dx.doi.org/10.1007/s00251-006-0160-z
PMid:17089118
Lillie BN, Keirstead ND, Squires EJ and Hayes MA (2007). Gene polymorphisms associated with reduced hepatic expression of porcine mannan-binding lectin C. Dev. Comp. Immunol. 31: 830-846.
http://dx.doi.org/10.1016/j.dci.2006.11.002
PMid:17194476
Ma BY, Nakamura N, Dlabac V, Naito H, et al. (2007). Isolation, cloning, and characterization of a novel phosphomannan-binding lectin from porcine serum. J. Biol. Chem. 282: 12963-12975.
http://dx.doi.org/10.1074/jbc.M611820200
PMid:17324926
Madsen HO, Garred P, Kurtzhals JA, Lamm LU, et al. (1994). A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics 40: 37-44.
http://dx.doi.org/10.1007/BF00163962
PMid:8206524
Madsen HO, Satz ML, Hogh B, Svejgaard A, et al. (1998). Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J. Immunol. 161: 3169-3175.
PMid:9743385
Nepomuceno RR, Henschen-Edman AH, Burgess WH and Tenner AJ (1997). cDNA cloning and primary structure analysis of C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro. Immunity 6: 119-129.
http://dx.doi.org/10.1016/S1074-7613(00)80419-7
Neth O, Jack DL, Dodds AW, Holzel H, et al. (2000). Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun. 68: 688-693.
http://dx.doi.org/10.1128/IAI.68.2.688-693.2000
PMid:10639434 PMCid:97193
Ohashi T and Erickson HP (2004). The disulfide bonding pattern in ficolin multimers. J. Biol. Chem. 279: 6534-6539.
http://dx.doi.org/10.1074/jbc.M310555200
PMid:14660572
Podolsky MJ, Lasker A, Flaminio MJ, Gowda LD, et al. (2006). Characterization of an equine mannose-binding lectin and its roles in disease. Biochem. Biophys. Res. Commun. 343: 928-936.
http://dx.doi.org/10.1016/j.bbrc.2006.03.055
PMid:16574074
Qiu H (2002). Modern Dairy Science. Agriculture Press, China, 1-12.
Risch NJ (2000). Searching for genetic determinants in the new millennium. Nature 405: 847-856.
http://dx.doi.org/10.1038/35015718
PMid:10866211
Rupp R and Boichard D (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci. 82: 2198-2204.
http://dx.doi.org/10.3168/jds.S0022-0302(99)75465-2
Seegers H, Fourichon C and Beaudeau F (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 34: 475-491.
http://dx.doi.org/10.1051/vetres:2003027
PMid:14556691
Shi L, Takahashi K, Dundee J, Shahroor-Karni S, et al. (2004). Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus. J. Exp. Med. 199: 1379-1390.
http://dx.doi.org/10.1084/jem.20032207
PMid:15148336 PMCid:2211809
Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98.
http://dx.doi.org/10.1038/sj.cr.7290272
PMid:15740637
Smithson A, Munoz A, Suarez B, Soto SM, et al. (2007). Association between mannose-binding lectin deficiency and septic shock following acute pyelonephritis due to Escherichia coli. Clin. Vaccine Immunol. 14: 256-261.
http://dx.doi.org/10.1128/CVI.00400-06
PMid:17202308 PMCid:1828851
Takahashi R, Tsutsumi A, Ohtani K, Muraki Y, et al. (2005). Association of mannose binding lectin (MBL) gene polymorphism and serum MBL concentration with characteristics and progression of systemic lupus erythematosus. Ann. Rheum. Dis. 64: 311-314.
http://dx.doi.org/10.1136/ard.2003.020172
PMid:15647440 PMCid:1755352
Wakamiya N, Okuno Y, Sasao F, Ueda S, et al. (1992). Isolation and characterization of conglutinin as an influenza A virus inhibitor. Biochem. Biophys. Res. Commun. 187: 1270-1278.
http://dx.doi.org/10.1016/0006-291X(92)90440-V
Wallis R, Shaw JM, Uitdehaag J, Chen CB, et al. (2004). Localization of the serine protease-binding sites in the collagen-like domain of mannose-binding protein: indirect effects of naturally occurring mutations on protease binding and activation. J. Biol. Chem. 279: 14065-14073.
http://dx.doi.org/10.1074/jbc.M400171200
PMid:14724269
“Three novel SNPs of the bovine Tf gene in Chinese native cattle and their associations with milk production traits”, vol. 10, pp. 340-352, 2011.
