Publications

Found 28 results
Filters: Author is S. Wang  [Clear All Filters]
2016
X. S. Zheng, Wang, S., Ni, M., Zheng, X. S., Wang, S., and Ni, M., Association between interleukin 17A gene polymorphisms and risk of coronary artery disease, vol. 15, p. -, 2016.
X. S. Zheng, Wang, S., Ni, M., Zheng, X. S., Wang, S., and Ni, M., Association between interleukin 17A gene polymorphisms and risk of coronary artery disease, vol. 15, p. -, 2016.
L. L. Chen, Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., Chen, C. X., Chen, L. L., Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., and Chen, C. X., Association between polymorphisms in the promoter region of pri-miR-34b/c and risk of hepatocellular carcinoma, vol. 15, p. -, 2016.
L. L. Chen, Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., Chen, C. X., Chen, L. L., Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., and Chen, C. X., Association between polymorphisms in the promoter region of pri-miR-34b/c and risk of hepatocellular carcinoma, vol. 15, p. -, 2016.
H. Y. Cao, Wang, S., Zhang, Z. Y., Lou, J. Y., Cao, H. Y., Wang, S., Zhang, Z. Y., and Lou, J. Y., Association between the WRAP53 gene rs2287499 C>G polymorphism and cancer risk: A meta-analysis, vol. 15, p. -, 2016.
H. Y. Cao, Wang, S., Zhang, Z. Y., Lou, J. Y., Cao, H. Y., Wang, S., Zhang, Z. Y., and Lou, J. Y., Association between the WRAP53 gene rs2287499 C>G polymorphism and cancer risk: A meta-analysis, vol. 15, p. -, 2016.
J. J. Wang, Lu, X. K., Yin, Z. J., Mu, M., Zhao, X. J., Wang, D. L., Wang, S., Fan, W. L., Guo, L. X., Ye, W. W., Yu, S. X., Wang, J. J., Lu, X. K., Yin, Z. J., Mu, M., Zhao, X. J., Wang, D. L., Wang, S., Fan, W. L., Guo, L. X., Ye, W. W., and Yu, S. X., Genome-wide identification and expression analysis of CIPK genes in diploid cottons, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe would like to thank Dr. Cairui Lu for help in data analysis. Research supported by grants from the National High-tech R&D Program (“863” Program) (Grant #2011AA10A102). REFERENCESAlbrecht V, Ritz O, Linder S, Harter K, et al (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J. 20: 1051-1063. http://dx.doi.org/10.1093/emboj/20.5.1051 Assmann SM, Wang XQ, et al (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr. Opin. Plant Biol. 4: 421-428. http://dx.doi.org/10.1016/S1369-5266(00)00195-3 Carra A, Gambino G, Schubert A, et al (2007). A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Anal. Biochem. 360: 318-320. http://dx.doi.org/10.1016/j.ab.2006.09.022 Chae MJ, Lee JS, Nam MH, Cho K, et al (2007). A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol. Biol. 63: 151-169. http://dx.doi.org/10.1007/s11103-006-9079-x Chen L, Ren F, Zhou L, Wang QQ, et al (2012). The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J. Exp. Bot. 63: 6211-6222. http://dx.doi.org/10.1093/jxb/ers273 Chen L, Wang QQ, Zhou L, Ren F, et al (2013). Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep. 40: 4759-4767. http://dx.doi.org/10.1007/s11033-013-2572-9 Chen X, Gu Z, Xin D, Hao L, et al (2011). Identification and characterization of putative CIPK genes in maize. J. Genet. Genomics 38: 77-87. http://dx.doi.org/10.1016/j.jcg.2011.01.005 Chothia C, Gough J, Vogel C, Teichmann SA, et al (2003). Evolution of the protein repertoire. Science 300: 1701-1703. http://dx.doi.org/10.1126/science.1085371 Flagel LE, Wendel JF, et al (2009). Gene duplication and evolutionary novelty in plants. New Phytol. 183: 557-564. http://dx.doi.org/10.1111/j.1469-8137.2009.02923.x Halfter U, Ishitani M, Zhu JK, et al (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97: 3735-3740. http://dx.doi.org/10.1073/pnas.97.7.3735 Harper JF, et al (2001). Dissecting calcium oscillators in plant cells. Trends Plant Sci. 6: 395-397. http://dx.doi.org/10.1016/S1360-1385(01)02023-4 He DH, Lei ZP, Tang BS, Xing HY, et al (2015). Identification and analysis of the TIFY gene family in Gossypium raimondii. Genet. Mol. Res. 14: 10119-10138. http://dx.doi.org/10.4238/2015.August.21.19 He L, Yang X, Wang L, Zhu L, et al (2013). Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 435: 209-215. http://dx.doi.org/10.1016/j.bbrc.2013.04.080 Huang C, Ding S, Zhang H, Du H, et al (2011). CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 181: 57-64. http://dx.doi.org/10.1016/j.plantsci.2011.03.011 Huertas R, Olías R, Eljakaoui Z, Gálvez FJ, et al (2012). Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ. 35: 1467-1482. http://dx.doi.org/10.1111/j.1365-3040.2012.02504.x Iqbal K, Azhar FM, Khan IA, et al, Ehsan-Ullah (2011). Variability for Drought Tolerance in Cotton (Gossypium hirsutum) and its Genetic Basis. Int. J. Agric. Biol. 13: 61-66. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, et al (2004). Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 134: 43-58. http://dx.doi.org/10.1104/pp.103.033068 Lecharny A, Boudet N, Gy I, Aubourg S, et al (2003). Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J. Struct. Funct. Genomics 3: 111-116. http://dx.doi.org/10.1023/A:1022614001371 Li F, Fan G, Wang K, Sun F, et al (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat. Genet. 46: 567-572. http://dx.doi.org/10.1038/ng.2987 Li LB, Zhang YR, Liu KC, Ni ZF, et al (2010). Identification and Bioinformatics Analysis of SnRK2 and CIPK Family Genes in Sorghum. Agric. Sci. China 9: 19-30. http://dx.doi.org/10.1016/S1671-2927(09)60063-8 Long M, Rosenberg C, Gilbert W, et al (1995). Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92: 12495-12499. http://dx.doi.org/10.1073/pnas.92.26.12495 Mahajan S, Sopory SK, Tuteja N, et al (2006). Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS J. 273: 907-925. http://dx.doi.org/10.1111/j.1742-4658.2006.05111.x Mortazavi A, Williams BA, McCue K, Schaeffer L, et al (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628. http://dx.doi.org/10.1038/nmeth.1226 Pandey GK, Cheong YH, Kim BG, Grant JJ, et al (2007). CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res. 17: 411-421. http://dx.doi.org/10.1038/cr.2007.39 Paterson AH, Wendel JF, Gundlach H, Guo H, et al (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492: 423-427. http://dx.doi.org/10.1038/nature11798 Roy SJ, Huang W, Wang XJ, Evrard A, et al (2013). A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. Plant Cell Environ. 36: 553-568. http://dx.doi.org/10.1111/j.1365-3040.2012.02595.x Sanders D, Pelloux J, Brownlee C, Harper JF, et al (2002). Calcium at the crossroads of signaling. Plant Cell 14 (Suppl): S401-S417. Schauser L, Wieloch W, Stougaard J, et al (2005). Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J. Mol. Evol. 60: 229-237. http://dx.doi.org/10.1007/s00239-004-0144-2 Schwachtje J, Minchin PEH, Jahnke S, van Dongen JT, et al (2006). SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. USA 103: 12935-12940. http://dx.doi.org/10.1073/pnas.0602316103 Tang RJ, Liu H, Bao Y, Lv QD, et al (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74: 367-380. http://dx.doi.org/10.1007/s11103-010-9680-x Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D, et al (2009). CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 58: 778-790. http://dx.doi.org/10.1111/j.1365-313X.2009.03812.x Wang K, Wang Z, Li F, Ye W, et al (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44: 1098-1103. http://dx.doi.org/10.1038/ng.2371 Wang QQ, Liu F, Chen XS, Ma XJ, et al (2010). Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96: 369-376. http://dx.doi.org/10.1016/j.ygeno.2010.08.009 Wei KF, Wang YM, Xie DX, et al (2014). Identification and expression profile analysis of the protein kinase gene superfamily in maize development. Mol. Breed. 33: 155-172. http://dx.doi.org/10.1007/s11032-013-9941-x Weinl S, Kudla J, et al (2009). The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol. 184: 517-528. http://dx.doi.org/10.1111/j.1469-8137.2009.02938.x Xiang Y, Huang Y, Xiong L, et al (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 144: 1416-1428. http://dx.doi.org/10.1104/pp.107.101295 Xu J, Li HD, Chen LQ, Wang Y, et al (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125: 1347-1360. http://dx.doi.org/10.1016/j.cell.2006.06.011 Yin Z, Wang J, Wang D, Fan W, et al (2013). The MAPKKK gene family in Gossypium raimondii: genome-wide identification, classification and expression analysis. Int. J. Mol. Sci. 14: 18740-18757. http://dx.doi.org/10.3390/ijms140918740  
