Publications

Found 22 results
Filters: Author is C.Y. Wang  [Clear All Filters]
2016
F. Liu, Zhou, Z. L., Wang, C. Y., Wang, Y. H., Cai, X. Y., Wang, X. X., Wang, K. B., Zhang, Z. S., Liu, F., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Cai, X. Y., Wang, X. X., Wang, K. B., and Zhang, Z. S., Collinearity analysis of allotetraploid Gossypium tomentosum and Gossypium darwinii, vol. 15, p. -, 2016.
F. Liu, Zhou, Z. L., Wang, C. Y., Wang, Y. H., Cai, X. Y., Wang, X. X., Wang, K. B., Zhang, Z. S., Liu, F., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Cai, X. Y., Wang, X. X., Wang, K. B., and Zhang, Z. S., Collinearity analysis of allotetraploid Gossypium tomentosum and Gossypium darwinii, vol. 15, p. -, 2016.
J. Y. Zheng, Oluoch, G., Khan, M. K. Riaz, Wang, X. X., Cai, X. Y., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Li, X. Y., Liu, F., Wang, K. B., Zheng, J. Y., Oluoch, G., Khan, M. K. Riaz, Wang, X. X., Cai, X. Y., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Li, X. Y., Liu, F., and Wang, K. B., Mapping QTLs for drought tolerance in an F2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum, vol. 15, p. -, 2016.
J. Y. Zheng, Oluoch, G., Khan, M. K. Riaz, Wang, X. X., Cai, X. Y., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Li, X. Y., Liu, F., Wang, K. B., Zheng, J. Y., Oluoch, G., Khan, M. K. Riaz, Wang, X. X., Cai, X. Y., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Li, X. Y., Liu, F., and Wang, K. B., Mapping QTLs for drought tolerance in an F2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum, vol. 15, p. -, 2016.
W. W. Cheng, Wang, D. Q., Wang, C. Y., Du, H., Wei, Q. W., Cheng, W. W., Wang, D. Q., Wang, C. Y., Du, H., Wei, Q. W., Cheng, W. W., Wang, D. Q., Wang, C. Y., Du, H., and Wei, Q. W., Microsatellite markers reveal genetic divergence among wild and cultured populations of Chinese sucker Myxocyprinus asiaticus, vol. 15, p. -, 2016.
W. W. Cheng, Wang, D. Q., Wang, C. Y., Du, H., Wei, Q. W., Cheng, W. W., Wang, D. Q., Wang, C. Y., Du, H., Wei, Q. W., Cheng, W. W., Wang, D. Q., Wang, C. Y., Du, H., and Wei, Q. W., Microsatellite markers reveal genetic divergence among wild and cultured populations of Chinese sucker Myxocyprinus asiaticus, vol. 15, p. -, 2016.
W. W. Cheng, Wang, D. Q., Wang, C. Y., Du, H., Wei, Q. W., Cheng, W. W., Wang, D. Q., Wang, C. Y., Du, H., Wei, Q. W., Cheng, W. W., Wang, D. Q., Wang, C. Y., Du, H., and Wei, Q. W., Microsatellite markers reveal genetic divergence among wild and cultured populations of Chinese sucker Myxocyprinus asiaticus, vol. 15, p. -, 2016.
2015
C. Y. Wang, Zhang, J., and Gui, Z. Z.,  Acetobacter bacteria are found in Zhenjiang vinegar grains, vol. 14, pp. 5054-5064, 2015.
C. Y. Wang, Xu, X., Li, M. C., Li, Q., and Ji, S. G., Analysis of tacrolimus blood concentrations in renal transplant patients, vol. 14, pp. 3791-3797, 2015.
X. Y. Cai, Liu, F., Zhou, Z. L., Wang, X. X., Wang, C. Y., Wang, Y. H., and Wang, K. B., Characterization and development of chloroplast microsatellite markers for Gossypium hirsutum, and cross-species amplification in other Gossypium species, vol. 14, pp. 11924-11932, 2015.
F. Liu, Wang, Y. H., Gao, H. Y., Wang, C. Y., Zhou, Z. L., Cai, X. Y., Wang, X. X., Zhang, Z. S., and Wang, K. B., Construction and characterization of a bacterial artificial chromosome library for the allotetraploid Gossypium tomentosum, vol. 14, pp. 16975-16980, 2015.
F. Liu, Zhou, Z. L., Wang, C. Y., Wang, Y. H., Cai, X. Y., Wang, X. X., Zhang, Z. S., and Wang, K. B., Genetic diversity and relationship analysis of Gossypium arboreum accessions, vol. 14, pp. 14522-14529, 2015.
