Publications

Found 6 results
Filters: Author is M.L. Li  [Clear All Filters]
2013
M. S. Cai, Wang, B. Y., Cui, W., Zhao, Z. Y., Chen, J. H., Wen, X. M., Li, Z., and Li, M. L., Molecular characterization of the pseudorabies virus UL2 gene, vol. 12, pp. 4147-4161, 2013.
M. L. Li, Chen, J. H., Zhao, Z. Y., Zhang, K. J., Li, Z., Li, J., Mai, J. Y., Zhu, X. M., and Cai, M. S., Molecular cloning and characterization of the pseudorabies virus US1 gene, vol. 12, pp. 85-98, 2013.
Advani SJ, Weichselbaum RR and Roizman B (2003). Herpes simplex virus 1 activates cdc2 to recruit topoisomerase II alpha for post-DNA synthesis expression of late genes. Proc. Natl. Acad. Sci. U. S. A. 100: 4825-4830. http://dx.doi.org/10.1073/pnas.0730735100 PMid:12665617 PMCid:153640   Ambagala AP and Cohen JI (2007). Varicella-Zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J. Virol. 81: 7844-7851. http://dx.doi.org/10.1128/JVI.00325-07 PMid:17507475 PMCid:1951283   Antunes RS, Gomes VN, Prioli SM, Prioli RA, et al. (2010). Molecular characterization and phylogenetic relationships among species of the genus Brycon (Characiformes: Characidae) from four hydrographic basins in Brazil. Genet. Mol. Res. 9: 674-684. http://dx.doi.org/10.4238/vol9-2gmr759 PMid:20449799   Barbara KE, Willis KA, Haley TM, Deminoff SJ, et al. (2007). Coiled coil structures and transcription: an analysis of the S. cerevisiae coilome. Mol. Genet. Genomics 278: 135-147. http://dx.doi.org/10.1007/s00438-007-0237-x PMid:17476531   Bastian TW, Livingston CM, Weller SK and Rice SA (2010). Herpes simplex virus type 1 immediate-early protein ICP22 is required for VICE domain formation during productive viral infection. J. Virol. 84: 2384-2394. http://dx.doi.org/10.1128/JVI.01686-09 PMid:20032172 PMCid:2820935   Bowman JJ, Orlando JS, Davido DJ, Kushnir AS, et al. (2009). Transient expression of herpes simplex virus type 1 ICP22 represses viral promoter activity and complements the replication of an ICP22 null virus. J. Virol. 83: 8733-8743. http://dx.doi.org/10.1128/JVI.00810-09 PMid:19535441 PMCid:2738139   Brandt CR and Kolb AW (2003). Tyrosine 116 of the herpes simplex virus type 1 IEalpha22 protein is an ocular virulence determinant and potential phosphorylation site. Invest. Ophthalmol. Vis. Sci. 44: 4601-4607. http://dx.doi.org/10.1167/iovs.03-0582 PMid:14578374   Brukman A and Enquist LW (2006). Pseudorabies virus EP0 protein counteracts an interferon-induced antiviral state in a species-specific manner. J. Virol. 80: 10871-10873. http://dx.doi.org/10.1128/JVI.01308-06 PMid:16928746 PMCid:1641768   Coller KE, Lee JI, Ueda A and Smith GA (2007). The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J. Virol. 81: 11790-11797. http://dx.doi.org/10.1128/JVI.01113-07 PMid:17715218 PMCid:2168758   Feng ZP (2002). An overview on predicting the subcellular location of a protein. In Silico Biol. 2: 291-303. PMid:12542414   Ferrari M, Gualandi GL, Corradi A, Monaci C, et al. (2000). The response of pigs inoculated with a thymidine kinase-negative (TK-) pseudorabies virus to challenge infection with virulent virus. Comp. Immunol. Microbiol. Infect. Dis. 23: 15-26. http://dx.doi.org/10.1016/S0147-9571(99)00019-3   Geiss BJ, Tavis JE, Metzger LM, Leib DA, et al. (2001). Temporal regulation of herpes simplex virus type 2 VP22 expression and phosphorylation. J. Virol. 