Publications

Found 13 results
Filters: Author is J.G. Fang  [Clear All Filters]
2016
X. Q. Wang, Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., Ma, R. J., Wang, X. Q., Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., and Ma, R. J., Cloning and bioinformatic analysis of transcription factor MYB10 from the red-leaf peach, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31101517) and the Science and Technology Innovation Foundation of Nanjing Agricultural University Young Teachers (#KJ09010).REFERENCESAharoni A, De Vos CH, Wein M, Sun Z, et al (2001). The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28: 319-332. http://dx.doi.org/10.1046/j.1365-313X.2001.01154.x Ban Y, Honda C, Hatsuyama Y, Igarashi M, et al (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48: 958-970. http://dx.doi.org/10.1093/pcp/pcm066 Boase MR, Brendolise C, Wang L, Ngo H, et al (2015). Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Rep. 34: 1817-1823. http://dx.doi.org/10.1007/s00299-015-1827-4 Borevitz JO, Xia Y, Blount J, Dixon RA, et al (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383-2394. http://dx.doi.org/10.1105/tpc.12.12.2383 Butelli E, Titta L, Giorgio M, Mock HP, et al (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26: 1301-1308. http://dx.doi.org/10.1038/nbt.1506 Chagné D, Lin-Wang K, Espley RV, Volz RK, et al (2013). An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 161: 225-239. http://dx.doi.org/10.1104/pp.112.206771 Deluc L, Barrieu F, Marchive C, Lauvergeat V, et al (2006). Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol. 140: 499-511. http://dx.doi.org/10.1104/pp.105.067231 Dong ZD, Chen J, Li T, Chen F, et al (2015). Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschii. J. Genet. 94: 453-459. http://dx.doi.org/10.1007/s12041-015-0559-0 Grotewold E, Chamberlin M, Snook M, Siame B, et al (1998). Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721-740. Ivanova V, Stefova M, Vojnoski B, Dornyei A, et al (2011). Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int. 44: 2851-2860. http://dx.doi.org/10.1016/j.foodres.2011.06.046 Kobayashi S, Ishimaru M, Hiraoka K, Honda C, et al (2002). Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215: 924-933. http://dx.doi.org/10.1007/s00425-002-0830-5 Li P, Zhang Y, Einhorn TC, Cheng L, et al (2014). Comparison of phenolic metabolism and primary metabolism between green ‘Anjou’ pear and its bud mutation, red ‘Anjou’. Physiol. Plant. 150: 339-354. http://dx.doi.org/10.1111/ppl.12105 Lin-Wang K, McGhie TK, Wang M, Liu Y, et al (2014). Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 5: 651. http://dx.doi.org/10.3389/fpls.2014.00651 Liu YZ, Luo WL, Huang CH, Chen LK, et al (2013). Characterization of the regulatory dene hrd1(t) involved in anthocyanin biosynthesis. Zhongguo Nong Ye Ke Xue 46: 3955-3964. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, et al (2014). MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. J. Exp. Bot. 65: 401-417. http://dx.doi.org/10.1093/jxb/ert377 Nesi N, Jond C, Debeaujon I, Caboche M, et al (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13: 2099-2114. Palmer CM, Hindt MN, Schmidt H, Clemens S, et al (2013). MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9: e1003953. http://dx.doi.org/10.1371/journal.pgen.1003953 Poovaiah CR, Bewg WP, Lan W, Ralph J, et al (2016). Sugarcane transgenics expressing MYB transcription factors show improved glucose release. Biotechnol. Biofuels 9: 143. http://dx.doi.org/10.1186/s13068-016-0559-1 Quattrocchio F, Verweij W, Kroon A, Spelt C, et al (2006). PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18: 1274-1291. http://dx.doi.org/10.1105/tpc.105.034041 Schwinn K, Venail J, Shang Y, Mackay S, et al (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18: 831-851. http://dx.doi.org/10.1105/tpc.105.039255 Shan T, Rong W, Xu H, Du L, et al (2016). The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci. Rep. 6: 28777. http://dx.doi.org/10.1038/srep28777 Shimada S, Otsuki H, Sakuta M, et al (2007). Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. J. Exp. Bot. 58: 957-967. http://dx.doi.org/10.1093/jxb/erl256 Starkevič P, Paukštytė J, Kazanavičiūtė V, Denkovskienė E, et al (2015). Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS One 10: e0126991. http://dx.doi.org/10.1371/journal.pone.0126991 Tuan PA, Bai S, Yaegaki H, Tamura T, et al (2015). The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol. 15: 280. http://dx.doi.org/10.1186/s12870-015-0664-5 Wan H, Zhang J, Song T, Tian J, et al (2015). Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Front. Plant Sci. 6: 673. http://dx.doi.org/10.3389/fpls.2015.00673 Wang ZW, Qu SC, Zhang Z, Zhang JY, et al (2004). A fast method for total RNA extraction from the tissue culture material of Malus sp. Guoshu Xuebao 21: 385-387. Xu LL, Jiang WB, Han J, Weng ML, et al (2011). Effects of foliage spray of KH2PO4 and sucrose solution on changes of pigments and net photosynthetic rate in leaves of red-leaf peach in early summer. Sci. Silvae Sin. 47: 170-174. Yang YN, Yao GF, Zheng D, Zhang SL, et al (2015). Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep. 34: 189-198. http://dx.doi.org/10.1007/s00299-014-1698-0 Zhang YZ, Xu SZ, Cheng YW, Ya HY, et al (2016). Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15017023 Zhou MJ, Hu SL, Cao Y, Lu XQ, et al (2012). Cloning and bioinformation analysis of C3H gene in Neosinocalamus affinis. Bull. Bot. Res. 32: 38-46.    
