Found 3 results
Filters: Author is W.H. Zheng  [Clear All Filters]
X. F. Wang, Zheng, H. Y., Zheng, W. H., Ao, C. Q., Jin, H. Y., Zhao, L. H., Li, N., and Jia, L. R., RAPD-based genetic diversities and correlation with morphological traits in Camellia (Theaceae) cultivars in China, vol. 10, pp. 849-859, 2011.
Ahlawat A, Katoch M, Ram G and Ahuja A (2010). Genetic diversity in Acorus calamus L. as revealed by RAPD markers and its relationship with β-asarone content and ploidy level. Sci. Hortic. 124: 294-297. doi:10.1016/j.scienta.2009.12.035 Ahmad F, Khan AI, Awan FS, Sadia B, et al. (2010). Genetic diversity of chickpea (Cicer arietinum L.) germplasm in Pakistan as revealed by RAPD analysis. Genet. Mol. Res. 9: 1414-1420. doi:10.4238/vol9-3gmr862 PMid:20662156 Chung MG and Kang SS (1996). Genetic variation within and among populations of Camellia japonica (Theaceae) in Korea. Can. J. For. Res. 26: 537-542. doi:10.1139/x26-061 Collard BC and Mackill DJ (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 557-572. doi:10.1098/rstb.2007.2170 PMid:17715053    PMCid:2610170 Dorokhov DB and Klocke E (1997). A rapid and economic technique for RAPD analysis of plant genomes. Russ. J. Genet. 33: 443-450. Ferrara L, Montesano D and Senatore A (2001). The distribution of minerals and flavonoids in the tea plant (Camellia sinensis). Farmaco 56: 397-401. doi:10.1016/S0014-827X(01)01104-1 Gao JY, Clifford RP and Du YQ (2005). Collected Species of the Genus Camellia, an Illustrated Outline. Zhejiang Science and Technology Publishing House, Hangzhou. Jung E, Lee J, Baek J, Jung K, et al. (2007). Effect of Camellia japonica oil on human type I procollagen production and skin barrier function. J. Ethnopharmacol. 112: 127-131. doi:10.1016/j.jep.2007.02.012 PMid:17386986 Khan N and Mukhtar H (2007). Tea polyphenols for health promotion. Life Sci. 81: 519-533. doi:10.1016/j.lfs.2007.06.011 PMid:17655876 Khlestkina EK and Salina EA (2006). SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Genetika 42: 725-736. PMid:16871776 Kim KY, Davidson PM and Chung HJ (2001). Antibacterial activity in extracts of Camellia japonica L. petals and its application to a model food system. J. Food Prot. 64: 1255-1260. PMid:11510672 Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, et al. (2005). Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. U. S. A. 102: 8369-8374. doi:10.1073/pnas.0503123102 PMid:15928076    PMCid:1142120 Leal AA, Mangolin CA, do Amaral ATJ, Goncalves LS, et al. (2010). Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet. Mol. Res. 9: 9-18. doi:10.4238/vol9-1gmr692 PMid:20082266 Liu LQ and Gu (2009). Chromosome relationship between Camellia japonica and Camellia reticulate revealed by genomic in situ hybridization. Chromosome Bot. 4: 1-4. doi:10.3199/iscb.4.1 Nei M and Li WH (1997). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. doi:10.1073/pnas.76.10.5269 Porebski S, Bailey LG and Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8-15. doi:10.1007/BF02772108 Powell W, Morgante M, Andre C and Hanafey M (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225-238. doi:10.1007/BF00564200 Sablowski R (2010). Genes and functions controlled by floral organ identity genes. Semin. Cell Dev. Biol. 21: 94-99. doi:10.1016/j.semcdb.2009.08.008 Tang S, Bin X, Wang L and Zhong Y (2006). Genetic diversity and population structure of yellow Camellia (Camellia nitidissima) in China as revealed by RAPD and AFLP markers. Biochem. Genet. 44: 449-461. doi:10.1007/s10528-006-9053-y PMid:17109218 Ueno S, Yoshimaru H, Tomaru N and Yamamoto S (1999). Development and characterization of microsatellite markers in Camellia japonica L. Mol. Ecol. 8: 335-336. PMid:10065549 Ueno S, Tomaru N, Yoshimaru H, Manabe T, et al. (2002). Size-class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest. Heredity 89: 120-126. doi:10.1038/sj.hdy.6800111 PMid:12136414 Vandenbussche M, Zethof J, Souer E, Koes R, et al. (2003). Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15: 2680-2693. doi:10.1105/tpc.017376 PMid:14576291    PMCid:280571 Varshney RK, Graner A and Sorrells ME (2005). Genomics-assisted breeding for crop improvement. Trends Plant Sci. 10: 621-630. doi:10.1016/j.tplants.2005.10.004 PMid:16290213 Vijayan K, Zhang WJ and Tsou CH (2009). Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. Am. J. Bot. 96: 1348-1360. doi:10.3732/ajb.0800205 Wang XF, Zheng WH, Zheng HX and Xie QQ (2010). Optimization of RAPD-PCR reaction system for genetic relationships analysis of 15 Camellia cultivars. Afr. J. Biotechnol. 9: 798-804. Wei X, Cao HL, Jiang YS, Ye WH, et al. (2008). Population genetic structure of Camellia nitidissima (Theaceae) and conservation implications. Bot. Stud. 49: 147-153. Xiao TJ and Clifford RP (2003). Molecular analysis of the genus Camellia. Int. Camellia J. 35: 57-65.