C. Y. Wang, Hu, L. L., Guo, M. Z., Liu, X. Y., and Zou, Q., imDC: an ensemble learning method for imbalanced classification with miRNA data, vol. 14, pp. 123-133, 2015.
Y. Y. Wu, Zhao, J. M., Liu, Q., Guo, Q., Liu, Z., Wang, X. X., Wang, C. Y., Li, R. Y., Zhang, Y. Z., and Zhang, S. T., miR-71b regulation of insulin/IGF-1 signaling during starvation in planarians, vol. 14, pp. 11905-11914, 2015.
J. Wu, Wang, F. J., Wang, C. Y., Yu, K. X., Ma, Y., Chen, T., Li, Y. H., and Zheng, Y., Modification research on in wall of capillary copper tube with Norland optical adhesive 68 in a double stereo PCR microfluidic chip, vol. 14, pp. 13603-13611, 2015.
2012
Q. Ren, Xu, B., Chen, S. Q., Yang, Y., Wang, C. Y., Wang, Y. D., Wang, X. H., Hua, L. X., and Chen, M., A common genetic variant of 5p15.33 is associated with risk for prostate cancer in the Chinese population, vol. 11, pp. 1349-1356, 2012.
Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, et al. (2009). Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41: 986-990. http://dx.doi.org/10.1038/ng.429 PMid:19648918 PMCid:2839871   Crawford ED (2003). Epidemiology of prostate cancer. Urology 62: 3-12. http://dx.doi.org/10.1016/j.urology.2003.10.013 PMid:14706503   Dennis LK, Lynch CF and Torner JC (2002). Epidemiologic association between prostatitis and prostate cancer. Urology 60: 78-83. http://dx.doi.org/10.1016/S0090-4295(02)01637-0   Gleason DF and Mellinger GT (1974). Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 111: 58-64. PMid:4813554   Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, et al. (2007). Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39: 631-637. http://dx.doi.org/10.1038/ng1999 PMid:17401366   Jemal A, Siegel R, Ward E, Hao Y, et al. (2009). Cancer statistics, 2009. CA Cancer J. Clin. 59: 225-249. http://dx.doi.org/10.3322/caac.20006 PMid:19474385   Jemal A, Bray F, Center MM, Ferlay J, et al. (2011). Global cancer statistics. CA Cancer J. Clin. 61: 69-90. http://dx.doi.org/10.3322/caac.20107 PMid:21296855   Kiemeney LA, Thorlacius S, Sulem P, Geller F, et al. (2008). Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat. Genet. 40: 1307-1312. http://dx.doi.org/10.1038/ng.229 PMid:18794855   Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, et al. (2000). Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343: 78-85. http://dx.doi.org/10.1056/NEJM200007133430201 PMid:10891514   Mandal RK, Kapoor R and Mittal RD (2010). Polymorphic variants of DNA repair gene XRCC3 and XRCC7 and risk of prostate cancer: a study from North Indian population. DNA Cell Biol. 29: 669-674. http://dx.doi.org/10.1089/dna.2010.1047 PMid:20590474   McCracken M, Olsen M, Chen MS Jr, Jemal A, et al. (2007). Cancer incidence, mortality, and associated risk factors among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese ethnicities. CA Cancer J. Clin. 57: 190-205. http://dx.doi.org/10.3322/canjclin.57.4.190 PMid:17626117   McKay JD, Hung RJ, Gaborieau V, Boffetta P, et al. (2008). Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40: 1404-1406. http://dx.doi.org/10.1038/ng.254 PMid:18978790 PMCid:2748187   Rafnar T, Sulem P, Stacey SN, Geller F, et al. (2009). Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41: 221-227. http://dx.doi.org/10.1038/ng.296 PMid:19151717   Rodriguez C, Calle EE, Miracle-McMahill HL, Tatham LM, et al. (1997). Family history and risk of fatal prostate cancer. Epidemiology 8: 653-657. PMid:9345665   Schaid DJ (2004). The complex genetic epidemiology of prostate cancer. Hum. Mol. Genet. 13 (Spec No. 1): R103-R121.   Truong T, Hung RJ, Amos CI, Wu X, et al. (2010). Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J. Natl. Cancer Inst. 102: 959-971. http://dx.doi.org/10.1093/jnci/djq178 PMid:20548021 PMCid:2897877   Yang P, Li Y, Jiang R, Cunningham JM, et al. (2010). A rigorous and comprehensive validation: common genetic variations and lung cancer. Cancer Epidemiol. Biomark. Prev. 19: 240-244. http://dx.doi.org/10.1158/1055-9965.EPI-09-0710 PMid:20056643 PMCid:2805461   Yeager M, Orr N, Hayes RB, Jacobs KB, et al. (2007). Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39: 645-649. http://dx.doi.org/10.1038/ng2022 PMid:17401363
S. X. Chen, Du, J. N., Hao, L. N., Wang, C. Y., Chen, Q., and Chang, Y. X., Identification of markers tightly linked to tomato yellow leaf curl disease and root-knot nematode resistance by multiplex PCR, vol. 11, pp. 2917-2928, 2012.