X. Q. Wang, Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., Ma, R. J., Wang, X. Q., Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., and Ma, R. J., Cloning and bioinformatic analysis of transcription factor MYB10 from the red-leaf peach, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31101517) and the Science and Technology Innovation Foundation of Nanjing Agricultural University Young Teachers (#KJ09010).REFERENCESAharoni A, De Vos CH, Wein M, Sun Z, et al (2001). The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28: 319-332. http://dx.doi.org/10.1046/j.1365-313X.2001.01154.x Ban Y, Honda C, Hatsuyama Y, Igarashi M, et al (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48: 958-970. http://dx.doi.org/10.1093/pcp/pcm066 Boase MR, Brendolise C, Wang L, Ngo H, et al (2015). Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Rep. 34: 1817-1823. http://dx.doi.org/10.1007/s00299-015-1827-4 Borevitz JO, Xia Y, Blount J, Dixon RA, et al (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383-2394. http://dx.doi.org/10.1105/tpc.12.12.2383 Butelli E, Titta L, Giorgio M, Mock HP, et al (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26: 1301-1308. http://dx.doi.org/10.1038/nbt.1506 Chagné D, Lin-Wang K, Espley RV, Volz RK, et al (2013). An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 161: 225-239. http://dx.doi.org/10.1104/pp.112.206771 Deluc L, Barrieu F, Marchive C, Lauvergeat V, et al (2006). Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol. 140: 499-511. http://dx.doi.org/10.1104/pp.105.067231 Dong ZD, Chen J, Li T, Chen F, et al (2015). Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschii. J. Genet. 94: 453-459. http://dx.doi.org/10.1007/s12041-015-0559-0 Grotewold E, Chamberlin M, Snook M, Siame B, et al (1998). Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721-740. Ivanova V, Stefova M, Vojnoski B, Dornyei A, et al (2011). Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int. 44: 2851-2860. http://dx.doi.org/10.1016/j.foodres.2011.06.046 Kobayashi S, Ishimaru M, Hiraoka K, Honda C, et al (2002). Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215: 924-933. http://dx.doi.org/10.1007/s00425-002-0830-5 Li P, Zhang Y, Einhorn TC, Cheng L, et al (2014). Comparison of phenolic metabolism and primary metabolism between green ‘Anjou’ pear and its bud mutation, red ‘Anjou’. Physiol. Plant. 150: 339-354. http://dx.doi.org/10.1111/ppl.12105 Lin-Wang K, McGhie TK, Wang M, Liu Y, et al (2014). Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 5: 651. http://dx.doi.org/10.3389/fpls.2014.00651 Liu YZ, Luo WL, Huang CH, Chen LK, et al (2013). Characterization of the regulatory dene hrd1(t) involved in anthocyanin biosynthesis. Zhongguo Nong Ye Ke Xue 46: 3955-3964. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, et al (2014). MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. J. Exp. Bot. 65: 401-417. http://dx.doi.org/10.1093/jxb/ert377 Nesi N, Jond C, Debeaujon I, Caboche M, et al (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13: 2099-2114. Palmer CM, Hindt MN, Schmidt H, Clemens S, et al (2013). MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9: e1003953. http://dx.doi.org/10.1371/journal.pgen.1003953 Poovaiah CR, Bewg WP, Lan W, Ralph J, et al (2016). Sugarcane transgenics expressing MYB transcription factors show improved glucose release. Biotechnol. Biofuels 9: 143. http://dx.doi.org/10.1186/s13068-016-0559-1 Quattrocchio F, Verweij W, Kroon A, Spelt C, et al (2006). PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18: 1274-1291. http://dx.doi.org/10.1105/tpc.105.034041 Schwinn K, Venail J, Shang Y, Mackay S, et al (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18: 831-851. http://dx.doi.org/10.1105/tpc.105.039255 Shan T, Rong W, Xu H, Du L, et al (2016). The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci. Rep. 6: 28777. http://dx.doi.org/10.1038/srep28777 Shimada S, Otsuki H, Sakuta M, et al (2007). Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. J. Exp. Bot. 58: 957-967. http://dx.doi.org/10.1093/jxb/erl256 Starkevič P, Paukštytė J, Kazanavičiūtė V, Denkovskienė E, et al (2015). Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS One 10: e0126991. http://dx.doi.org/10.1371/journal.pone.0126991 Tuan PA, Bai S, Yaegaki H, Tamura T, et al (2015). The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol. 15: 280. http://dx.doi.org/10.1186/s12870-015-0664-5 Wan H, Zhang J, Song T, Tian J, et al (2015). Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Front. Plant Sci. 6: 673. http://dx.doi.org/10.3389/fpls.2015.00673 Wang ZW, Qu SC, Zhang Z, Zhang JY, et al (2004). A fast method for total RNA extraction from the tissue culture material of Malus sp. Guoshu Xuebao 21: 385-387. Xu LL, Jiang WB, Han J, Weng ML, et al (2011). Effects of foliage spray of KH2PO4 and sucrose solution on changes of pigments and net photosynthetic rate in leaves of red-leaf peach in early summer. Sci. Silvae Sin. 47: 170-174. Yang YN, Yao GF, Zheng D, Zhang SL, et al (2015). Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep. 34: 189-198. http://dx.doi.org/10.1007/s00299-014-1698-0 Zhang YZ, Xu SZ, Cheng YW, Ya HY, et al (2016). Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15017023 Zhou MJ, Hu SL, Cao Y, Lu XQ, et al (2012). Cloning and bioinformation analysis of C3H gene in Neosinocalamus affinis. Bull. Bot. Res. 32: 38-46.    
