Publications

Found 10 results
Filters: Author is X.C. Wang  [Clear All Filters]
2012
M. Y. Zhao, Xue, Y., Zhao, Z. Q., Li, F. J., Fan, D. P., Wei, L. L., Sun, X. J., Zhang, X., Wang, X. C., Zhang, Y. X., and Li, J. C., Association of CD14 G(-1145)A and C(-159)T polymorphisms with reduced risk for tuberculosis in a Chinese Han population, vol. 11, pp. 3425-3431, 2012.
Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 4: e1000218. http://dx.doi.org/10.1371/journal.pgen.1000218 PMid:18927625 PMCid:2568981   Ding S, Li L and Zhu X (2008). Polymorphism of the interferon-gamma gene and risk of tuberculosis in a southeastern Chinese population. Hum. Immunol. 69: 129-133. http://dx.doi.org/10.1016/j.humimm.2007.11.006 PMid:18361939   Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377. http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d PMid:17545720   Gu W, Dong H, Jiang DP, Zhou J, et al. (2008). Functional significance of CD14 promoter polymorphisms and their clinical relevance in a Chinese Han population. Crit. Care Med. 36: 2274-2280. http://dx.doi.org/10.1097/CCM.0b013e318180b1ed PMid:18596635   Härtel C, Rupp J, Hoegemann A, Bohler A, et al. (2008). 159C>T CD14 genotype - functional effects on innate immune responses in term neonates. Hum. Immunol. 69: 338-443. http://dx.doi.org/10.1016/j.humimm.2008.04.011 PMid:18571004   Hoheisel G, Zheng L, Teschler H, Striz I, et al. (1995). Increased soluble CD14 levels in BAL fluid in pulmonary tuberculosis. Chest 108: 1614-1616. http://dx.doi.org/10.1378/chest.108.6.1614 PMid:7497770   Juffermans NP, Verbon A, van Deventer SJ, Buurman WA, et al. (1998). Serum concentrations of lipopolysaccharide activity-modulating proteins during tuberculosis. J. Infect Dis. 178: 1839-1842. http://dx.doi.org/10.1086/314492 PMid:9815247   Kang HJ, Choi YM, Chae SW, Woo JS, et al. (2006). Polymorphism of the CD14 gene in perennial allergic rhinitis. Int. J. Pediatr. Otorhinolaryngol. 70: 2081-2085. http://dx.doi.org/10.1016/j.ijporl.2006.07.024 PMid:16950521   Lawn SD, Labeta MO, Arias M, Acheampong JW, et al. (2000). Elevated serum concentrations of soluble CD14 in HIV-and HIV+ patients with tuberculosis in Africa: prolonged elevation during anti-tuberculosis treatment. Clin. Exp. Immunol. 120: 483-487. http://dx.doi.org/10.1046/j.1365-2249.2000.01246.x PMid:10844527 PMCid:1905566   Liang XH, Cheung W, Heng CK, Liu JJ, et al. (2006). CD14 promoter polymorphisms have no functional significance and are not associated with atopic phenotypes. Pharmacogenet. Genomics 16: 229-236. http://dx.doi.org/10.1097/01.fpc.0000197466.14340.0f PMid:16538169   Liu CP, Li XG, Lou JT, Xue Y, et al. (2009). Association analysis of the PHOX2B gene with Hirschsprung disease in the Han Chinese population of Southeastern China. J. Pediatr. Surg. 44: 1805-1811. http://dx.doi.org/10.1016/j.jpedsurg.2008.12.009 PMid:19735829   Manaster C, Zheng W, Teuber M, Wachter S, et al. (2005). InSNP: a tool for automated detection and visualization of SNPs and InDels. Hum. Mutat. 26: 11-19. http://dx.doi.org/10.1002/humu.20188 PMid:15931688   Nejentsev S, Thye T, Szeszko JS, Stevens H, et al. (2008). Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat. Genet. 40: 261-262. http://dx.doi.org/10.1038/ng0308-261 PMid:18305471   Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect Dis. 196: 1698-1706. http://dx.doi.org/10.1086/522147 PMid:18008256   Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.   Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54. http://dx.doi.org/10.1002/humu.1380040107 PMid:7951258   Shams H, Wizel B, Lakey DL, Samten B, et al. (2003). The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunol. Med. Microbiol. 36: 63-69. http://dx.doi.org/10.1016/S0928-8244(03)00039-7   Sugawara I, Yamada H, Li C, Mizuno S, et al. (2003a). Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 47: 327-336. PMid:12825894   Sugawara I, Yamada H, Mizuno S, Takeda K, et al. (2003b). Mycobacterial infection in MyD88-deficient mice. Microbiol. Immunol. 47: 841-847. PMid:14638995   Triantafilou M and Triantafilou K (2002). Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23: 301-304. http://dx.doi.org/10.1016/S1471-4906(02)02233-0   Ulevitch RJ and Tobias PS (1995). Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13: 437-457. http://dx.doi.org/10.1146/annurev.iy.13.040195.002253 PMid:7542010   Vercelli D, Baldini M and Martinez F (2001). The monocyte/IgE connection: may polymorphisms in the CD14 gene teach us about IgE regulation? Int. Arch. Allergy Immunol. 124: 20-24. http://dx.doi.org/10.1159/000053658 PMid:11306916   Yim JJ, Lee HW, Lee HS, Kim YW, et al. (2006). The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun. 7: 150-155. http://dx.doi.org/10.1038/sj.gene.6364274 PMid:16437124   Zhang G, Goldblatt J and LeSouef PN (2008). Does the relationship between IgE and the CD14 gene depend on ethnicity? Allergy 63: 1411-1417. http://dx.doi.org/10.1111/j.1398-9995.2008.01804.x PMid:18925877