75: 10721-10729. http://dx.doi.org/10.1128/JVI.75.22.10721-10729.2001 PMid:11602713 PMCid:114653   Habran L, Bontems S, Di VE, Sadzot-Delvaux C, et al. (2005). Varicella-zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity. J. Biol. Chem. 280: 29135-29143. http://dx.doi.org/10.1074/jbc.M503312200 PMid:15955820   Hopp TP and Woods KR (1981). Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. U. S. A. 78: 3824-3828. http://dx.doi.org/10.1073/pnas.78.6.3824 PMid:6167991 PMCid:319665   Jahedi S, Markovitz NS, Filatov F and Roizman B (1999). Colocalization of the herpes simplex virus 1 UL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J. Virol. 73: 5132- 5138. PMid:10233976 PMCid:112558   Jones JO and Arvin AM (2005). Viral and cellular gene transcription in fibroblasts infected with small plaque mutants of varicella-zoster virus. Antiviral Res. 68: 56-65. http://dx.doi.org/10.1016/j.antiviral.2005.06.011 PMid:16118026   Kalamvoki M and Roizman B (2011). The histone acetyltransferase CLOCK is an essential component of the herpes simplex virus 1 transcriptome that includes TFIID, ICP4, ICP27, and ICP22. J. Virol. 85: 9472-9477. http://dx.doi.org/10.1128/JVI.00876-11 PMid:21734043 PMCid:3165755   Kost RG, Kupinsky H and Straus SE (1995). Varicella-zoster virus gene 63: transcript mapping and regulatory activity. Virology 209: 218-224. http://dx.doi.org/10.1006/viro.1995.1246 PMid:7747473   Kramer T, Greco TM, Enquist LW and Cristea IM (2011). Proteomic characterization of pseudorabies virus extracellular virions. J. Virol. 85: 6427-6441. http://dx.doi.org/10.1128/JVI.02253-10 PMid:21525350 PMCid:3126529   Krautwald M, Maresch C, Klupp BG, Fuchs W, et al. (2008). Deletion or green fluorescent protein tagging of the pUL35 capsid component of pseudorabies virus impairs virus replication in cell culture and neuroinvasion in mice. J. Gen. Virol. 89: 1346-1351. http://dx.doi.org/10.1099/vir.0.83652-0 PMid:18474549   Kyte J and Doolittle RF (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132. http://dx.doi.org/10.1016/0022-2836(82)90515-0   Li M, Wang S, Cai M, Guo H, et al. (2011a). Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 417: 385-393. http://dx.doi.org/10.1016/j.virol.2011.06.004 PMid:21777931   Li M, Wang S, Cai M and Zheng C (2011b). Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J. Virol. 85: 10239-10251. http://dx.doi.org/10.1128/JVI.05223-11 PMid:21795331 PMCid:3196411   Lin HW, Hsu WL, Chang YY, Jan MS, et al. (2010). Role of the UL41 protein of pseudorabies virus in host shutoff, pathogenesis and induction of TNF-alpha expression. J. Vet. Med. Sci. 72: 1179-1187. http://dx.doi.org/10.1292/jvms.10-0059 PMid:20448414   Luxton GW, Lee JI, Haverlock-Moyns S, Schober JM, et al. (2006). The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J. Virol. 80: 201-209. http://dx.doi.org/10.1128/JVI.80.1.201-209.2006 PMid:16352544 PMCid:1317523   Mason JM and Arndt KM (2004). Coiled coil domains: stability, specificity, and biological implications. Chembiochem 5: 170-176. http://dx.doi.org/10.1002/cbic.200300781 PMid:14760737   McGeoch DJ, Dolan A and Ralph AC (2000). Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol. 74: 10401-10406. http://dx.doi.org/10.1128/JVI.74.22.10401-10406.2000 PMid:11044084 PMCid:110914   Mueller NH, Walters MS, Marcus RA, Graf LL, et al. (2010). Identification of phosphorylated residues on varicella-zoster virus immediate-early protein ORF63. J. Gen. Virol. 