Publications

Found 5 results
Filters: Author is H.Y. Zheng  [Clear All Filters]
2012
W. - Z. Li, Li, S. - L., Zheng, H. Y., Zhang, S. - P., and Xue, L., A broad expression profile of the GMR-GAL4 driver in Drosophila melanogaster, vol. 11, pp. 1997-2002, 2012.
Benitez E, Bray SJ, Rodriguez I and Guerrero I (2009). Lines is required for normal operation of Wingless, Hedgehog and Notch pathways during wing development. Development 136: 1211-1221. http://dx.doi.org/10.1242/dev.021428 PMid:19270177 PMCid:2685938   Brand AH and Perrimon N (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401-415. PMid:8223268   Casso DJ, Biehs B and Kornberg TB (2011). A novel interaction between hedgehog and Notch promotes proliferation at the anterior-posterior organizer of the Drosophila wing. Genetics 187: 485-499. http://dx.doi.org/10.1534/genetics.110.125138 PMid:21098717 PMCid:3030491   de Celis JF and Garcia-Bellido A (1994). Roles of the Notch gene in Drosophila wing morphogenesis. Mech. Dev. 46: 109-122. http://dx.doi.org/10.1016/0925-4773(94)90080-9   Duffy JB (2002). GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34: 1-15. http://dx.doi.org/10.1002/gene.10150 PMid:12324939   Freeman M (1996). Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87: 651-660. http://dx.doi.org/10.1016/S0092-8674(00)81385-9   Laughon A, Driscoll R, Wills N and Gesteland RF (1984). Identification of two proteins encoded by the Saccharomyces cerevisiae GAL4 gene. Mol. Cell Biol. 4: 268-275. PMid:6366517 PMCid:368691   Lie DC, Colamarino SA, Song HJ, Desire L, et al. (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature 437: 1370-1375. http://dx.doi.org/10.1038/nature04108 PMid:16251967   Major RJ and Irvine KD (2005). Influence of Notch on dorsoventral compartmentalization and actin organization in the Drosophila wing. Development 132: 3823-3833. http://dx.doi.org/10.1242/dev.01957 PMid:16049109   Shalaby NA, Parks AL, Morreale EJ, Osswalt MC, et al. (2009). A screen for modifiers of notch signaling uncovers Amun, a protein with a critical role in sensory organ development. Genetics 182: 1061-1076. http://dx.doi.org/10.1534/genetics.108.099986 PMid:19448274 PMCid:2728848   Sharma RP and Chopra VL (1976). Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev. Biol. 48: 461-465. http://dx.doi.org/10.1016/0012-1606(76)90108-1   Song Z, Guan B, Bergman A, Nicholson DW, et al. (2000). Biochemical and genetic interactions between Drosophila caspases and the proapoptotic genes rpr, hid, and grim. Mol. Cell Biol. 20: 2907-2914. http://dx.doi.org/10.1128/MCB.20.8.2907-2914.2000 PMid:10733594 PMCid:85526   Traven A, Jelicic B and Sopta M (2006). Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep. 7: 496-499. http://dx.doi.org/10.1038/sj.embor.7400679 PMid:16670683 PMCid:1479557   Weinmaster G (1997). The ins and outs of notch signaling. Mol. Cell Neurosci 9: 91-102. http://dx.doi.org/10.1006/mcne.1997.0612 PMid:9245493   Williams JA, Paddock SW and Carroll SB (1993). Pattern formation in a secondary field: a hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development 117: 571-584. PMid:8330528   Xue L, Igaki T, Kuranaga E, Kanda H, et al. (2007). Tumor suppressor CYLD regulates JNK-induced cell death in Drosophila. Dev. Cell 13: 446-454. http://dx.doi.org/10.1016/j.devcel.2007.07.012 PMid:17765686
2011
X. F. Wang, Zheng, H. Y., Zheng, W. H., Ao, C. Q., Jin, H. Y., Zhao, L. H., Li, N., and Jia, L. R., RAPD-based genetic diversities and correlation with morphological traits in Camellia (Theaceae) cultivars in China, vol. 10, pp. 849-859, 2011.