X. Sun, Mu, Q., Jiang, D., Wang, C., Wang, X. C., and Fang, J. G., A new strategy employed for identification of sweet orange cultivars with RAPD markers, vol. 11. pp. 2071-2080, 2012.
Baysal Ö, Siragusa M, Gumrukcu E, Zengin S, et al. (2010). Molecular characterization of Fusarium oxysporum f. melongenae by ISSR and RAPD markers on eggplant. Biochem. Genet. 48: 524-537. http://dx.doi.org/10.1007/s10528-010-9336-1 PMid:20390339   Bhau BS, Medhi K, Das AP, Saikia SP, et al. (2009). Analysis of genetic diversity of Persea bombycina "Som" using RAPD-based molecular markers. Biochem. Genet. 47: 486-497. http://dx.doi.org/10.1007/s10528-009-9242-6 PMid:19424786   Boronnikova SV, Kokaeva ZG, Gostimskii SA, Dribnokhodova OP, et al. (2007). Analysis of DNA polymorphism in a relict Uralian species, yellow foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Genetika 43: 653-659. PMid:17633559   Cheng ZP and Huang HW (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193. http://dx.doi.org/10.1016/j.scienta.2008.10.008   Chiu T, Pang J, Chen M and Tsen H (2010). Improvement of strain discrimination by combination of RAPD with PFGE for the analysis of the swine isolates of Salmonella enterica serovar Choleraesuis. Word J. Microbiol. Biotechnol. 27: 465-469. http://dx.doi.org/10.1007/s11274-010-0467-7   D'Onofrio C, Lorenzis G, Giordani T and Natali L (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Hortic. 827: 45-52.   Demirsoy L, Demir T, Demirsoy H and Kacar YA (2008). Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Hortic. 795: 147-152.   Elidemir AY and Uzun I (2009). Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Hortic. 827: 275-278.   Ercisli E, Agar G, Yildrim N and Esitken A (2009). Identification of apricot cultivars in Turkey (Prunus armeniaca L.) using RAPD markers. Rom. Biotech. Lett. 14: 4582-4588.   Fang JG, Song CN and Qian JL (2010). Variation of cytosine methylation in 57 sweet orange cultivars. Acta Physiol. Plant. 32: 1023-1030. http://dx.doi.org/10.1007/s11738-010-0491-0   Hasnaoui N, Messaoud M, Jemni C and Mokhtar T (2010). Molecular polymorphisms in Tunisian pomegranate (Punica granatum L.) as revealed by RAPD fingerprints. Diversity 2: 107-114. http://dx.doi.org/10.3390/d2010107   Javanshah A, Tajabadipour A and Mirzaei S (2007). Identification of a new phenotype (Siah Barg) of pistachio (Pistacia vera L.) with shiny-blackish green leaves using RAPD assay. Int. J. Agric. Biol. 9: 307-310.   Melgarejo P, Martcnez JJ, Fca HL and Martcnez R (2009). Cultivar identification using 18S-28S rDNA intergenic spacer- RFLP in pomegranate (Punica granatum L.). Sci. Hortic. 120: 500-503. http://dx.doi.org/10.1016/j.scienta.2008.12.013   Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241   Papp N, Szilvassy B, Abranko L and Szabo T (2010). Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Int. J. Food Sci. Tech. 45: 395-402. http://dx.doi.org/10.1111/j.1365-2621.2009.02168.x   Saker MM, Adawy SS, Mohamed AA and El-Itriby HA (2006). Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol. Plantarum 50: 198-204. http://dx.doi.org/10.1007/s10535-006-0007-3   Silvestrini M, Maluf MP, Silvarolla MB and Guerreiro-Filho O (2008). Genetic diversity of a coffea germplasm collection assessed by RAPD markers. Genet. Resour. Crop. Evol. 55: 901-910. http://dx.doi.org/10.1007/s10722-007-9295-5   Wang Z, Zhang Z, Li H and Gao X (2007). Identification of Strawberry cultivars by RAPD and SCAR markers. Acta Hortic. Sin. 34: 591-596.   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606
Y. P. Zhang, Tan, H. H., Cao, S. Y., Wang, X. C., Yang, G., and Fang, J. G., A novel strategy for identification of 47 pomegranate (Punica granatum) cultivars using RAPD markers, vol. 11, pp. 3032-3041, 2012.