2013
A. J. Ge, Han, J., Li, X. D., Zhao, M. Z., Liu, H., Dong, Q. H., and Fang, J. G., Characterization of SNPs in strawberry cultivars in China, vol. 12, pp. 639-645, 2013.
Bhattramakki D and Rafalski A (2001). Discovery and Application of Single Nucleotide Polymorphism Markers in Plants. In: Plant Genotyping: The DNA Fingerprinting of Plants (Henry RJ, ed.). CABI Publishing, Oxon, 179-191. http://dx.doi.org/10.1079/9780851995151.0179   Bhattramakki D, Dolan M, Hanafey M, Wineland R, et al. (2002). Insertion-deletion polymorphisms in 3' regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol. Biol. 48: 539-547. http://dx.doi.org/10.1023/A:1014841612043 PMid:12004893   Brookes AJ (1999). The essence of SNPs. Gene 234: 177-186. http://dx.doi.org/10.1016/S0378-1119(99)00219-X   Cargill M, Altshuler D, Ireland J, Sklar P, et al. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22: 231-238. http://dx.doi.org/10.1038/10290 PMid:10391209   Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, et al. (1999). Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat. Genet. 23: 203-207. http://dx.doi.org/10.1038/13833 PMid:10508518   Gupta PK, Roy JK and Prasad M (2001). Single nucleotide polymorphism: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr. Sci. 80: 524-535.   Hoskins RA, Phan AC, Naeemuddin M, Mapa FA, et al. (2001). Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res. 11: 1100-1113. http://dx.doi.org/10.1101/gr.GR-1780R PMid:11381036 PMCid:311062   Jander G, Norris SR, Rounsley SD, Bush DF, et al. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440-450. http://dx.doi.org/10.1104/pp.003533 PMid:12068090 PMCid:1540230   Khlestkina EK and Salina EA (2006). SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Genetika 42: 725-736. PMid:16871776   Marth GT, Korf I, Yandell MD, Yeh RT, et al. (1999). A general approach to single-nucleotide polymorphism discovery. Nat. Genet. 23: 452-456. http://dx.doi.org/10.1038/70570 PMid:10581034   Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, et al. (1999). Mining SNPs from EST databases. Genome Res. 9: 167-174. PMid:10022981 PMCid:310719   Primmer CR, Borge T, Lindell J and Saetre GP (2002). Single-nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Mol. Ecol. 11: 603-612. http://dx.doi.org/10.1046/j.0962-1083.2001.01452.x PMid:11918793   Rafalski A (2002). Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 5: 94-100. http://dx.doi.org/10.1016/S1369-5266(02)00240-6   Rozen S and Skaletsky H (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386. PMid:10547847   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Salmaso M, Faes G, Segala C, Stefanini M, et al. (2004). Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as revealed by single nucleotide polymorphisms. Mol. Breed. 14: 385-395. http://dx.doi.org/10.1007/s11032-004-0261-z   Shamay A, Fang J, Pollak N, Yonash N, et al. (2006). Discovery of c-SNPs in Anemone coronaria and assessment of genetic variation. Genet. Resour. Crop Evol. 53: 821-829. http://dx.doi.org/10.1007/s10722-004-6377-5   Stoneking M (2001). Single nucleotide polymorphisms. From the evolutionary past. Nature 409: 821-822. http://dx.doi.org/10.1038/35057279 PMid:11236996   Twito T, Weigend S, Blum S, Granevitze Z, et al. (2007). Biodiversity of 20 chicken breeds assessed by SNPs located in gene regions. Cytogenet. Genome Res. 117: 319-326. http://dx.doi.org/10.1159/000103194 PMid:17675874   Vignal A, Milan D, SanCristobal M and Eggen A (2002). A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34: 275-305. http://dx.doi.org/10.1186/1297-9686-34-3-275 PMid:12081799 PMCid:2705447   Wang DG, Fan JB, Siao CJ, Berno A, et al. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280: 1077-1082. http://dx.doi.org/10.1126/science.280.5366.1077 PMid:9582121   Wolters P, Powell W, Lagudah E, Snape J, et al (2000). Nucleotide Diversity at Homologous Loci in Wheat. In: Plant and Animal Genome VIII Conference, San Diego, 9-12.   Xiong M and Jin L (1999). Comparison of the power and accuracy of biallelic and microsatellite markers in population-based gene-mapping methods. Am. J. Hum. Genet. 64: 629-640. http://dx.doi.org/10.1086/302231 PMid:9973302 PMCid:1377774   Yang W, Bai X, Kabelka E, Eaton C, et al. (2004). Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol. Breed. 14: 21-34. http://dx.doi.org/10.1023/B:MOLB.0000037992.03731.a5
E. Kayesh, Zhang, Y. Y., Liu, G. S., Bilkish, N., Sun, X., Leng, X. P., and Fang, J. G., Development of highly polymorphic EST-SSR markers and segregation in F1 hybrid population of Vitis vinifera L., vol. 12, pp. 3871-3878, 2013.