J. J. Wang, Lu, X. K., Yin, Z. J., Mu, M., Zhao, X. J., Wang, D. L., Wang, S., Fan, W. L., Guo, L. X., Ye, W. W., Yu, S. X., Wang, J. J., Lu, X. K., Yin, Z. J., Mu, M., Zhao, X. J., Wang, D. L., Wang, S., Fan, W. L., Guo, L. X., Ye, W. W., and Yu, S. X., Genome-wide identification and expression analysis of CIPK genes in diploid cottons, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe would like to thank Dr. Cairui Lu for help in data analysis. Research supported by grants from the National High-tech R&D Program (“863” Program) (Grant #2011AA10A102). REFERENCESAlbrecht V, Ritz O, Linder S, Harter K, et al (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J. 20: 1051-1063. http://dx.doi.org/10.1093/emboj/20.5.1051 Assmann SM, Wang XQ, et al (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr. Opin. Plant Biol. 4: 421-428. http://dx.doi.org/10.1016/S1369-5266(00)00195-3 Carra A, Gambino G, Schubert A, et al (2007). A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Anal. Biochem. 360: 318-320. http://dx.doi.org/10.1016/j.ab.2006.09.022 Chae MJ, Lee JS, Nam MH, Cho K, et al (2007). A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol. Biol. 63: 151-169. http://dx.doi.org/10.1007/s11103-006-9079-x Chen L, Ren F, Zhou L, Wang QQ, et al (2012). The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J. Exp. Bot. 63: 6211-6222. http://dx.doi.org/10.1093/jxb/ers273 Chen L, Wang QQ, Zhou L, Ren F, et al (2013). Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep. 40: 4759-4767. http://dx.doi.org/10.1007/s11033-013-2572-9 Chen X, Gu Z, Xin D, Hao L, et al (2011). Identification and characterization of putative CIPK genes in maize. J. Genet. Genomics 38: 77-87. http://dx.doi.org/10.1016/j.jcg.2011.01.005 Chothia C, Gough J, Vogel C, Teichmann SA, et al (2003). Evolution of the protein repertoire. Science 300: 1701-1703. http://dx.doi.org/10.1126/science.1085371 Flagel LE, Wendel JF, et al (2009). Gene duplication and evolutionary novelty in plants. New Phytol. 183: 557-564. http://dx.doi.org/10.1111/j.1469-8137.2009.02923.x Halfter U, Ishitani M, Zhu JK, et al (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97: 3735-3740. http://dx.doi.org/10.1073/pnas.97.7.3735 Harper JF, et al (2001). Dissecting calcium oscillators in plant cells. Trends Plant Sci. 6: 395-397. http://dx.doi.org/10.1016/S1360-1385(01)02023-4 He DH, Lei ZP, Tang BS, Xing HY, et al (2015). Identification and analysis of the TIFY gene family in Gossypium raimondii. Genet. Mol. Res. 14: 10119-10138. http://dx.doi.org/10.4238/2015.August.21.19 He L, Yang X, Wang L, Zhu L, et al (2013). Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 435: 209-215. http://dx.doi.org/10.1016/j.bbrc.2013.04.080 Huang C, Ding S, Zhang H, Du H, et al (2011). CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 181: 57-64. http://dx.doi.org/10.1016/j.plantsci.2011.03.011 Huertas R, Olías R, Eljakaoui Z, Gálvez FJ, et al (2012). Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ. 35: 1467-1482. http://dx.doi.org/10.1111/j.1365-3040.2012.02504.x Iqbal K, Azhar FM, Khan IA, et al, Ehsan-Ullah (2011). Variability for Drought Tolerance in Cotton (Gossypium hirsutum) and its Genetic Basis. Int. J. Agric. Biol. 13: 61-66. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, et al (2004). Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 134: 43-58. http://dx.doi.org/10.1104/pp.103.033068 Lecharny A, Boudet N, Gy I, Aubourg S, et al (2003). Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J. Struct. Funct. Genomics 3: 111-116. http://dx.doi.org/10.1023/A:1022614001371 Li F, Fan G, Wang K, Sun F, et al (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat. Genet. 