Bousquet J, Simon L and Lalonde M (1990). DNA amplification from vegetative and sexual tissues of tree using polymerase chain reaction. Can. J. Forest Res. 20: 254-257. http://dx.doi.org/10.1139/x90-037   Cheng Z and Huang H (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Horticult. 120: 188-193. http://dx.doi.org/10.1016/j.scienta.2008.10.008   Damania AB (2005). The Pomegranate: Its Origin, Folklore, and Efficacious Medicinal Properties. In: Agriculture Heritage of Asia - Proceedings of the International Conference (Nene YL, ed.). Asian Agri History Foundation, Secunderabad, 175-183.   Demirsoy L, Demir T, Demirsoy H, Okumus A, et al. (2008). Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Horticult. 795: 147-152.   D'Onofrio C, Lorenzis G, Giordani T, Natali L, et al. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Horticult. 827: 45-52.   Ebrahimi S, Sayed-Tabatabaei BE and Sharifnabi B (2010). Microsatellite isolation and characterization in pomegranate (Punica granatum L.). Iranian J. Biotechnol. 8: 156-163.   Elidemir AY and Uzun I (2009). Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Horticult. 827: 275-278.   Ercisli S, Agar G, Yildirim N, Esitken A, et al. (2009). Identification of apricot cultivars in Turkey (Prunus armeniaca L.) using RAPD markers. Romanian Biotechnol. Letter 14: 4582-4588.   Fang J, Qiao Y, Zhang Z and Chao CT (2005). Genotyping fruiting-mei (Prunus mume Sieb. Et Zucc) cultivars using AFLP. Hort. Sci. 40: 325-328.   Fang J, Twito T, Zhang Z and Chao CT (2006). Genetic relationships among fruiting-mei (Prunus mume Sieb. et Zucc.) cultivars evaluated with AFLP and SNP markers. Genome 49: 1256-1264. http://dx.doi.org/10.1139/g06-097 PMid:17213907   Hasnaoui N, Messaoud M, Jemni C and Mokhtar T (2010). Molecular polymorphisms in Tunisian pomegranate (Punica granatum L.) as revealed by RAPD fingerprints. Diversity 2: 107-114. http://dx.doi.org/10.3390/d2010107   Javanshah A, Tajabadipour A and Mirzaei S (2007). Identification of a new phenotype (Siah Barg) of pistachio (Pistacia vera L.) with shiny-blackish green leaves using RAPD assay. Int. J. Agri. Biol. 9: 307-310.   LaRue JH (1980). Growing Pomegranates in California. Farm Advisor, Tulare County from: DANR Leaflet, California.   Levin GM (1994). Pomegranate (Punica granatum L.) plant genetic resources in Turkmenistan. Plant Genet. Resour. Newslett. 97: 31-36.   Mars M (1994). La Culture du Grenadier (Punica granatum L.) et du Figuier (Ficus carica L.) en Tunisia. First Meeting CIHEAM Coop. Res. Network on Underutilized. Fruit Trees, Zaragoza.   Masoud S, Saneghi A, Shahreiyari ZH, Noormohammadi Z, et al. (2008). RAPD and cytogenetic study of some pomegranate (Punica granatum L.) cultivars. Caryologia 61: 68-73.   Melgarejo P, Martínez JJ, Fca H, Martínez R, et al. (2009). Cultivar identification using 18S-28S rDNA intergenic spacer- RFLP in pomegranate (Punica granatum L.). Sci. Horticult. 120: 500-503. http://dx.doi.org/10.1016/j.scienta.2008.12.013   Murray GC and Thompson WF (1980). Rapid isolation of high molecular weight DNA. Nucl. Acids Res. 8: 4321- 4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241   Papp N, Szilvássy B, Abrankó L, Szabó T, et al. (2010). Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Int. J. Food Sci Tech. 45: 395-402. http://dx.doi.org/10.1111/j.1365-2621.2009.02168.x   Pirseyedi SM, Valizadehghan S, Mardi M, Ghaffari MR, et al. (2010). Isolation and characterization of novel microsatellite markers in pomegranate (Punica granatum L.). Int. J. Mol. Sci. 11: 2010-2016. http://dx.doi.org/10.3390/ijms11052010 PMid:20559498 PMCid:2885090   Sarkhosh A, Zamani Z, Fatahi R and Ebadi A (2006). RAPD markers reveal polymorphism among some Iranian pomegranate (Punica granatum L.) genotypes. Sci. Horticult. 