91: 1133-1137. http://dx.doi.org/10.1099/vir.0.019067-0 PMid:20089801 PMCid:2888152   Nixdorf R, Klupp BG and Mettenleiter TC (2001a). Restoration of function of carboxy-terminally truncated pseudorabies virus glycoprotein B by point mutations in the ectodomain. J. Virol. 75: 11526-11533. http://dx.doi.org/10.1128/JVI.75.23.11526-11533.2001 PMid:11689634 PMCid:114739   Nixdorf R, Klupp BG and Mettenleiter TC (2001b). Role of the cytoplasmic tails of pseudorabies virus glycoproteins B, E and M in intracellular localization and virion incorporation. J. Gen. Virol. 82: 215-226. PMid:11125174   Orlando JS, Balliet JW, Kushnir AS, Astor TL, et al. (2006). ICP22 is required for wild-type composition and infectivity of herpes simplex virus type 1 virions. J. Virol. 80: 9381-9390. http://dx.doi.org/10.1128/JVI.01061-06 PMid:16973544 PMCid:1617265   Pelletier A, Do F, Brisebois JJ, Lagace L, et al. (1997). Self-association of herpes simplex virus type 1 ICP35 is via coiled-coil interactions and promotes stable interaction with the major capsid protein. J. Virol. 71: 5197-5208. PMid:9188587 PMCid:191755   Pomeranz LE and Blaho JA (1999). Modified VP22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection. J. Virol. 73: 6769-6781. PMid:10400775 PMCid:112762   Ren X, Harms JS and Splitter GA (2001). Tyrosine phosphorylation of bovine herpesvirus 1 tegument protein VP22 correlates with the incorporation of VP22 into virions. J. Virol. 75: 9010-9017. http://dx.doi.org/10.1128/JVI.75.19.9010-9017.2001 PMid:11533164 PMCid:114469   Smith GA and Enquist LW (2000). A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc. Natl. Acad. Sci. U. S. A. 97: 4873-4878. http://dx.doi.org/10.1073/pnas.080502497 PMid:10781094 PMCid:18325   Szpara ML, Tafuri YR, Parsons L, Shamim SR, et al. (2011). A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS Pathog. 7: e1002282. http://dx.doi.org/10.1371/journal.ppat.1002282 PMid:22022263 PMCid:3192842   Tomioka Y, Miyazaki T, Taharaguchi S, Yoshino S, et al. (2008). Cerebellar pathology in transgenic mice expressing the pseudorabies virus immediate-early protein IE180. Eur. J. Neurosci. 27: 2115-2132. http://dx.doi.org/10.1111/j.1460-9568.2008.06174.x PMid:18412631   Walters MS, Kyratsous CA, Wan S and Silverstein S (2008). Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J. Virol. 82: 8673-8686. http://dx.doi.org/10.1128/JVI.00685-08 PMid:18562514 PMCid:2519623   Welling GW, Weijer WJ, van der Zee R and Welling-Wester S (1985). Prediction of sequential antigenic regions in proteins. FEBS Lett. 188: 215-218. http://dx.doi.org/10.1016/0014-5793(85)80374-4   Xing J, Wang S, Lin F, Pan W, et al. (2011). Comprehensive characterization of interaction complexes of herpes simplex virus type 1 ICP22, UL3, UL4, and UL20.5. J. Virol. 85: 1881-1886. http://dx.doi.org/10.1128/JVI.01730-10 PMid:21147926 PMCid:3028915   Zhang G and Leader DP (1990). The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. J. Gen. Virol. 71: 2433-2441. http://dx.doi.org/10.1099/0022-1317-71-10-2433 PMid:2172457
2011
Y. P. Ma, Ruan, Q., Ji, Y. H., Wang, N., Li, M. L., Qi, Y., He, R., Sun, Z. R., and Ren, G. W., Novel transcripts of human cytomegalovirus clinical strain found by cDNA library screening, vol. 10, pp. 566-575, 2011.