N. K. Korir, Li, X. Y., Leng, X. P., Wu, Z., Wang, C., and Fang, J. G., A novel and efficient strategy for practical identification of tomato (Solanum lycopersicon) varieties using modified RAPD fingerprints, vol. 12, pp. 1816-1828, 2013.
2012
M. L. Yu, Wang, W. Y., Ma, R. J., Shen, Z. J., and Fang, J. G., An improved strategy based on RAPD markers efficiently identified 95 peach cultivars, vol. 11. pp. 1158-1168, 2012.
Archak S, Gaikwad AB, Gautam D, Rao EVVB, et al. (2003). DNA fingerprinting of Indian cashew (Anacardium occidentale L.) varieties using RAPD and ISSR techniques. Euphytica 130: 397-404. http://dx.doi.org/10.1023/A:1023074617348 Baird WV, Ballard RE, Rajapkse S and Abbott AG (1996). Progress in Prunus mapping and application of molecular markers to germplasm improvement. Hortic. Sci. 31: 1099-1106. Baysal O, Siragusa M, Gumrukcu E, Zengin S, et al. (2010). Molecular characterization of Fusarium oxysporum f. melongenae by ISSR and RAPD markers on eggplant. Biochem. Genet. 48: 524-537. http://dx.doi.org/10.1007/s10528-010-9336-1 PMid:20390339 Belaj A, Satovic Z, Ismaili H, Panajoti D, et al. (2003). RAPD genetic diversity of Albanian olive germplasm and its relationships with other Mediterranean countries. Euphytic 130: 387-395. http://dx.doi.org/10.1023/A:1023042014081 Benjak A, Ercisli S, Vokurka A, Maletic E, et al. (2005). Genetic relationships amonggrapevine cultivars native to Croatia, Greece and Turkey. Vitis 44: 73-77. Bhau BS, Medhi K, Das Ambrish P, Saikia SP, et al. (2009). Analysis of genetic diversity of Persea bombycina "Som" using RAPD-based molecular markers. Biochem. Genet. 47: 486-497. http://dx.doi.org/10.1007/s10528-009-9242-6 PMid:19424786 Boronnikova SV, Kokaeva ZG, Gostimsky SA, Dribnokhodova OP, et al. (2007). Analysis of DNA polymorphism in a relict Uralian species, large-flowered foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Russ. J. Genet. 43: 530-535. http://dx.doi.org/10.1134/S1022795407050080 Bousquet J, Simon L and Lalonde M (1990). DNA amplification from vegetative and sexual tissues of tree using polymerase chain reaction. Can. J. For. Res. 20: 254-257. http://dx.doi.org/10.1139/x90-037 Bunyard EA (1938). The history and cultivation of the peach and nectarine. J. Royal Hort. Sci. 63: 114-121. Byrne DH (1990). Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J. Hered. 81: 68-71. Cheng ZP and Huang HW (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193. http://dx.doi.org/10.1016/j.scienta.2008.10.008 Chiu T, Pang J, Chen M and Tsen H (2010). Improvement of strain discrimination by combination of RAPD with PFGE for the analysis of the swine isolates of Salmonella enterica serovar Choleraesuis. World J. Microbiol. Biotechnol. 27: 465-469. http://dx.doi.org/10.1007/s11274-010-0467-7 D'Onofrio C, Lorenzis G, de Giordani T, Natali L, et al. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Hortic. 827: 45-52. Demirsoy L, Demir T, Demirsoy H, Kacar YA, et al. (2008). Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Hortic. 795: 147-152. Ding XD, Lu LX, Chen XJ and Guan X (2000). Identifying litchi cultivars and evaluating their genetic relationships by RAPD markers. J. Trop. Subtrop. Bot. 8: 49-54. Elidemir AY and Uzun I (2009). Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Hortic. 827: 275-278. Lee GP, Lee CH and Kim CS (2004). Molecular markers derived from RAPD, SCAR, and the conserved 18S rDNA sequences for classification and identification in Pyrus pyrifolia and P. communis. Theor. Appl. Genet. 