Publications
Found 10 results
Filters: Author is X.G. Zhang [Clear All Filters]
“Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population”, vol. 15, p. -, 2016.
, “Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population”, vol. 15, p. -, 2016.
, “Correlation between PPARg2 gene Pro12Ala polymorphism and cerebral infarction in an Inner Mongolian Han Chinese population”, vol. 15, p. -, 2016.
, “Correlation between PPARg2 gene Pro12Ala polymorphism and cerebral infarction in an Inner Mongolian Han Chinese population”, vol. 15, p. -, 2016.
, , , “CYP1A2 polymorphism in Chinese patients with acute liver injury induced by Polygonum multiflorum”, vol. 13, pp. 5637-5643, 2014.
, “Differential expression of lipid metabolism genes in the liver and adipose tissue of mice treated with evodiamine”, vol. 12, pp. 1501-1510, 2013.
, “Identification of 18 genes encoding necrosis-inducing proteins from the plant pathogen Phytophthora capsici (Pythiaceae: Oomycetes)”, vol. 10. pp. 910-922, 2011.
, Bae H, Bowers JH, Tooley PW and Bailey BA (2005). NEP1 orthologs encoding necrosis and ethylene inducing proteins exist as a multigene family in Phytophthora megakarya, causal agent of black pod disease on cacao. Mycol. Res. 109: 1373-1385.
doi:10.1017/S0953756205003941
PMid:16353637
Bailey BA (1995). Purification of a protein from culture filtrates of Fusarium oxysporm that induces ethylene and necrosis in leaves of Erythroloxylum coca. Phytopathology 85: 1250-1255.
doi:10.1094/Phyto-85-1250
Bailey BA, Bae H, Strem MD, Antunez de Mayolo G, et al. (2005). Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthora megakarya. Plant Physiol. Biochem. 43: 611-622.
doi:10.1016/j.plaphy.2005.04.006
PMid:15979314
Baldauf SL, Roger AJ, Wenk-Siefert I and Doolittle WF (2000). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290: 972-977.
doi:10.1126/science.290.5493.972
PMid:11062127
Dean RA, Talbot NJ, Ebbole DJ, Farman ML, et al. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980-986.
doi:10.1038/nature03449
PMid:15846337
Fellbrich G, Romanski A, Varet A, Blume B, et al. (2002). NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32: 375-390.
doi:10.1046/j.1365-313X.2002.01454.x
PMid:12410815
Feng B, Li P, Wang H and Zhang X (2010). Functional analysis of Pcpme6 from oomycete plant pathogen Phytophthora capsici. Microb. Pathog. 49: 23-31.
doi:10.1016/j.micpath.2010.03.004
PMid:20227480
Galagan JE, Calvo SE, Borkovich KA, Selker EU, et al. (2003). The genome sequence of the filamentous fungus Neurospora crassa. Nature 422: 859-868.
doi:10.1038/nature01554
PMid:12712197
Galagan JE, Calvo SE, Cuomo C, Ma LJ, et al. (2005). Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438: 1105-1115.
doi:10.1038/nature04341
PMid:16372000
Garcia O, Macedo JA, Tiburcio R, Zaparoli G, et al. (2007). Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches’ broom in Theobroma cacao. Mycol. Res. 111: 443-455.
doi:10.1016/j.mycres.2007.01.017
PMid:17512713
Garzón-Ospina D, Cadavid LF and Patarroyo MA (2010). Differential expansion of the merozoite surface protein (msp)-7 gene family in Plasmodium species under a birth-and-death model of evolution. Mol. Phylogenet. Evol. 55: 399-408.
doi:10.1016/j.ympev.2010.02.017
PMid:20172030
Gijzen M and Nurnberger T (2006). Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67: 1800-1807.
doi:10.1016/j.phytochem.2005.12.008
PMid:16430931
Jennings JC, Apel-Birkhold PC, Bailey BA and Anderson JD (2000). Induction of ethylene biosynthesis and necrosis in weed leaves by a Fusarium oxysporum protein. Weed Sci. 48: 7-14.
doi:10.1614/0043-1745(2000)048[0007:IOEBAN]2.0.CO;2
Lamour KH and Hausbeck MK (2004). Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 88: 1292-1303.
doi:10.1094/PDIS.2004.88.12.1292
Nei M and Rooney AP (2005). Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 39: 121-152.
doi:10.1146/annurev.genet.39.073003.112240
PMid:16285855 PMCid:1464479
Ottmann C, Luberacki B, Küfner I, Koch W, et al. (2009). A common toxin fold mediates microbial attack and plant defense. Proc. Natl. Acad. Sci. U. S. A. 106: 10359-10364.
doi:10.1073/pnas.0902362106
PMid:19520828 PMCid:2695407
Pare PW, Farag MA, Krishnamachari V, Zhang H, et al. (2005). Elicitors and priming agents initiate plant defense responses. Photosynth. Res. 85: 149-159.
doi:10.1007/s11120-005-1001-x
PMid:16075316
Pemberton CL and Salmond GP (2004). The Nep1-like proteins-a growing family of microbial elicitors of plant necrosis. Mol. Plant. Pathol. 5: 353-359.