46: 567-572. http://dx.doi.org/10.1038/ng.2987 Li LB, Zhang YR, Liu KC, Ni ZF, et al (2010). Identification and Bioinformatics Analysis of SnRK2 and CIPK Family Genes in Sorghum. Agric. Sci. China 9: 19-30. http://dx.doi.org/10.1016/S1671-2927(09)60063-8 Long M, Rosenberg C, Gilbert W, et al (1995). Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92: 12495-12499. http://dx.doi.org/10.1073/pnas.92.26.12495 Mahajan S, Sopory SK, Tuteja N, et al (2006). Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS J. 273: 907-925. http://dx.doi.org/10.1111/j.1742-4658.2006.05111.x Mortazavi A, Williams BA, McCue K, Schaeffer L, et al (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628. http://dx.doi.org/10.1038/nmeth.1226 Pandey GK, Cheong YH, Kim BG, Grant JJ, et al (2007). CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res. 17: 411-421. http://dx.doi.org/10.1038/cr.2007.39 Paterson AH, Wendel JF, Gundlach H, Guo H, et al (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492: 423-427. http://dx.doi.org/10.1038/nature11798 Roy SJ, Huang W, Wang XJ, Evrard A, et al (2013). A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. Plant Cell Environ. 36: 553-568. http://dx.doi.org/10.1111/j.1365-3040.2012.02595.x Sanders D, Pelloux J, Brownlee C, Harper JF, et al (2002). Calcium at the crossroads of signaling. Plant Cell 14 (Suppl): S401-S417. Schauser L, Wieloch W, Stougaard J, et al (2005). Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J. Mol. Evol. 60: 229-237. http://dx.doi.org/10.1007/s00239-004-0144-2 Schwachtje J, Minchin PEH, Jahnke S, van Dongen JT, et al (2006). SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. USA 103: 12935-12940. http://dx.doi.org/10.1073/pnas.0602316103 Tang RJ, Liu H, Bao Y, Lv QD, et al (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74: 367-380. http://dx.doi.org/10.1007/s11103-010-9680-x Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D, et al (2009). CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 58: 778-790. http://dx.doi.org/10.1111/j.1365-313X.2009.03812.x Wang K, Wang Z, Li F, Ye W, et al (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44: 1098-1103. http://dx.doi.org/10.1038/ng.2371 Wang QQ, Liu F, Chen XS, Ma XJ, et al (2010). Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96: 369-376. http://dx.doi.org/10.1016/j.ygeno.2010.08.009 Wei KF, Wang YM, Xie DX, et al (2014). Identification and expression profile analysis of the protein kinase gene superfamily in maize development. Mol. Breed. 33: 155-172. http://dx.doi.org/10.1007/s11032-013-9941-x Weinl S, Kudla J, et al (2009). The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol. 184: 517-528. http://dx.doi.org/10.1111/j.1469-8137.2009.02938.x Xiang Y, Huang Y, Xiong L, et al (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 144: 1416-1428. http://dx.doi.org/10.1104/pp.107.101295 Xu J, Li HD, Chen LQ, Wang Y, et al (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125: 1347-1360. http://dx.doi.org/10.1016/j.cell.2006.06.011 Yin Z, Wang J, Wang D, Fan W, et al (2013). The MAPKKK gene family in Gossypium raimondii: genome-wide identification, classification and expression analysis. Int. J. Mol. Sci. 14: 18740-18757. http://dx.doi.org/10.3390/ijms140918740  
Z. W. Wu, Liu, Y. F., Wang, S., Li, B., Wu, Z. W., Liu, Y. F., Wang, S., and Li, B., miRNA-146a induces vascular smooth muscle cell apoptosis in a rat model of coronary heart disease via NF-κB pathway - Genet. Mol. Res. 14 (4): 18703-18712, vol. 15. p. -, 2016.
Z. W. Wu, Liu, Y. F., Wang, S., Li, B., Wu, Z. W., Liu, Y. F., Wang, S., and Li, B., miRNA-146a induces vascular smooth muscle cell apoptosis in a rat model of coronary heart disease via NF-κB pathway - Genet. Mol. Res. 14 (4): 18703-18712, vol. 15. p. -, 2016.
F. Fang, Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., and Yu, G. Q., Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China, vol. 15, p. -, 2016.