108: 1487- 1491. http://dx.doi.org/10.1007/s00122-003-1582-8 PMid:14749847 Mariniello L, Sommella MG, Sorrentino A, Forlani M, et al. (2002). Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotechnol. Lett. 24: 749-755. http://dx.doi.org/10.1023/A:1015516712754 Melgarejo P, Martcnez JJ, Hernández Fca, Martínez R, et al. (2009). Cultivar identification using 18S-28S rDNA intergenic spacer-RFLP in pomegranate (Punica granatum L.). Sci. Hortic. 120: 500-503. http://dx.doi.org/10.1016/j.scienta.2008.12.013 Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241 Papp N, Szilvassy B, Abranko L, Szabo T, et al. (2010). Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Int. J. Food Sci. Technol. 45: 395-402. http://dx.doi.org/10.1111/j.1365-2621.2009.02168.x Sadder MT and Ateyyeh AF (2006). Molecular assessment of polymorphism among local Jordanian genotypes the common fig (Ficus carica L.). Sci. Hortic. 107: 347-351. http://dx.doi.org/10.1016/j.scienta.2005.11.006 Saker MM, Adawy SS, Mohamed AA and El-Itriby HA (2006). Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol. Plantarum 50: 198-204. http://dx.doi.org/10.1007/s10535-006-0007-3 Silvestrini M, Maluf MP, Silvarolla MB, Guerreiro-Filho O, et al. (2008). Genetic diversity of a Coffea germplasm collection assessed by RAPD markers. Genet. Res. Crop Evol. 55: 901-910. http://dx.doi.org/10.1007/s10722-007-9295-5 Stark-Urnau M (2002a). Use of RAPD-markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part I: Malus x domestica (apple). RAPD-Marker bei Malus x domestica (Apfel) und Pyrus communis (Birne) als Mittel zur Sortenidentifizierung - Teil I: Malus x domestica (Apfel). Erwerbsobstbau 44: 139-144. Stark-Urnau M (2002b). Use of RAPD-Markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part II: Pyrus communis (Birne). RAPD-Marker bei Malus x domestica (Apfel) und Pyrus communis (Birne) als Mittel zur Sortenidentifizierung - Teil II: Pyrus communis (Birne). Erwerbsobstbau 44: 167-171. Sun P, Li W, Jiang HY and Yao JC (2005). Analysis of genetic relationship among cutlivars of Prunus persica using RAPD markers. J. Gansu Agric. Univ. 40: 586-590. Vijayan K (2004). Genetic relationships of Japanese and Indian mulberry (Morus spp.) genotypes revealed by DNA fingerprinting. Plant Systemat. Evol. 243: 221-232. http://dx.doi.org/10.1007/s00606-003-0078-y Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606 Yamamoto T, Yamaguchi M and Hayashi T (2005). An intergrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J. Jpn. Soc. Hortic. Sci. 74: 204-213. http://dx.doi.org/10.2503/jjshs.74.204 Yang XG, Zhang KC, Qin L and Wang YX (2001). RAPD analysis of germplasm resources on peach. J. Fruit Sci. 18: 276-279. Yang YJ, Zhang KC and Lin K (2002). Studies on RAPD polymorphisms and genetic relationship of Prunus persica plants. J. Henan Agric. Univ. 36: 187-189. Yonemoto Y, Chowdhury AK, Kato H and Macha MM (2006). Cultivars identification and their genetic relationships in Dimocarpus longan subspecies based on RAPD markers. Sci. Hortic. 109: 147-152. http://dx.doi.org/10.1016/j.scienta.2006.04.003 Yuan Z, Luo LS, Xiao DX and Zhang DB (2002). A study on the genetic relationship of peach species using RAPD markers. Acta Agric. Univ. Jiangxiensis 24: 172-175. Zong CW, Gao HN, Zhao CR, Wang C, et al. (2005). Studies on analysis of peach cultivars based on RAPD markers. J. Nanjing Agric. Univ. 28: 35-39.
X. Sun, Mu, Q., Jiang, D., Wang, C., Wang, X. C., and Fang, J. G., A new strategy employed for identification of sweet orange cultivars with RAPD markers, vol. 11. pp. 2071-2080, 2012.