,
Ardehali R, Shi L, Janatova J, Mohammad SF, et al. (2003). The inhibitory activity of serum to prevent bacterial adhesion is mainly due to apo-transferrin. J. Biomed. Mater. Res. A 66: 21-28.
http://dx.doi.org/10.1002/jbm.a.10493
PMid:12833427
Ashton GC, Fallon GR and Suthcrland DN (1964). Transferrin (β-globulin) type and milk and butterfat production in dairy cows. J. Agric. Sci. 62: 27-34.
http://dx.doi.org/10.1017/S0021859600059736
Bashirullah A, Cooperstock RL and Lipshitz HD (2001). Spatial and temporal control of RNA stability. Proc. Natl. Acad. Sci. U. S. A. 98: 7025-7028.
http://dx.doi.org/10.1073/pnas.111145698
PMid:11416182 PMCid:34617
Beckman L and Beckman G (1986). Transferrin C2 as an enhancer of cyto- and genotoxic damage. Prog. Clin. Biol. Res. 209B: 221-224.
PMid:3749080
Bond R, Kim JY and Lloyd DH (2005). Bovine and canine transferrin inhibit the growth of Malassezia pachydermatis in vitro. Med. Mycol. 43: 447-451.
http://dx.doi.org/10.1080/13693780400020154
PMid:16178374
Brandon RB, Giffard JM and Bell K (1999). Single nucleotide polymorphisms in the equine transferrin gene. Anim. Genet. 30: 439-443.
http://dx.doi.org/10.1046/j.1365-2052.1999.00546.x
PMid:10612233
Casas E, Keele JW, Shackelford SD, Koohmaraie M, et al. (2004). Identification of quantitative trait loci for growth and carcass composition in cattle. Anim. Genet. 35: 2-6.
http://dx.doi.org/10.1046/j.1365-2052.2003.01067.x
PMid:14731222
Chaneton L, Tirante L, Maito J, Chaves J, et al. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91: 1865-1873.
http://dx.doi.org/10.3168/jds.2007-0732
PMid:18420617
Chowdhary BP, Raudsepp T, Fronicke L and Scherthan H (1998). Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res. 8: 577-589.
PMid:9647633
Douabin-Gicquel V, Soriano N, Ferran H, Wojcik F, et al. (2001). Identification of 96 single nucleotide polymorphisms in eight genes involved in iron metabolism: efficiency of bioinformatic extraction compared with a systematic sequencing approach. Hum. Genet. 109: 393-401.
http://dx.doi.org/10.1007/s004390100599
PMid:11702220
Enns CA and Sussman HH (1981). Physical characterization of the transferrin receptor in human placentae. J. Biol. Chem. 256: 9820-9823.
PMid:6268632
Fallin D, Cohen A, Essioux L, Chumakov I, et al. (2001). Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Res. 11: 143-151.
http://dx.doi.org/10.1101/gr.148401
PMid:11156623 PMCid:311030
Fletcher J and Huehns ER (1968). Function of transferrin. Nature 218: 1211-1214.
http://dx.doi.org/10.1038/2181211a0
PMid:5656647
Gahne B, Juneja RK and Grolmus J (1977). Horizontal polyacrylamide gradient gel electrophoresis for the simultaneous phenotyping of transferrin, post-transferrin, albumin and post-albumin in the blood plasma of cattle. Anim. Blood Groups Biochem. Genet. 8: 127-137.
http://dx.doi.org/10.1111/j.1365-2052.1977.tb01637.x
PMid:603096
Heringstad B, Klemetsdal G and Ruane J (2000). Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livest. Prod. Sci. 64: 95-106.
http://dx.doi.org/10.1016/S0301-6226(99)00128-1
Huang J, Wang H, Wang C, Li J, et al. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol. Biol. Rep. 37: 477-483.
http://dx.doi.org/10.1007/s11033-009-9669-1
PMid:19672694
Jansen RP (2001). mRNA localization: message on the move. Nat. Rev. Mol. Cell. Biol. 2: 247-256.
http://dx.doi.org/10.1038/35067016
PMid:11283722
Kappes SM, Keele JW, Stone RT, McGraw RA, et al. (1997). A second-generation linkage map of the bovine genome. Genome Res. 7: 235-249.
http://dx.doi.org/10.1101/gr.7.3.235
PMid:9074927
Khatib H, Zaitoun I, Chang YM, Maltecca C, et al. (2007). Evaluation of association between polymorphism within the thyroglobulin gene and milk production traits in dairy cattle. J. Anim. Breed. Genet. 124: 26-28.
http://dx.doi.org/10.1111/j.1439-0388.2007.00634.x
PMid:17302957
Kmiec M (1998). Transferyna- bia ko pe niace wiele ról w organizmie. Przegl. Hodowlany 1: 8-9.