F. Fang, Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., and Yu, G. Q., Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China, vol. 15, p. -, 2016.
F. Fang, Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., Yu, G. Q., Fang, F., Wang, S., Dang, Y. X., Wang, X., and Yu, G. Q., Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China, vol. 15, p. -, 2016.
2015
S. Wang, Wang, M., and Zhang, C. Y., Characteristics of mature wheat embryos with different resistance to scab cultured in vitro with Fusarium graminearum crude toxin, vol. 14, pp. 17348-17357, 2015.
S. Wang, Huang, Y., Su, R., Fang, Z., and Han, M., Cyclin D1 G870A polymorphism is associated with an increased risk of multiple myeloma, vol. 14, pp. 5856-5861, 2015.
S. Wang, Dai, Y. X., Chen, L. L., Jiang, T., Zheng, M. Q., Li, C. G., Chen, Y. P., Lin, W. H., Zhang, J. F., and Jiang, J., Effect of IL-1β, IL-8, and IL-10 polymorphisms on the development of myocardial infarction, vol. 14, pp. 12016-12021, 2015.
C. H. Li, Gao, Y., Wang, S., Xu, F. F., Dai, L. S., Jiang, H., Yu, X. F., Chen, C. Z., Yuan, B., and Zhang, J. B., Expression pattern of JMJD1C in oocytes and its impact on early embryonic development, vol. 14, pp. 18249-18258, 2015.
S. Wang, Fang, F., Jin, W. B., Wang, X., and Zheng, X. S., Investigation into the association between NLRP3 gene polymorphisms and susceptibility to type 2 diabetes mellitus, vol. 14, pp. 17447-17452, 2015.
Y. Wang, Zhou, D., Wang, S., and Yang, L., Large-scale detection and application of expressed sequence tag single nucleotide polymorphisms in Nicotiana, vol. 14, pp. 7793-7800, 2015.
Z. W. Wu, Liu, Y. F., Wang, S., and Li, B., miRNA-146a induces vascular smooth muscle cell apoptosis in a rat model of coronary heart disease via NF-κB pathway, vol. 14, pp. 18703-18712, 2015.
L. P. Hu, Huang, X. T., Sun, Y., Mao, J. X., Wang, S., Wang, C. D., and Bao, Z. M., Molecular genetic analysis of heterosis in interspecific hybrids of Argopecten purpuratus x A. irradians irradians, vol. 14, pp. 10692-10704, 2015.
S. N. Li, Xue, H. L., Zhang, Q., Xu, J. H., Wang, S., Chen, L., and Xu, L. X., Photoperiod regulates the differential expression of KiSS-1 and GPR54 in various tissues and sexes of striped hamster, vol. 14, pp. 13894-13905, 2015.
2012
J. J. Lu, Wang, S., Zhao, H. Y., Liu, J. J., and Wang, H. Z., Genetic linkage map of EST-SSR and SRAP markers in the endangered Chinese endemic herb Dendrobium (Orchidaceae), vol. 11, pp. 4654-4667, 2012.
Abe H, Nakano M, Nakatsuka A, Nakayama M, et al. (2002). Genetic analysis of floral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps. Theor. Appl. Genet. 105: 1175-1182. http://dx.doi.org/10.1007/s00122-002-1053-7 PMid:12582896   Achere V, Faivre-Rampant P, Jeandroz S, Besnard G, et al. (2004). A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers. Theor. Appl. Genet. 108: 1602-1613. http://dx.doi.org/10.1007/s00122-004-1587-y PMid:14991106   Beedanagari SR, Dove SK, Wood BW and Conner PJ (2005). A first linkage map of pecan cultivars based on RAPD and AFLP markers. Theor. Appl. Genet. 110: 1127-1137. http://dx.doi.org/10.1007/s00122-005-1944-5 PMid:15782296   Bulpitt CJ, Li Y, Bulpitt PF and Wang J (2007). The use of orchids in Chinese medicine. J. R. Soc. Med. 100: 558-563. http://dx.doi.org/10.1258/jrsm.100.12.558 PMid:18065708 PMCid:2121637   Chakravarti A, Lasher LK and Reefer JE (1991). A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128: 175-182. PMid:2060775 PMCid:1204446   Cheng SJ, Hu ZH, Li XL and Chen RY (1985). A preliminary study on the chromosomes of dendrobium in China. Acta Hortic. Sin. 12: 119-124.   Chinese Pharmacopoeia Editorial Committee (2000). Pharmacopoeia of the People's Republic of China. Chemical Industry Press, Beijing.   Dugo ML, Satovic Z, Millan T, Cubero JI, et al. (2005). Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor. Appl. Genet. 111: 511-520. http://dx.doi.org/10.1007/s00122-005-2042-4 PMid:15905992   Grattapaglia D and Sederoff R (1994). Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137: 1121-1137. PMid:7982566 PMCid:1206059   Grosse WM, Kappes SM, Laegreid WW, Keele JW, et al. (1999). Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes. Mamm. Genome 10: 1062-1069. http://dx.doi.org/10.1007/s003359901162 PMid:10556424   Hodgetts RB, Aleksiuk MA, Brown A, Clarke C, et al. (2001). Development of microsatellite markers for white spruce (Picea glauca) and related species. Theor. Appl. Genet. 102: 1252-1258. http://dx.doi.org/10.1007/s00122-001-0546-0   Jones CJ, Edwards KJ, Castaglione S, Winfield MO, et al. (1997). Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed. 3: 381-390. http://dx.doi.org/10.1023/A:1009612517139   Kosambi DD (1943). The estimation of map distances from recombination values. Ann. Human Genet. 12: 172-175. http://dx.doi.org/10.1111/j.1469-1809.1943.tb02321.x   Kriegner A, Cervantes JC, Burg K, Mwanga ROM, et al. (2003). A genetic linkage map of sweetpotato (Ipomoea batatas (L.) Lam.) based on AFLP markers. Mol. Breed. 11: 169-185. http://dx.doi.org/10.1023/A:1022870917230   la Rosa R, Angiolillo A, Guerrero C, Pellegrini M, et al. (2003). A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor. Appl. Genet. 106: 1273-1282. PMid:12748779   Li G and Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461. http://dx.doi.org/10.1007/s001220100570   Liu RH and Meng JL (2003). MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Yi Chuan 25: 317-321. PMid:15639879   Lu JJ, Zhao HY, Suo NN, Wang S, et al. (2012a). Genetic linkage maps of Dendrobium moniliforme and D. officinale based on EST-SSR, SRAP, ISSR and RAPD markers. Sci. Hortic. 137: 1-10. http://dx.doi.org/10.1016/j.scienta.2011.12.027   Lu JJ, Suo NN, Hu X, Wang S, et al. (2012b). Development and characterization of 110 novel EST-SSR markers for Dendrobium officinale (Orchidaceae). Am. J. Bot. 99: e415-e420. http://dx.doi.org/10.3732/ajb.1200132 PMid:23028002   Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, et al. (2007). Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol. Breed. 20: 189-208. http://dx.doi.org/10.1007/s11032-007-9082-1   Rajora OP, Rahman MH, Dayanandan S and Mosseler A (2001). Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species. Mol. Gen. Genet. 264: 871-882. http://dx.doi.org/10.1007/s004380000377 PMid:11254135   Shepherd M, Cross M, Maguire L, Dieters J, et al. (2002). Transpecific microsatellites for hard pines. Theor. Appl. Genet. 104: 819-827. http://dx.doi.org/10.1007/s00122-001-0794-z PMid:12582642   Stam P (1993). Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J. 3: 739-744. http://dx.doi.org/10.1111/j.1365-313X.1993.00739.x   Testolin R, Marrazzo T and Cipriani G (2000). Cross-species amplification of microsatellite markers isolated from peach by means of heterologous primer pairs. Acta Hortic. 538: 511-516.   Tsi ZH (1980). A preliminary study of the orchid genus Dendrobium Sw. in China. Acta Phytotax. Sin. 18: 427-449.   Tsi ZH, Chen SC, Luo YB and Zhu GH (1999). Orchidaceae (3). In: Angiospermae, Monocotyledoneae Flora Reipublicae Popularis Sinica (Tsi ZH, ed.). Science Press, Beijing.   Wang B and Porter AH (2004). An AFLP-based interspecific linkage map of sympatric, hybridizing Colias butterflies. Genetics 168: 215-225. http://dx.doi.org/10.1534/genetics.104.028118 PMid:15454539 PMCid:1448107   Wang Y, Li ZJ and Peng HM (1999). The Dendrobium. Science Press, Beijing.   Wang HZ, Feng SG, Lu JJ, Shi NN, et al. (2009a). Phylogenetic study and molecular identification of 31 Dendrobium species using inter-simple sequence repeat (ISSR) markers. Sci. Hortic. 122: 440-447. http://dx.doi.org/10.1016/j.scienta.2009.06.005   Wang Y, Wang Y, Tan B, Zhang B, et al. (2009b). A genetic linkage map of Populus adenopoda Maxim. x P. alba L. hybrid based on SSR and SRAP markers. Euphytica 173: 193-205. http://dx.doi.org/10.1007/s10681-009-0085-3   Xue D, Feng S, Zhao H, Jiang H, et al. (2010). The linkage maps of Dendrobium species based on RAPD and SRAP markers. J. Genet. Genomics 37: 197-204. http://dx.doi.org/10.1016/S1673-8527(09)60038-2   Yasukochi Y (1998). A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics 150: 1513-1525. PMid:9832528 PMCid:1460425   Zheng YF, Shi H and Yang XZ (2010). Influence on islet cell secretion by Dendrobium compound. Chin. J. Hosp. Pharm. 30: 551-553.