Baysal Ö, Siragusa M, Gumrukcu E, Zengin S, et al. (2010). Molecular characterization of Fusarium oxysporum f. melongenae by ISSR and RAPD markers on eggplant. Biochem. Genet. 48: 524-537. http://dx.doi.org/10.1007/s10528-010-9336-1 PMid:20390339   Bhau BS, Medhi K, Das AP, Saikia SP, et al. (2009). Analysis of genetic diversity of Persea bombycina "Som" using RAPD-based molecular markers. Biochem. Genet. 47: 486-497. http://dx.doi.org/10.1007/s10528-009-9242-6 PMid:19424786   Boronnikova SV, Kokaeva ZG, Gostimskii SA, Dribnokhodova OP, et al. (2007). Analysis of DNA polymorphism in a relict Uralian species, yellow foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Genetika 43: 653-659. PMid:17633559   Cheng ZP and Huang HW (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193. http://dx.doi.org/10.1016/j.scienta.2008.10.008   Chiu T, Pang J, Chen M and Tsen H (2010). Improvement of strain discrimination by combination of RAPD with PFGE for the analysis of the swine isolates of Salmonella enterica serovar Choleraesuis. Word J. Microbiol. Biotechnol. 27: 465-469. http://dx.doi.org/10.1007/s11274-010-0467-7   D'Onofrio C, Lorenzis G, Giordani T and Natali L (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Hortic. 827: 45-52.   Demirsoy L, Demir T, Demirsoy H and Kacar YA (2008). Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Hortic. 795: 147-152.   Elidemir AY and Uzun I (2009). Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Hortic. 827: 275-278.   Ercisli E, Agar G, Yildrim N and Esitken A (2009). Identification of apricot cultivars in Turkey (Prunus armeniaca L.) using RAPD markers. Rom. Biotech. Lett. 14: 4582-4588.   Fang JG, Song CN and Qian JL (2010). Variation of cytosine methylation in 57 sweet orange cultivars. Acta Physiol. Plant. 32: 1023-1030. http://dx.doi.org/10.1007/s11738-010-0491-0   Hasnaoui N, Messaoud M, Jemni C and Mokhtar T (2010). Molecular polymorphisms in Tunisian pomegranate (Punica granatum L.) as revealed by RAPD fingerprints. Diversity 2: 107-114. http://dx.doi.org/10.3390/d2010107   Javanshah A, Tajabadipour A and Mirzaei S (2007). Identification of a new phenotype (Siah Barg) of pistachio (Pistacia vera L.) with shiny-blackish green leaves using RAPD assay. Int. J. Agric. Biol. 9: 307-310.   Melgarejo P, Martcnez JJ, Fca HL and Martcnez R (2009). Cultivar identification using 18S-28S rDNA intergenic spacer- RFLP in pomegranate (Punica granatum L.). Sci. Hortic. 120: 500-503. http://dx.doi.org/10.1016/j.scienta.2008.12.013   Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241   Papp N, Szilvassy B, Abranko L and Szabo T (2010). Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Int. J. Food Sci. Tech. 45: 395-402. http://dx.doi.org/10.1111/j.1365-2621.2009.02168.x   Saker MM, Adawy SS, Mohamed AA and El-Itriby HA (2006). Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol. Plantarum 50: 198-204. http://dx.doi.org/10.1007/s10535-006-0007-3   Silvestrini M, Maluf MP, Silvarolla MB and Guerreiro-Filho O (2008). Genetic diversity of a coffea germplasm collection assessed by RAPD markers. Genet. Resour. Crop. Evol. 55: 901-910. http://dx.doi.org/10.1007/s10722-007-9295-5   Wang Z, Zhang Z, Li H and Gao X (2007). Identification of Strawberry cultivars by RAPD and SCAR markers. Acta Hortic. Sin. 34: 591-596.   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606
Y. P. Zhang, Tan, H. H., Cao, S. Y., Wang, X. C., Yang, G., and Fang, J. G., A novel strategy for identification of 47 pomegranate (Punica granatum) cultivars using RAPD markers, vol. 11, pp. 3032-3041, 2012.
Bousquet J, Simon L and Lalonde M (1990). DNA amplification from vegetative and sexual tissues of tree using polymerase chain reaction. Can. J. Forest Res. 20: 254-257. http://dx.doi.org/10.1139/x90-037   Cheng Z and Huang H (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Horticult. 120: 188-193. http://dx.doi.org/10.1016/j.scienta.2008.10.008   Damania AB (2005). The Pomegranate: Its Origin, Folklore, and Efficacious Medicinal Properties. In: Agriculture Heritage of Asia - Proceedings of the International Conference (Nene YL, ed.). Asian Agri History Foundation, Secunderabad, 175-183.   Demirsoy L, Demir T, Demirsoy H, Okumus A, et al. (2008). Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Horticult. 795: 147-152.   D'Onofrio C, Lorenzis G, Giordani T, Natali L, et al. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Horticult. 827: 45-52.   Ebrahimi S, Sayed-Tabatabaei BE and Sharifnabi B (2010). Microsatellite isolation and characterization in pomegranate (Punica granatum L.). Iranian J. Biotechnol. 8: 156-163.   Elidemir AY and Uzun I (2009). Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Horticult. 827: 275-278.   Ercisli S, Agar G, Yildirim N, Esitken A, et al. (2009). Identification of apricot cultivars in Turkey (Prunus armeniaca L.) using RAPD markers. Romanian Biotechnol. Letter 14: 4582-4588.   