Kruglyak L (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22: 139-144.
http://dx.doi.org/10.1038/9642
PMid:10369254
Lambert LA, Perri H, Halbrooks PJ and Mason AB (2005). Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 142: 129-141.
http://dx.doi.org/10.1016/j.cbpb.2005.07.007
PMid:16111909
Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62.
http://dx.doi.org/10.1186/1471-2105-6-62
PMid:15780134 PMCid:1274258
Liu W, Wang J, Li Q, Ju Z, et al. (2010). Correlation analysis between three novel SNPs of the Src gene in bovine and milk production traits. Mol. Biol. Rep. 37: 3771-3777.
http://dx.doi.org/10.1007/s11033-010-0031-4
PMid:20213510
MacGillivray RT, Mendez E, Sinha SK, Sutton MR, et al. (1982). The complete amino acid sequence of human serum transferrin. Proc. Natl. Acad. Sci. U. S. A. 79: 2504-2508.
http://dx.doi.org/10.1073/pnas.79.8.2504
PMid:6953407 PMCid:346227
Majewski J and Ott J (2002). Distribution and characterization of regulatory elements in the human genome. Genome Res. 12: 1827-1836.
http://dx.doi.org/10.1101/gr.606402
PMid:12466286 PMCid:187578
Mason C (2006). Basic mastitis bacteriology: untangling the pathogens. Ir. Vet. J. 59: 453-459.
Nott A, Meislin SH and Moore MJ (2003). A quantitative analysis of intron effects on mammalian gene expression. RNA 9: 607-617.
http://dx.doi.org/10.1261/rna.5250403
PMid:12702819 PMCid:1370426
Poso J and Mantysaari EA (1996). Relationships between clinical mastitis, somatic cell score, and production for the first three lactations of Finnish Ayrshire. J. Dairy Sci. 79: 1284-1291.
http://dx.doi.org/10.3168/jds.S0022-0302(96)76483-4
Retzer MD, Kabani A, Button LL, Yu RH, et al. (1996). Production and characterization of chimeric transferrins for the determination of the binding domains for bacterial transferrin receptors. J. Biol. Chem. 271: 1166-1173.
http://dx.doi.org/10.1074/jbc.271.2.1166
PMid:8557646
Rupp R and Boichard D (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci. 82: 2198-2204.
http://dx.doi.org/10.3168/jds.S0022-0302(99)75465-2
Sanz A, Ordovas L, Serrano C, Zaragoza P, et al. (2010). A single nucleotide polymorphism in the coding region of bovine transferrin is associated with milk fat yield. Genet. Mol. Res. 9: 843-848.
http://dx.doi.org/10.4238/vol9-2gmr784
PMid:20449817
Seegers H, Fourichon C and Beaudeau F (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 34: 475-491.
http://dx.doi.org/10.1051/vetres:2003027
PMid:14556691
Sevi A, Taibi L, Albenzio M, Annicchiarico G, et al. (2001). Airspace effects on the yield and quality of ewe milk. J. Dairy Sci. 84: 2632-2640.
http://dx.doi.org/10.3168/jds.S0022-0302(01)74717-0
Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98.
http://dx.doi.org/10.1038/sj.cr.7290272
PMid:15740637
Steppa R, Wójtowskl J, Bielinska S and Keszycka M (2009). Effect of transferrin and haemoglobin polymorphism on hygienic quality of milk in sheep. Züchtungskunde 81: 125-132.
Swanson KM, Stelwagen K, Dobson J, Henderson HV, et al. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci. 92: 117-129.
http://dx.doi.org/10.3168/jds.2008-1382
PMid:19109270
Tao Q, Yu MX, Zhao YH and Wang DX (2007). Survey of incidence of cow mastitis in west Liaoning and the integrated control measures. China Cattle Sci. 4: 61-63 (in Chinese).
Wedekind C (1994). Mate choice and maternal selection for specific parasite resistances before; during and after fertilization. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 346: 303-311.
http://dx.doi.org/10.1098/rstb.1994.0147
PMid:7708826
Zhang F, Huang J, Li Q, Ju Z, et al. (2010). Novel single nucleotide polymorphisms (SNPs) of the bovine STAT4 gene and their associations with production traits in Chinese Holstein cattle. Afr. J. Biotechnol. 9: 4003-4008.
Zhang YH, Pan YS, Gao Y, Ma Q, et al. (2008). Studies on transferrin and posttremsferr polymorphism and their relationship with performances in red steppe. Agric. Sci. Technol. 9: 109-112.