2011
Y. Gao, Zhang, Y. H., Jiang, H., Xiao, S. Q., Wang, S., Ma, Q., Sun, G. J., Li, F. J., Deng, Q., Dai, L. S., Zhao, Z. H., Cui, X. S., Zhang, S. M., Liu, D. F., and Zhang, J. B., Detection of differentially expressed genes in the longissimus dorsi of Northeastern Indigenous and Large White pigs, vol. 10, pp. 779-791, 2011.
Amri EZ, Bertrand B, Ailhaud G and Grimaldi P (1991). Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 32: 1449-1456. PMid:1753215 Arber S, Barbayannis FA, Hanser H, Schneider C, et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805-809. doi:10.1038/31729 PMid:9655397 Ball SG, Shuttleworth CA and Kielty CM (2007). Platelet-derived growth factor receptor-alpha is a key determinant of smooth muscle alpha-actin filaments in bone marrow-derived mesenchymal stem cells. Int. J. Biochem. Cell Biol. 39: 379-391. doi:10.1016/j.biocel.2006.09.005 Britton CH, Mackey DW, Esser V, Foster DW, et al. (1997). Fine chromosome mapping of the genes for human liver and muscle carnitine palmitoyltransferase I (CPT1A and CPT1B). Genomics 40: 209-211. doi:10.1006/geno.1996.4539 PMid:9070950 Brouns F and van der Vusse GJ (1998). Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br. J. Nutr. 79: 117-128. doi:10.1079/BJN19980022 Chmurzynska A (2006). The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47: 39-48. doi:10.1007/BF03194597 PMid:16424607 Clement S, Hinz B, Dugina V, Gabbiani G, et al. (2005). The N-terminal Ac-EEED sequence plays a role in alpha-smooth-muscle actin incorporation into stress fibers. J. Cell Sci. 118: 1395-1404. doi:10.1242/jcs.01732 PMid:15769852 Douaire M, Le Fur N, el Khadir-Mounier C, Langlois P, et al. (1992). Identifying genes involved in the variability of genetic fatness in the growing chicken. Poult. Sci. 71: 1911-1920. PMid:1437978 Fu Y, Luo N, Klein RL and Garvey WT (2005). Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46: 1369-1379. doi:10.1194/jlr.M400373-JLR200 PMid:15834118 Gardan D, Louveau I and Gondret F (2007). Adipocyte- and heart-type fatty acid binding proteins are both expressed in subcutaneous and intramuscular porcine (Sus scrofa) adipocytes. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 148: 14-19. doi:10.1016/j.cbpb.2007.03.017 PMid:17600747 Gregoire FM, Smas CM and Sul HS (1998). Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809. PMid:9674695 Hamilton DN, Miller KD, Ellis M, McKeith FK, et al. (2003). Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci. 81: 2206-2212. PMid:12968695 Kadowaki T and Yamauchi T (2005). Adiponectin and adiponectin receptors. Endocr. Rev. 26: 439-451. doi:10.1210/er.2005-0005 PMid:15897298 Kadowaki T, Yamauchi T, Kubota N, Hara K, et al. (2007). Adiponectin and adiponectin receptors in obesity-linked insulin resistance. Novartis Found. Symp. 286: 164-176. doi:10.1002/9780470985571.ch15 Malmstrom J, Lindberg H, Lindberg C, Bratt C, et al. (2004). Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus. Mol. Cell Proteomics 3: 466-477. doi:10.1074/mcp.M300108-MCP200 Marrube G, Rozen F, Pinto GB, Pacienza N, et al. (2004). New polymorphism of FASN gene in chicken. J. Appl. Genet. 45: 453-455. PMid:15523156 Morris CA, Cullen NG, Glass BC, Hyndman DL, et al. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome 18: 64-74. doi:10.1007/s00335-006-0102-y PMid:17242864 Muñoz G, Óvilo C, Noguera JL, Sanchez A, et al. (2003). Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Anim. Genet. 