Fang J, Qiao Y, Zhang Z and Chao CT (2005). Genotyping fruiting-mei (Prunus mume Sieb. Et Zucc) cultivars using AFLP. Hort. Sci. 40: 325-328.   Fang J, Twito T, Zhang Z and Chao CT (2006). Genetic relationships among fruiting-mei (Prunus mume Sieb. et Zucc.) cultivars evaluated with AFLP and SNP markers. Genome 49: 1256-1264. http://dx.doi.org/10.1139/g06-097 PMid:17213907   Hasnaoui N, Messaoud M, Jemni C and Mokhtar T (2010). Molecular polymorphisms in Tunisian pomegranate (Punica granatum L.) as revealed by RAPD fingerprints. Diversity 2: 107-114. http://dx.doi.org/10.3390/d2010107   Javanshah A, Tajabadipour A and Mirzaei S (2007). Identification of a new phenotype (Siah Barg) of pistachio (Pistacia vera L.) with shiny-blackish green leaves using RAPD assay. Int. J. Agri. Biol. 9: 307-310.   LaRue JH (1980). Growing Pomegranates in California. Farm Advisor, Tulare County from: DANR Leaflet, California.   Levin GM (1994). Pomegranate (Punica granatum L.) plant genetic resources in Turkmenistan. Plant Genet. Resour. Newslett. 97: 31-36.   Mars M (1994). La Culture du Grenadier (Punica granatum L.) et du Figuier (Ficus carica L.) en Tunisia. First Meeting CIHEAM Coop. Res. Network on Underutilized. Fruit Trees, Zaragoza.   Masoud S, Saneghi A, Shahreiyari ZH, Noormohammadi Z, et al. (2008). RAPD and cytogenetic study of some pomegranate (Punica granatum L.) cultivars. Caryologia 61: 68-73.   Melgarejo P, Martínez JJ, Fca H, Martínez R, et al. (2009). Cultivar identification using 18S-28S rDNA intergenic spacer- RFLP in pomegranate (Punica granatum L.). Sci. Horticult. 120: 500-503. http://dx.doi.org/10.1016/j.scienta.2008.12.013   Murray GC and Thompson WF (1980). Rapid isolation of high molecular weight DNA. Nucl. Acids Res. 8: 4321- 4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241   Papp N, Szilvássy B, Abrankó L, Szabó T, et al. (2010). Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Int. J. Food Sci Tech. 45: 395-402. http://dx.doi.org/10.1111/j.1365-2621.2009.02168.x   Pirseyedi SM, Valizadehghan S, Mardi M, Ghaffari MR, et al. (2010). Isolation and characterization of novel microsatellite markers in pomegranate (Punica granatum L.). Int. J. Mol. Sci. 11: 2010-2016. http://dx.doi.org/10.3390/ijms11052010 PMid:20559498 PMCid:2885090   Sarkhosh A, Zamani Z, Fatahi R and Ebadi A (2006). RAPD markers reveal polymorphism among some Iranian pomegranate (Punica granatum L.) genotypes. Sci. Horticult. 111: 24-29. http://dx.doi.org/10.1016/j.scienta.2006.07.033   Simmonds NW (1976). Evolution of Crop Plants. Longman, London.   Talebi-Baddaf M, Sharifineia B and Bahar M (2003). Analys is of Genetic Diversity in Pomegranate Cultivars of Iran, Using Random Amplified Polymorphic DNA (RAPD) Markers. Proceeding of the Third National Congress of Biotechnology. Iran, 2: 343-345.   Wang ZG, Zhang ZH, Li H, Gao XY, et al. (2007). Identification of strawberry cultivars by RAPD and SCAR markers. Acta Horticult. Sin. 34: 591-596.   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606
2011
J. Lin, Wang, X. C., Chang, Y. H., and Fang, J. G., Development of a novel and efficient strategy for practical identification of Pyrus spp (Rosaceae) cultivars using RAPD fingerprints, vol. 10, pp. 932-942, 2011.
Archak S, Gaikwad AB, Gautam D, Rao EVVB, et al. (2003). DNA fingerprinting of Indian cashew (Anacardium occidentale L.) varieties using RAPD and ISSR techniques. Euphytica 130: 397-404. doi:10.1023/A:1023074617348 Baird WV, Ballard RE, Rajapakse S and Abbott AG (1996). Progress in Prunus mapping and application of molecular markers to germplasm improvement. Hortic. Sci. 31: 1099-1106. Banno K, Liu Y, Ishikawa H, Nakano S, et al. (2000). Isozymes and RAPD markers to identify the parenthood of Japanese pear ‘Kuratsuki’. J. Jpn. Soc. Hortic. Sci. 69: 208-213. doi:10.2503/jjshs.69.208 Baysal O, Siragusa M, Gümrükcü E, Zengin S, et al. (2010). Molecular characterization of Fusarium oxysporum f. melongenae by ISSR and RAPD markers on eggplant. Biochem. Genet. 48: 524-537. doi:10.1007/s10528-010-9336-1 PMid:20390339 Belaj A, Satovic Z, Ismaili H, Panajoti D, et al. (2003). RAPD genetic diversity of Albanian olive germplasm and its relationships with other Mediterranean countries. Euphytica 130: 387-395. doi:10.1023/A:1023042014081 Bell RL, Quamme HA, Layne REC and Skirvin RM (1996). Fruit Breeding. Vol. 1. In: Tree and Tropical Fruits (Janick J and Moore JN, eds.). Wiley, New York, 441-514. Bhau BS, Medhi K, Das AP, Saikia SP, et al. (2009). Analysis of genetic diversity of Persea bombycina “Som” using RAPD-based molecular markers. Biochem. Genet. 