Castro AP, Díez MJ and Nuez F (2007). Inheritance of tomato yellow leaf curl virus resistance derived from Solanum pimpinellifolium UPV16991. Plant Dis. 91: 879-885. http://dx.doi.org/10.1094/PDIS-91-7-0879   Chen S, Fang Y and Yao LF (2006). Quick Preparation for Identification of DNA by PCR. Plant Physiol. Commun. 42: 36-39.   Fauquet CM and Stanley J (2003). Geminivirus classification and nomenclature: progress and problems. Ann. Appl. Biol. 142: 165-189. http://dx.doi.org/10.1111/j.1744-7348.2003.tb00241.x   Fauquet CM, Bisaro DM, Briddon RW, Brown LK, et al. (2003). Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch. Virol. 148: 405-421. http://dx.doi.org/10.1007/s00705-002-0957-5 PMid:12557003   Gilbert JC (1958). Some linkage studies with the Mi gene for resistance to root-knot. Rep. Tomato Genet. Coop. 8: 15-17.   Hanson PM, Bernacchi D, Green S, Tanksley SD, et al. (2000). Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J. Am. Soc. Hortic. Sci. 125: 15-20.   Hassan AA, Wafi MS, Quronfilah NE, Obaji UA, et al. (1991). Screening for tomato yellow leaf curl virus resistance in wild and domestic Lycopersicon accessions. Rep. Tomato Genet. Coop. 41:19-21.   Ji Y and Scott JW (2006). Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6 of tomato. Rep. Tomato Genet. Coop. 56: 22-25.   Ji Y, Schuster DJ and Scott JW (2007). Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breed. 20: 271-284. http://dx.doi.org/10.1007/s11032-007-9089-7   Kaya HB and Tanyolaç B (2009). Screening of F3 segregation population lines revealed by Ty-1 markers linked to resistance locus of tomato yellow leaf curl disease (TYLCD) in Tomato (Lycopersicum esculentum). Int. J. Nat. Eng. Sci. 33: 149-153.   Lapidot M and Friedmann M (2000). Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 140: 109-127. http://dx.doi.org/10.1111/j.1744-7348.2002.tb00163.x   Laterrot H (1992). Resistance genitors to Tomato yellow leaf curl virus (TYLCV). Tomato Leaf Curl. Newsl. 1: 2-4.   Laterrot H (1995). Breeding network to create tomato varieties resistant to Tomato yellow leaf curl virus (TYLCV). Fruits 50: 439-444.   Michelson I, Zamir D and Czosnek H (1994). Accumulation and translocation of Tomato yellow leaf curl virus (TYLCV) in a Lycopersicon esculentum breeding line containing the L. chilense TYLCV tolerance gene Ty-1. Phytopathology 84: 928-933. http://dx.doi.org/10.1094/Phyto-84-928   Milo J (2001). The PCR-Based Marker REX-1, Linked to the Gene Mi, can be Used as a Marker to TYLCV Tolerance. Proceedings of Tomato Breeders Round Table, Antigua.   Picó B, Díez MJ and Nuez F (1996). Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus - a review. Sci. Hortic. 67: 151-196. http://dx.doi.org/10.1016/S0304-4238(96)00945-4   Pilowsky M and Cohen S (2000). Screening additional wild tomatoes for resistance to the whitefly-borne tomato yellow leaf curl virus. Acta Physiol. Plant 22: 351-353. http://dx.doi.org/10.1007/s11738-000-0052-z   Yu L, Zhu L and Wan Y (2008). Identification of Ty-1 gene and Mi gene by multiplex PCR reaction in tomato. Mol. Plant Breed. 6: 165-169.   Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, et al. (1994). Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88: 141-146. http://dx.doi.org/10.1007/BF00225889
X. Liu, Guo, X. Y., Xu, X. Z., Wu, M., Zhang, X., Li, Q., Ma, P. P., Zhang, Y., Wang, C. Y., Geng, F. J., Qin, C. H., Liu, L., Shi, W. H., Wang, Y. C., and Yu, Y., Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle, vol. 11, pp. 2569-2577, 2012.