Abernathy JW, Xu P, Li P, Xu DH, et al. (2007). Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis. BMC Genomics 8: 176. doi:10.1186/1471-2164-8-176 PMid:17577414    PMCid:1906770 Adam BL, Jervey TY, Kohler CP, Wright GL Jr, et al. (1995). The human cytomegalovirus UL98 gene transcription unit overlaps with the pp28 true late gene (UL99) and encodes a 58-kilodalton early protein. J. Virol. 69: 5304-5310. PMid:7636973    PMCid:189368 Adjaye J, Bolton V and Monk M (1999). Developmental expression of specific genes detected in high-quality cDNA libraries from single human preimplantation embryos. Gene 237: 373-383. doi:10.1016/S0378-1119(99)00329-7 Adjaye J, Daniels R, Bolton V and Monk M (1997). cDNA libraries from single human preimplantation embryos. Genomics 46: 337-344. doi:10.1006/geno.1997.5117 PMid:9441736 Akter P, Cunningham C, McSharry BP, Dolan A, et al. (2003). Two novel spliced genes in human cytomegalovirus. J. Gen. Virol. 84: 1117-1122. doi:10.1099/vir.0.18952-0 PMid:12692276 Alderete JP, Jarrahian S and Geballe AP (1999). Translational effects of mutations and polymorphisms in a repressive upstream open reading frame of the human cytomegalovirus UL4 gene. J. Virol. 73: 8330-8337. PMid:10482583    PMCid:112850 Atalay R, Zimmermann A, Wagner M, Borst E, et al. (2002). Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcgamma receptor homologs. J. Virol. 76: 8596-8608. doi:10.1128/JVI.76.17.8596-8608.2002 PMid:12163579    PMCid:136976 Awasthi S, Isler JA and Alwine JC (2004). Analysis of splice variants of the immediate-early 1 region of human cytomegalovirus. J. Virol. 78: 8191-8200. doi:10.1128/JVI.78.15.8191-8200.2004 PMid:15254190    PMCid:446109 Bego M, Maciejewski J, Khaiboullina S, Pari G, et al. (2005). Characterization of an antisense transcript spanning the UL81-82 locus of human cytomegalovirus. J. Virol. 79: 11022-11034. doi:10.1128/JVI.79.17.11022-11034.2005 PMid:16103153    PMCid:1193633 Chee MS, Bankier AT, Beck S, Bohni R, et al. (1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol. 154: 125-169. PMid:2161319 Degnin CR, Schleiss MR, Cao J and Geballe AP (1993). Translational inhibition mediated by a short upstream open reading frame in the human cytomegalovirus gpUL4 (gp48) transcript. J. Virol. 67: 5514-5521. PMid:8394459    PMCid:237954 Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, et al. (2004). Genetic content of wild-type human cytomegalovirus. J. Gen. Virol. 85: 1301-1312. doi:10.1099/vir.0.79888-0 PMid:15105547 Guo YW and Huang ES (1993). Characterization of a structurally tricistronic gene of human cytomegalovirus composed of U(s)18, U(s)19, and U(s)20. J. Virol. 67: 2043-2054. PMid:8383226    PMCid:240273 Jenkins C, Abendroth A and Slobedman B (2004). A novel viral transcript with homology to human interleukin-10 is expressed during latent human cytomegalovirus infection. J. Virol. 78: 1440-1447. doi:10.1128/JVI.78.3.1440-1447.2004 PMid:14722299    PMCid:321375 Jones TR and Muzithras VP (1991). Fine mapping of transcripts expressed from the US6 gene family of human cytomegalovirus strain AD169. J. Virol. 