111: 24-29. http://dx.doi.org/10.1016/j.scienta.2006.07.033   Simmonds NW (1976). Evolution of Crop Plants. Longman, London.   Talebi-Baddaf M, Sharifineia B and Bahar M (2003). Analys is of Genetic Diversity in Pomegranate Cultivars of Iran, Using Random Amplified Polymorphic DNA (RAPD) Markers. Proceeding of the Third National Congress of Biotechnology. Iran, 2: 343-345.   Wang ZG, Zhang ZH, Li H, Gao XY, et al. (2007). Identification of strawberry cultivars by RAPD and SCAR markers. Acta Horticult. Sin. 34: 591-596.   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606
2011
J. Lin, Wang, X. C., Chang, Y. H., and Fang, J. G., Development of a novel and efficient strategy for practical identification of Pyrus spp (Rosaceae) cultivars using RAPD fingerprints, vol. 10, pp. 932-942, 2011.
Archak S, Gaikwad AB, Gautam D, Rao EVVB, et al. (2003). DNA fingerprinting of Indian cashew (Anacardium occidentale L.) varieties using RAPD and ISSR techniques. Euphytica 130: 397-404. doi:10.1023/A:1023074617348 Baird WV, Ballard RE, Rajapakse S and Abbott AG (1996). Progress in Prunus mapping and application of molecular markers to germplasm improvement. Hortic. Sci. 31: 1099-1106. Banno K, Liu Y, Ishikawa H, Nakano S, et al. (2000). Isozymes and RAPD markers to identify the parenthood of Japanese pear ‘Kuratsuki’. J. Jpn. Soc. Hortic. Sci. 69: 208-213. doi:10.2503/jjshs.69.208 Baysal O, Siragusa M, Gümrükcü E, Zengin S, et al. (2010). Molecular characterization of Fusarium oxysporum f. melongenae by ISSR and RAPD markers on eggplant. Biochem. Genet. 48: 524-537. doi:10.1007/s10528-010-9336-1 PMid:20390339 Belaj A, Satovic Z, Ismaili H, Panajoti D, et al. (2003). RAPD genetic diversity of Albanian olive germplasm and its relationships with other Mediterranean countries. Euphytica 130: 387-395. doi:10.1023/A:1023042014081 Bell RL, Quamme HA, Layne REC and Skirvin RM (1996). Fruit Breeding. Vol. 1. In: Tree and Tropical Fruits (Janick J and Moore JN, eds.). Wiley, New York, 441-514. Bhau BS, Medhi K, Das AP, Saikia SP, et al. (2009). Analysis of genetic diversity of Persea bombycina “Som” using RAPD-based molecular markers. Biochem. Genet. 47: 486-497. doi:10.1007/s10528-009-9242-6 PMid:19424786 Boronnikova SV, Kokaeva ZG, Gostimskii SA, Dribnokhodova OP, et al. (2007). Analysis of DNA polymorphism in a relict Uralian species, yellow foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Genetika 43: 653-659. PMid:17633559 Bousquet J, Simon L and Lalonde M (1990). DNA amplification from vegetative and sexual tissues of trees using polymerase chain reaction. Can. J. For. Res. 20: 254-257. doi:10.1139/x90-037 Cheng ZP and Huang HW (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193. doi:10.1016/j.scienta.2008.10.008 Chiu TH, Pang JC, Chen MH and Tsen HY (2010). Improvement of strain discrimination by combination of RAPD with PFGE for the analysis of the swine isolates of Salmonella enterica serovar Choleraesuis. World J. Microb. Biot. 27: 465-469. doi:10.1007/s11274-010-0467-7 Corazza-Nunes MJ, Machado MA, Nunes WMC, Cristofani M, et al. (2002). Assessment of variability in grapefruits (Citrus paradise Macf.) and pommelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126: 169-176. doi:10.1023/A:1016332030738 D’Onofrio C, De Lorenzis G, Giordani T, Natali L, et al. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Hortic. 827: 45-52. Demirsoy L, Demir T, Demirsoy H, Kacar YA, et al. (2008). Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Hortic. 