47: 486-497. doi:10.1007/s10528-009-9242-6 PMid:19424786 Boronnikova SV, Kokaeva ZG, Gostimskii SA, Dribnokhodova OP, et al. (2007). Analysis of DNA polymorphism in a relict Uralian species, yellow foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Genetika 43: 653-659. PMid:17633559 Bousquet J, Simon L and Lalonde M (1990). DNA amplification from vegetative and sexual tissues of trees using polymerase chain reaction. Can. J. For. Res. 20: 254-257. doi:10.1139/x90-037 Cheng ZP and Huang HW (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193. doi:10.1016/j.scienta.2008.10.008 Chiu TH, Pang JC, Chen MH and Tsen HY (2010). Improvement of strain discrimination by combination of RAPD with PFGE for the analysis of the swine isolates of Salmonella enterica serovar Choleraesuis. World J. Microb. Biot. 27: 465-469. doi:10.1007/s11274-010-0467-7 Corazza-Nunes MJ, Machado MA, Nunes WMC, Cristofani M, et al. (2002). Assessment of variability in grapefruits (Citrus paradise Macf.) and pommelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126: 169-176. doi:10.1023/A:1016332030738 D’Onofrio C, De Lorenzis G, Giordani T, Natali L, et al. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Hortic. 827: 45-52. Demirsoy L, Demir T, Demirsoy H, Kacar YA, et al. (2008). Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Hortic. 795: 147-152. Ding XD, Lu LX, Chen XJ and Guan X (2000). Identifying litchi cultivars and evaluating their genetic relationships by RAPD markers. J. Trop. Subtrop. Bot. 8: 49-54. Elidemir AY and Uzun I (2009). Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Hortic. 827: 275-278. Fang J, Twito T, Zhang Z and Chao CT (2006). Genetic relationships among fruiting-mei (Prunus mume Sieb. et Zucc.) cultivars evaluated with AFLP and SNP markers. Genome 49: 1256-1264. doi:10.1139/g06-097 PMid:17213907 Kafkas S, Ozkan H, Ak BE, Acar I, et al. (2006). Detecting DNA polymorphism and genetic diversity in a wide pistachio (Pistacia vera L.) germplasm: comparison of AFLP, ISSR and RAPD markers. J. Am. Soc. Hortic. Sci. 13: 522-529. Kim CS, Lee GP, Han DH, Ryu KH, et al. (2000). Classification and identification of Pyrus pyrifolia using RAPD. J. Kor. Soc. Hortic. Sci. 41: 119-124. Lee GP, Lee CH and Kim CS (2004). Molecular markers derived from RAPD, SCAR, and the conserved 18S rDNA sequences for classification and identification in Pyrus pyrifolia and P. communis. Theor. Appl. Genet. 108: 1487- 1491. doi:10.1007/s00122-003-1582-8 PMid:14749847 Lu X, Liu L, Gong Y, Zhao L, et al. (2009). Cultivar identification and genetic diversity analysis of broccoli and its related species with RAPD and ISSR markers. Sci. Hortic. 122: 645-648. doi:10.1016/j.scienta.2009.06.017 Melgarejo P, Martínez JJ, Hernández F, Martínez R, et al. (2009). Cultivar identification using 18S-28S rDNA intergenic spacer-RFLP in pomegranate (Punica granatum L.). Sci. Hortic. 120: 500-503. doi:10.1016/j.scienta.2008.12.013 Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325. doi:10.1093/nar/8.19.4321 PMid:7433111    PMCid:324241 Papp N, Szilvássy B, Abrankó L, Szabó T, et al. (2010). Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Int. J. Food Sci. Technol. 45: 395-402. doi:10.1111/j.1365-2621.2009.02168.x Qu X, Lu J and Lamikanra O (1996). Genetic diversity in Muscadine and American bunch grapes based on randomly amplified polymorphic DNA (RAPD) analyses. J. Am. Soc. Hortic. Sci. 121: 1020-1023. Saker MM, Adawy SS, Mohamed AA and El-Itriby HA (2006). Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol. Plant. 50: 198-204. doi:10.1007/s10535-006-0007-3 Schiliro E, Predieri S and Bertaccini A (2001). Use of random amplified polymorphic DNA analysis to detect genetic variation in Pyrus species. Plant. Mol. Biol. Rep. 19: 271-272. doi:10.1007/BF02772900 Silvestrini M, Maluf MP, Silvarolla MB, Guerreiro-Filho O, et al. (2008). Genetic diversity of a Coffea germplasm collection assessed by RAPD markers. Genet. Res. Crop. Evol. 55: 901-910. doi:10.1007/s10722-007-9295-5 Stark-Urnau M (2002a). Use of RAPD-markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part I: Malus x domestica (apple). Erwerbsobstbau 44: 139-144. Stark-Urnau M (2002b). Use of RAPD-markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part II: Pyrus communis (Birne). Erwerbsobstbau 44: 167-171. Teng Y, Tanabe K, Tamura F and Itai A (2001). Genetic relationships of pear cultivars in Xinjiang, China, as measured by RAPD markers. J. Hortic. Sci. Biotechnol. 76: 771-779. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. doi:10.1093/nar/18.22.6531 PMid:1979162    PMCid:332606 Xuan H (2008). Identifying European pear (Pyrus communis L.) cultivars at the KOB by using apple SSRs. Acta Hortic. 800: 439-445. Yonemoto Y, Chowdhury AK, Kato H and Macha MM (2006). Cultivars identification and their genetic relationships in Dimocarpus longan subspecies based on RAPD markers. Sci. Hortic. 109: 147-152. doi:10.1016/j.scienta.2006.04.003