Ahlawat A, Katoch M, Ram G and Ahuja A (2010). Genetic diversity in Acorus calamus L. as revealed by RAPD markers and its relationship with β-asarone content and ploidy level. Sci. Hortic. 124: 294-297. doi:10.1016/j.scienta.2009.12.035 Ahmad F, Khan AI, Awan FS, Sadia B, et al. (2010). Genetic diversity of chickpea (Cicer arietinum L.) germplasm in Pakistan as revealed by RAPD analysis. Genet. Mol. Res. 9: 1414-1420. doi:10.4238/vol9-3gmr862 PMid:20662156 Chung MG and Kang SS (1996). Genetic variation within and among populations of Camellia japonica (Theaceae) in Korea. Can. J. For. Res. 26: 537-542. doi:10.1139/x26-061 Collard BC and Mackill DJ (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 557-572. doi:10.1098/rstb.2007.2170 PMid:17715053    PMCid:2610170 Dorokhov DB and Klocke E (1997). A rapid and economic technique for RAPD analysis of plant genomes. Russ. J. Genet. 33: 443-450. Ferrara L, Montesano D and Senatore A (2001). The distribution of minerals and flavonoids in the tea plant (Camellia sinensis). Farmaco 56: 397-401. doi:10.1016/S0014-827X(01)01104-1 Gao JY, Clifford RP and Du YQ (2005). Collected Species of the Genus Camellia, an Illustrated Outline. Zhejiang Science and Technology Publishing House, Hangzhou. Jung E, Lee J, Baek J, Jung K, et al. (2007). Effect of Camellia japonica oil on human type I procollagen production and skin barrier function. J. Ethnopharmacol. 112: 127-131. doi:10.1016/j.jep.2007.02.012 PMid:17386986 Khan N and Mukhtar H (2007). Tea polyphenols for health promotion. Life Sci. 81: 519-533. doi:10.1016/j.lfs.2007.06.011 PMid:17655876 Khlestkina EK and Salina EA (2006). SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Genetika 42: 725-736. PMid:16871776 Kim KY, Davidson PM and Chung HJ (2001). Antibacterial activity in extracts of Camellia japonica L. petals and its application to a model food system. J. Food Prot. 64: 1255-1260. PMid:11510672 Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, et al. (2005). Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. U. S. A. 102: 8369-8374. doi:10.1073/pnas.0503123102 PMid:15928076    PMCid:1142120 Leal AA, Mangolin CA, do Amaral ATJ, Goncalves LS, et al. (2010). Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet. Mol. Res. 9: 9-18. doi:10.4238/vol9-1gmr692 PMid:20082266 Liu LQ and Gu (2009). Chromosome relationship between Camellia japonica and Camellia reticulate revealed by genomic in situ hybridization. Chromosome Bot. 4: 1-4. doi:10.3199/iscb.4.1 Nei M and Li WH (1997). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. doi:10.1073/pnas.76.10.5269 Porebski S, Bailey LG and Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8-15. doi:10.1007/BF02772108 Powell W, Morgante M, Andre C and Hanafey M (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225-238. doi:10.1007/BF00564200 Sablowski R (2010). Genes and functions controlled by floral organ identity genes. Semin. Cell Dev. Biol. 21: 94-99. doi:10.1016/j.semcdb.2009.08.008 Tang S, Bin X, Wang L and Zhong Y (2006). Genetic diversity and population structure of yellow Camellia (Camellia nitidissima) in China as revealed by RAPD and AFLP markers. Biochem. Genet. 44: 449-461. doi:10.1007/s10528-006-9053-y PMid:17109218 Ueno S, Yoshimaru H, Tomaru N and Yamamoto S (1999). Development and characterization of microsatellite markers in Camellia japonica L. Mol. Ecol. 8: 335-336. PMid:10065549 Ueno S, Tomaru N, Yoshimaru H, Manabe T, et al. (2002). Size-class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest. Heredity 89: 120-126. doi:10.1038/sj.hdy.6800111 PMid:12136414 Vandenbussche M, Zethof J, Souer E, Koes R, et al. (2003). Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15: 2680-2693. doi:10.1105/tpc.017376 PMid:14576291    PMCid:280571 Varshney RK, Graner A and Sorrells ME (2005). Genomics-assisted breeding for crop improvement. Trends Plant Sci. 10: 621-630. doi:10.1016/j.tplants.2005.10.004 PMid:16290213 Vijayan K, Zhang WJ and Tsou CH (2009). Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. Am. J. Bot. 96: 1348-1360. doi:10.3732/ajb.0800205 Wang XF, Zheng WH, Zheng HX and Xie QQ (2010). Optimization of RAPD-PCR reaction system for genetic relationships analysis of 15 Camellia cultivars. Afr. J. Biotechnol. 9: 798-804. Wei X, Cao HL, Jiang YS, Ye WH, et al. (2008). Population genetic structure of Camellia nitidissima (Theaceae) and conservation implications. Bot. Stud. 49: 147-153. Xiao TJ and Clifford RP (2003). Molecular analysis of the genus Camellia. Int. Camellia J. 35: 57-65.