Amara K, Ziadi S, Hachana M, Soltani N, et al. (2010). DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 101: 1722-1730. http://dx.doi.org/10.1111/j.1349-7006.2010.01569.x PMid:20398054   Barres R and Zierath JR (2011). DNA methylation in metabolic disorders. Am. J. Clin. Nutr. 93: 897S-900. http://dx.doi.org/10.3945/ajcn.110.001933 PMid:21289222   de Vogel S, Wouters KA, Gottschalk RW, van Schooten FJ, et al. (2011). Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer. Cancer Causes Control 22: 1-12. http://dx.doi.org/10.1007/s10552-010-9659-6 PMid:20960050 PMCid:3002163   Fan YY, Zan LS, Wang HB and Yang YJ (2010). Study on the relationship between polymorphism of PLIN gene and carcass and meat quality traits in Qinchuan cattle. Chin. J. Anim. Vet. Sci. 41: 268-273.   Fraga MF, Ballestar E, Paz MF, Ropero S, et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. U. S. A. 102: 10604-10609. http://dx.doi.org/10.1073/pnas.0500398102 PMid:16009939 PMCid:1174919   Guo X, Liu X, Xu X, Wu M, et al. (2012). The expression levels of DNMT3a/3b and their relationship with meat quality in beef cattle. Mol. Biol. Rep. 39: 5473-5479. http://dx.doi.org/10.1007/s11033-011-1349-2 PMid:22193622   Haggarty P, Hoad G, Harris SE, Starr JM, et al. (2010). Human intelligence and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. PLoS One 5: e11329. http://dx.doi.org/10.1371/journal.pone.0011329 PMid:20593030 PMCid:2892514   Halaschek-Wiener J, Amirabbasi-Beik M, Monfared N, Pieczyk M, et al. (2009). Genetic variation in healthy oldest-old. PLoS One 4: e6641. http://dx.doi.org/10.1371/journal.pone.0006641 PMid:19680556 PMCid:2722017   Hoey AJ, Reich MM, Davis G, Shorthose R, et al. (1995). Beta 2-adrenoceptor densities do not correlate with growth, carcass quality, or meat quality in cattle. J. Anim. Sci. 73: 3281-3286. PMid:8586585   Ji AG, Zhou ZK, Zhang LP, Yang RJ, et al. (2009). PON1 gene SNPs and association with growth and carcass traits in beef cattle. Acta Vet. Zootechnica Sin. 40: 122-128.   Kamei Y, Suganami T, Ehara T, Kanai S, et al. (2010). Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity 18: 314-321. http://dx.doi.org/10.1038/oby.2009.246 PMid:19680236   Kurita S, Higuchi H, Saito Y, Nakamoto N, et al. (2010). DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8. Cancer Sci. 101: 1431-1439. http://dx.doi.org/10.1111/j.1349-7006.2010.01565.x PMid:20398055   Li WF, Yang RJ, Gan QF, Zhang LP, et al. (2009). Polymorphism of PRKAG3 gene and Its association with carcass and meat quality traits in beef cattle. Acta Vet. Zootechnica Sin. 40: 1106-1111.   Liu Y, Li K, Liu WJ, Wang JF, et al. (2009). Study on the effect of down-regulation of DNMT1 on cell proliferation, metastasis ability of esophageal squamous cell carcinoma cell line EC9706 cells and its related mechanisms. China Oncol. 19: 826-830.   Maier S and Olek A (2002). Diabetes: a candidate disease for efficient DNA methylation profiling. J. Nutr. 132: 2440S-2443S. PMid:12163708   Okano M, Bell DW, Haber DA and Li E (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257. http://dx.doi.org/10.1016/S0092-8674(00)81656-6   Page BT, Casas E, Heaton MP, Cullen NG, et al. (2002). Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085. PMid:12542147   Tidball JG and Spencer MJ (2002). Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J. Physiol. 545: 819-828. http://dx.doi.org/10.1113/jphysiol.2002.024935 PMid:12482888 PMCid:2290726   Turek-Plewa J and Jagodzinski PP (2005). The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol. Biol. Lett. 10: 631-647. PMid:16341272   Wang X, Zhu H, Snieder H, Su S, et al. (2010). Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med. 8: 87. http://dx.doi.org/10.1186/1741-7015-8-87 PMid:21176133 PMCid:3016263   Yu Y, Zhang H, Tian F, Zhang W, et al. (2008). An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines. PLoS One 3: e2672. http://dx.doi.org/10.1371/journal.pone.0002672 PMid:18648519 PMCid:2481300
2011
P. Xuan, Guo, M. Z., Wang, J., Wang, C. Y., Liu, X. Y., and Liu, Y., Genetic algorithm-based efficient feature selection for classification of pre-miRNAs, vol. 10, pp. 588-603, 2011.
Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. doi:10.1016/S0092-8674(04)00045-5 Batuwita R and Palade V (2009). microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25: 989-995. doi:10.1093/bioinformatics/btp107 PMid:19233894 Berezikov E, Guryev V, van de Belt J, Wienholds E, et al. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21-24. doi:10.1016/j.cell.2004.12.031 PMid:15652478 Bushati N and Cohen SM (2007). microRNA functions. Annu. Rev. Cell Dev. Biol. 23: 175-205. doi:10.1146/annurev.cellbio.23.090506.123406 PMid:17506695 Chang DT, Wang CC and Chen JW (2008). Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics 9 (Suppl 12): S2. doi:10.1186/1471-2105-9-S12-S2 PMid:19091019    PMCid:2638167 Chatterjee S and Grosshans H (2009). Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461: 546-549. doi:10.1038/nature08349 PMid:19734881 Fera D, Kim N, Shiffeldrim N, Zorn J, et al. (2004). RAG: RNA-As-Graphs web resource. BMC Bioinformatics 5: 88. doi:10.1186/1471-2105-5-88 PMid:15238163    PMCid:471545 Freyhult E, Gardner PP and Moulton V (2005). A comparison of RNA folding measures. BMC Bioinformatics 6: 241. doi:10.1186/1471-2105-6-241 PMid:16202126    PMCid:1274297 Gan HH, Fera D, Zorn J, Shiffeldrim N, et al. (2004). RAG: RNA-As-Graphs database - concepts, analysis, and features. Bioinformatics 20: 1285-1291. doi:10.1093/bioinformatics/bth084 PMid:14962931 Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154-D158. doi:10.1093/nar/gkm952 PMid:17991681    PMCid:2238936 Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, et al. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte fur Chemie/Chemical Monthly 125: 167-188. Jiang P, Wu H, Wang W, Ma W, et al. (2007). MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 35: W339-W344. doi:10.1093/nar/gkm368 PMid:17553836    PMCid:1933124 Moulton V, Zuker M, Steel M, Pointon R, et al. (2000). Metrics on RNA secondary structures. J. Comput. Biol. 7: 277-292. doi:10.1089/10665270050081522 PMid:10890402 Nam JW, Shin KR, Han J, Lee Y, et al. (2005). Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 33: 3570-3581. doi:10.1093/nar/gki668 PMid:15987789    PMCid:1159118 Ng KL and Mishra SK (2007). De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23: 1321-1330. doi:10.1093/bioinformatics/btm026 PMid:17267435 Quinlan JR (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo. Schultes EA, Hraber PT and LaBean TH (1999). Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol. 49: 76-83. doi:10.1007/PL00006536 PMid:10368436 Seffens W and Digby D (1999). mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27: 1578-1584. doi:10.1093/nar/27.7.1578 PMid:10075987    PMCid:148359 Sewer A, Paul N, Landgraf P, Aravin A, et al. (2005). Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6: 267. doi:10.1186/1471-2105-6-267 PMid:16274478    PMCid:1315341 Xue C, Li F, He T, Liu GP, et al. (2005). Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6: 310. doi:10.1186/1471-2105-6-310 PMid:16381612    PMCid:1360673 Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, et al. (2006). Combining multi-species genomic data for microRNA identification using a naive Bayes classifier. Bioinformatics 22: 1325-1334. doi:10.1093/bioinformatics/btl094 PMid:16543277 Yousef M, Jung S, Showe LC and Showe MK (2008). Learning from positive examples when the negative class is undetermined - microRNA gene identification. Algorithms Mol. Biol. 3: 2. doi:10.1186/1748-7188-3-2 PMid:18226233    PMCid:2248178 Zhang BH, Pan XP, Cox SB, Cobb GP, et al. (2006). Evidence that miRNAs are different from other RNAs. Cell Mol. Life Sci. 63: 246-254. doi:10.1007/s00018-005-5467-7 PMid:16395542