65: 2024-2036. PMid:1848316    PMCid:240048 Lahijani RS, Otteson EW, Adlish JD and St Jeor SC (1991). Characterization of a human cytomegalovirus 1.6-kilobase late mRNA and identification of its putative protein product. J. Virol. 65: 373-381. PMid:1845897    PMCid:240527 Leatham MP, Witte PR and Stinski MF (1991). Alternate promoter selection within a human cytomegalovirus immediate-early and early transcription unit (UL119-115) defines true late transcripts containing open reading frames for putative viral glycoproteins. J. Virol. 65: 6144-6153. PMid:1717716    PMCid:250299 Li N, Zhao ZH, Liu ZL, Zhao XB, et al. (2002). Analysis of expressed sequence tags from porcine liver organ. Sci. Agric. Sinica 35: 1525-1528. Lurain NS, Fox AM, Lichy HM, Bhorade SM, et al. (2006). Analysis of the human cytomegalovirus genomic region from UL146 through UL147A reveals sequence hypervariability, genotypic stability, and overlapping transcripts. J. Virol. 3: 4. doi:10.1186/1743-422X-3-4 PMid:16409621    PMCid:1360065 Malde K and Jonassen I (2008). Repeats and EST analysis for new organisms. BMC Genomics 9: 23. doi:10.1186/1471-2164-9-23 PMid:18205940    PMCid:2258282 Martinez J, Lahijani RS and St Jeor SC (1989). Analysis of a region of the human cytomegalovirus (AD169) genome coding for a 25-kilodalton virion protein. J. Virol. 63: 233-241. PMid:2535729    PMCid:247677 Peter J Greenaway and Gavin WG (1987). Wilkinson nucleotide sequence of the most abunda transcribed early gene of human cytomegalovirus strain AD169. Virus Res. 7: 17-31. doi:10.1016/0168-1702(87)90055-4 Rigoutsos I, Novotny J, Huynh T, Chin-Bow ST, et al. (2003). In silico pattern-based analysis of the human cytomegalovirus genome. J. Virol. 77: 4326-4344. doi:10.1128/JVI.77.7.4326-4344.2003 PMid:12634390    PMCid:150618 Scalzo AA, Forbes CA, Smith LM and Loh LC (2009). Transcriptional analysis of human cytomegalovirus and rat cytomegalovirus homologues of the M73/M73.5 spliced gene family. Arch. Virol. 154: 65-75. doi:10.1007/s00705-008-0274-8 PMid:19066712 Scott GM, Barrell BG, Oram J and Rawlinson WD (2002). Characterisation of transcripts from the human cytomegalovirus genes TRL7, UL20a, UL36, UL65, UL94, US3 and US34. Virus Genes 24: 39-48. doi:10.1023/A:1014033920070 PMid:11928987 Wang M, Guerrero FD, Pertea G and Nene VM (2007). Global comparative analysis of ESTs from the southern cattle tick, Rhipicephalus (Boophilus) microplus. BMC Genomics 8: 368. doi:10.1186/1471-2164-8-368 PMid:17935616    PMCid:2100071 Wing BA and Huang ES (1995). Analysis and mapping of a family of 3'-coterminal transcripts containing coding sequences for human cytomegalovirus open reading frames UL93 through UL99. J. Virol. 69: 1521-1531. PMid:7853485    PMCid:188744 Zabarovsky ER, Kashuba VI, Pettersson B, Petrov N, et al. (1994). Shot-gun sequencing strategy for long-range genome mapping: a pilot study. Genomics 21: 495-500. doi:10.1006/geno.1994.1307 PMid:7959725 Zhang G, Raghavan B, Kotur M, Cheatham J, et al. (2007). Antisense transcription in the human cytomegalovirus transcriptome. J. Virol. 81: 11267-11281. doi:10.1128/JVI.00007-07 PMid:17686857    PMCid:2045512 Zhou RN, Shi R, Jiang SM, Yin WB, et al. (2008). Rapid EST isolation from chromosome 1R of rye. BMC Plant Biol. 8: 28. doi:10.1186/1471-2229-8-28 PMid:18366673    PMCid:2322994