34: 234-235. doi:10.1046/j.1365-2052.2003.00987.x PMid:12755829 Nowacka-Woszuk J, Szczerbal I, Fijak-Nowak H and Switonski M (2008). Chromosomal localization of 13 candidate genes for human obesity in the pig genome. J. Appl. Genet. 49: 373-377. doi:10.1007/BF03195636 PMid:19029685 Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. doi:10.1093/nar/29.9.e45 Picard B, Lefaucheur L, Berri C and Duclos MJ (2002). Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 42: 415-431. doi:10.1051/rnd:2002035 Ponsuksili S, Murani E, Walz C, Schwerin M, et al. (2007). Pre- and postnatal hepatic gene expression profiles of two pig breeds differing in body composition: insight into pathways of metabolic regulation. Physiol. Genomics 29: 267-279. doi:10.1152/physiolgenomics.00178.2006 PMid:17264241 Price NT, Jackson VN, van der Leij FR, Cameron JM, et al. (2003). Cloning and expression of the liver and muscle isoforms of ovine carnitine palmitoyltransferase 1: residues within the N-terminus of the muscle isoform influence the kinetic properties of the enzyme. Biochem. J. 372: 871-879. doi:10.1042/BJ20030086 PMid:12662154    PMCid:1223454 Roy R, Gautier M, Hayes H, Laurent P, et al. (2001). Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell Genet. 93: 141-142. doi:10.1159/000056970 Roy R, Ordovas L, Zaragoza P, Romero A, et al. (2006). Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim. Genet. 37: 215-218. doi:10.1111/j.1365-2052.2006.01434.x PMid:16734679 Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Woodbury. Sourdioux M, Brevelet C, Delabrosse Y and Douaire M (1999). Association of fatty acid synthase gene and malic enzyme gene polymorphisms with fatness in turkeys. Poult. Sci. 78: 1651-1657. PMid:10626637 Spiegelman BM, Frank M and Green H (1983). Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J. Biol. Chem. 258: 10083-10089. PMid:6411703 Tichopad A, Dilger M, Schwarz G and Pfaffl MW (2003). Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 31: e122. doi:10.1093/nar/gng122 PMCid:219490 van der Leij FR, Takens J, van der Veen AY, Terpstra P, et al. (1997). Localization and intron usage analysis of the human CPT1B gene for muscle type carnitine palmitoyltransferase I. Biochim. Biophys. Acta 1352: 123-128. PMid:9199240 van der Leij FR, Cox KB, Jackson VN, Huijkman NC, et al. (2002). Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals. J. Biol. Chem. 277: 26994-27005. doi:10.1074/jbc.M203189200 PMid:12015320 Wang D, Harrison W, Buja LM, Elder FF, et al. (1998). Genomic DNA sequence, promoter expression, and chromosomal mapping of rat muscle carnitine palmitoyltransferase I. Genomics 48: 314-323. doi:10.1006/geno.1997.5184 PMid:9545636 Yamazaki N, Yamanaka Y, Hashimoto Y, Shinohara Y, et al. (1997). Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I. FEBS Lett. 409: 401-406. doi:10.1016/S0014-5793(97)00561-9 Yang YA, Morin PJ, Han WF, Chen T, et al. (2003). Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp. Cell Res. 282: 132-137. doi:10.1016/S0014-4827(02)00023-X Yu GS, Lu YC and Gulick T (1998). Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase Ibeta gene promoters by fatty acid enzyme substrate. J. Biol. Chem. 273: 32901-32909. doi:10.1074/jbc.273.49.32901 PMid:9830040 Zhao S, Wang J, Song X, Zhang X, et al. (2010). Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 7: 6. doi:10.1186/1743-7075-7-6 Zhao SH, Recknor J, Lunney JK, Nettleton D, et al. (2005). Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics 86: 618-625. doi:10.1016/j.ygeno.2005.08.001 PMid:16216716