doi:10.1111/j.1364-3703.2004.00235.x
PMid:20565603
Qutob D, Kamoun S and Gijzen M (2002). Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J. 32: 361-373.
doi:10.1046/j.1365-313X.2002.01439.x
PMid:12410814
Qutob D, Kemmerling B, Brunner F, Küfner I, et al. (2006). Phytotoxicity and innate immune responses induced by Nep1- like proteins. Plant Cell 18: 3721-3744.
doi:10.1105/tpc.106.044180
PMid:17194768 PMCid:1785393
Tyler BM, Forster H and Coffey MD (1995). Inheritance of avirulence factors and restriction fragment length polymorphism markers in outcrosses of the oomycete Phytophthora sojae. Mol. Plant Microbe Interact. 8: 515-523.
doi:10.1094/MPMI-8-0515
Tyler BM, Tripathy S, Zhang X, Dehal P, et al. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313: 1261-1266.
doi:10.1126/science.1128796
PMid:16946064
Wang JY, Cai Y, Gou JY, Mao YB, et al. (2004). VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl. Environ. Microbiol. 70: 4989-4995.
doi:10.1128/AEM.70.8.4989-4995.2004
PMid:15294839 PMCid:492334
“Lack of association of variants of the renal salt reabsorption-related genes SLC12A3 and ClC-Kb and hypertension in Mongolian and Han populations in Inner Mongolia”, vol. 10, pp. 948-954, 2011.
, Barlassina C, Dal Fiume C, Lanzani C, Manunta P, et al. (2007). Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum. Mol. Genet. 16: 1630-1638.
doi:10.1093/hmg/ddm112
PMid:17510212
Fava C, Montagnana M, Almgren P, Rosberg L, et al. (2007). The functional variant of the CLC-Kb channel T481S is not associated with blood pressure or hypertension in Swedes. J. Hypertens. 25: 111-116.
doi:10.1097/HJH.0b013e3280103a5a
PMid:17143181
Guyton AC (1991). Abnormal renal function and autoregulation in essential hypertension. Hypertension 18: III49-III53.
PMid:1937686
Jeck N, Waldegger P, Doroszewicz J, Seyberth H, et al. (2004a). A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity. Kidney Int. 65: 190-197.
doi:10.1111/j.1523-1755.2004.00363.x
PMid:14675050
Jeck N, Waldegger S, Lampert A, Boehmer C, et al. (2004b). Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension. Hypertension 43: 1175-1181.
doi:10.1161/01.HYP.0000129824.12959.f0
PMid:15148291
Keszei AP, Tisler A, Backx PH, Andrulis IL, et al. (2007). Molecular variants of the thiazide-sensitive Na+-Cl- cotransporter in hypertensive families. J. Hypertens. 25: 2074-2081.
doi:10.1097/HJH.0b013e3282a9be1b
PMid:17885550
Kokubo Y, Iwai N, Tago N, Inamoto N, et al. (2005). Association analysis between hypertension and CYBA, CLCNKB, and KCNMB1 functional polymorphisms in the Japanese population - the Suita Study. Circ. J. 69: 138-142.
doi:10.1253/circj.69.138
PMid:15671602
Lifton RP, Gharavi AG and Geller DS (2001). Molecular mechanisms of human hypertension. Cell 104: 545-556.
doi:10.1016/S0092-8674(01)00241-0
Matsuo A, Katsuya T, Ishikawa K, Sugimoto K, et al. (2004). G2736A polymorphism of thiazide-sensitive Na-Cl cotransporter gene predisposes to hypertension in young women. J. Hypertens. 22: 2123-2127.
doi:10.1097/00004872-200411000-00014
PMid:15480096
Melander O, Orho-Melander M, Bengtsson K, Lindblad U, et al. (2000). Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman’s syndrome and primary hypertension. Hypertension 36: 389-394.
PMid:10988270
Obermüller N, Bernstein P, Velázquez H, Reilly R, et al. (1995). Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am. J. Physiol. 269: F900-F910.
PMid:8594886
Sile S, Velez DR, Gillani NB, Narsia T, et al. (2009). CLCNKB-T481S and essential hypertension in a Ghanaian population. J. Hypertens. 27: 298-304.
doi:10.1097/HJH.0b013e3283140c9e
PMid:19226700
Simon DB, Nelson-Williams C, Bia MJ, Ellison D, et al. (1996). Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat. Genet. 12: 24-30.
doi:10.1038/ng0196-24
PMid:8528245
Speirs HJ, Wang WY, Benjafield AV and Morris BJ (2005). No association with hypertension of CLCNKB and TNFRSF1B polymorphisms at a hypertension locus on chromosome 1p36. J. Hypertens. 23: 1491-1496.
doi:10.1097/01.hjh.0000174300.73992.cc
PMid:16003175
Zhou BF, Wu XG, Tao SQ, Yang J, et al. (1989). Dietary patterns in 10 groups and the relationship with blood pressure. Collaborative Study Group for Cardiovascular Diseases and their Risk Factors. Chin. Med. J. 102: 257-261.