795: 147-152. Ding XD, Lu LX, Chen XJ and Guan X (2000). Identifying litchi cultivars and evaluating their genetic relationships by RAPD markers. J. Trop. Subtrop. Bot. 8: 49-54. Elidemir AY and Uzun I (2009). Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Hortic. 827: 275-278. Fang J, Twito T, Zhang Z and Chao CT (2006). Genetic relationships among fruiting-mei (Prunus mume Sieb. et Zucc.) cultivars evaluated with AFLP and SNP markers. Genome 49: 1256-1264. doi:10.1139/g06-097 PMid:17213907 Kafkas S, Ozkan H, Ak BE, Acar I, et al. (2006). Detecting DNA polymorphism and genetic diversity in a wide pistachio (Pistacia vera L.) germplasm: comparison of AFLP, ISSR and RAPD markers. J. Am. Soc. Hortic. Sci. 13: 522-529. Kim CS, Lee GP, Han DH, Ryu KH, et al. (2000). Classification and identification of Pyrus pyrifolia using RAPD. J. Kor. Soc. Hortic. Sci. 41: 119-124. Lee GP, Lee CH and Kim CS (2004). Molecular markers derived from RAPD, SCAR, and the conserved 18S rDNA sequences for classification and identification in Pyrus pyrifolia and P. communis. Theor. Appl. Genet. 108: 1487- 1491. doi:10.1007/s00122-003-1582-8 PMid:14749847 Lu X, Liu L, Gong Y, Zhao L, et al. (2009). Cultivar identification and genetic diversity analysis of broccoli and its related species with RAPD and ISSR markers. Sci. Hortic. 122: 645-648. doi:10.1016/j.scienta.2009.06.017 Melgarejo P, Martínez JJ, Hernández F, Martínez R, et al. (2009). Cultivar identification using 18S-28S rDNA intergenic spacer-RFLP in pomegranate (Punica granatum L.). Sci. Hortic. 120: 500-503. doi:10.1016/j.scienta.2008.12.013 Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325. doi:10.1093/nar/8.19.4321 PMid:7433111    PMCid:324241 Papp N, Szilvássy B, Abrankó L, Szabó T, et al. (2010). Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Int. J. Food Sci. Technol. 45: 395-402. doi:10.1111/j.1365-2621.2009.02168.x Qu X, Lu J and Lamikanra O (1996). Genetic diversity in Muscadine and American bunch grapes based on randomly amplified polymorphic DNA (RAPD) analyses. J. Am. Soc. Hortic. Sci. 121: 1020-1023. Saker MM, Adawy SS, Mohamed AA and El-Itriby HA (2006). Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol. Plant. 50: 198-204. doi:10.1007/s10535-006-0007-3 Schiliro E, Predieri S and Bertaccini A (2001). Use of random amplified polymorphic DNA analysis to detect genetic variation in Pyrus species. Plant. Mol. Biol. Rep. 19: 271-272. doi:10.1007/BF02772900 Silvestrini M, Maluf MP, Silvarolla MB, Guerreiro-Filho O, et al. (2008). Genetic diversity of a Coffea germplasm collection assessed by RAPD markers. Genet. Res. Crop. Evol. 55: 901-910. doi:10.1007/s10722-007-9295-5 Stark-Urnau M (2002a). Use of RAPD-markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part I: Malus x domestica (apple). Erwerbsobstbau 44: 139-144. Stark-Urnau M (2002b). Use of RAPD-markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part II: Pyrus communis (Birne). Erwerbsobstbau 44: 167-171. Teng Y, Tanabe K, Tamura F and Itai A (2001). Genetic relationships of pear cultivars in Xinjiang, China, as measured by RAPD markers. J. Hortic. Sci. Biotechnol. 76: 771-779. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. doi:10.1093/nar/18.22.6531 PMid:1979162    PMCid:332606 Xuan H (2008). Identifying European pear (Pyrus communis L.) cultivars at the KOB by using apple SSRs. Acta Hortic. 800: 439-445. Yonemoto Y, Chowdhury AK, Kato H and Macha MM (2006). Cultivars identification and their genetic relationships in Dimocarpus longan subspecies based on RAPD markers. Sci. Hortic. 109: 147-152. doi:10.1016/j.scienta.2006.04.003