Publications
Found 6 results
Filters: Author is P.Y. Chang [Clear All Filters]
“Association between PDCD1, CTLA4, and MECP2 gene polymorphisms and systemic lupus erythematosus in the Chinese Northern Han”, vol. 14, pp. 17567-17573, 2015.
, “Association of NPRA and NPRC gene variants and hypertension in Mongolian population”, vol. 14, pp. 18494-18502, 2015.
, “Association of regulator of G protein signaling (RGS5) gene variants and essential hypertension in Mongolian and Han populations”, vol. 14, pp. 17641-17650, 2015.
, “Association of SNPs in the PPARγ gene and hypertension in a Mongolian population”, vol. 14, pp. 19295-19308, 2015.
, “Association of TSC gene variants and hypertension in Mongolian and Han populations”, vol. 10, pp. 902-909, 2011.
, Cardon LR and Abecasis GR (2003). Using haplotype blocks to map human complex trait loci. Trends Genet. 19: 135-140.
doi:10.1016/S0168-9525(03)00022-2
Carlson CS, Eberle MA, Rieder MJ, Yi Q, et al. (2004). Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet. 74: 106-120.
doi:10.1086/381000
PMid:14681826
Crosio C, Cecconi F, Mariottini P, Cesareni G, et al. (1996). Fugu intron oversize reveals the presence of U15 snoRNA coding sequences in some introns of the ribosomal protein S3 gene. Genome Res. 6: 1227-1231.
doi:10.1101/gr.6.12.1227
PMid:8973918
Fava C, Montagnana M, Rosberg L, Burri P, et al. (2008). Subjects heterozygous for genetic loss of function of the thiazide-sensitive cotransporter have reduced blood pressure. Hum. Mol. Genet. 17: 413-418.
doi:10.1093/hmg/ddm318
PMid:17981812
Jacob-Ferreira AL and Sandrim VC (2007). Endothelial nitric oxide synthase polymorphisms and hypertension: improved clinical evidence derived from haplotype analysis. Int. J. Cardiol. 116: 116.
doi:10.1016/j.ijcard.2006.11.048
PMid:17223211
Keszei AP, Tisler A, Backx PH, Andrulis IL, et al. (2007). Molecular variants of the thiazide-sensitive Na+-Cl- cotransporter in hypertensive families. J. Hypertens. 25: 2074-2081.
doi:10.1097/HJH.0b013e3282a9be1b
PMid:17885550
Matsuo A, Katsuya T, Ishikawa K, Sugimoto K, et al. (2004). G2736A polymorphism of thiazide-sensitive Na-Cl cotransporter gene predisposes to hypertension in young women. J. Hypertens. 22: 2123-2127.
doi:10.1097/00004872-200411000-00014
PMid:15480096
Melander O, Orho-Melander M, Bengtsson K, Lindblad U, et al. (2000). Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman’s syndrome and primary hypertension. Hypertension 36: 389-394.
PMid:10988270
Miao Z, Gao Y, Bindels RJ, Yu W, et al. (2009). Coexistence of normotensive primary aldosteronism in two patients with Gitelman’s syndrome and novel thiazide-sensitive Na-Cl cotransporter mutations. Eur. J. Endocrinol. 161: 275-283.
doi:10.1530/EJE-09-0271
PMid:19451210
Obermüller N, Bernstein P, Velazquez H, Reilly R, et al. (1995). Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am. J. Physiol. 269: F900-F910.
PMid:8594886
Peters RM and Flack JM (2000). Salt sensitivity and hypertension in African Americans: implications for cardiovascular nurses. Prog. Cardiovasc. Nurs. 15: 138-144.
doi:10.1111/j.0889-7204.2000.080404.x
PMid:11098526
Plotkin MD, Kaplan MR, Verlander JW, Lee WS, et al. (1996). Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1 in the rat kidney. Kidney Int. 50: 174-183.
doi:10.1038/ki.1996.300
PMid:8807586
Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98.
doi:10.1038/sj.cr.7290272
PMid:15740637
Simon DB, Nelson-Williams C, Bia MJ, Ellison D, et al. (1996). Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat. Genet. 12: 24-30.
doi:10.1038/ng0196-24
PMid:8528245
Slatkin M (2008). Linkage disequilibrium - understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9: 477-485.
doi:10.1038/nrg2361
PMid:18427557
Wang XF, Lin RY, Wang SZ, Zhang LP, et al. (2008). Association study of variants in two ion-channel genes (TSC and CLCNKB) and hypertension in two ethnic groups in Northwest China. Clin. Chim. Acta 388: 95-98.
doi:10.1016/j.cca.2007.10.017
PMid:17997379
Xiao Z, Xiao J, Jiang Y, Zhang S, et al. (2006). A novel method based on ligase detection reaction for low abundant YIDD mutants detection in hepatitis B virus. Hepatol. Res. 34: 150-155.
doi:10.1016/j.hepres.2005.12.007
PMid:16500145
Zhan YY, Jiang X, Lin G, Li J, et al. (2007). Association of thiazide-sensitive Na+-Cl- cotransporter gene polymorphisms with the risk of essential hypertension. Zhonghua Yi. Xue. Yi. Chuan Xue. Za Zhi. 24: 703-705.
PMid:18067089
“Lack of association of variants of the renal salt reabsorption-related genes SLC12A3 and ClC-Kb and hypertension in Mongolian and Han populations in Inner Mongolia”, vol. 10, pp. 948-954, 2011.
, Barlassina C, Dal Fiume C, Lanzani C, Manunta P, et al. (2007). Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum. Mol. Genet. 16: 1630-1638.
doi:10.1093/hmg/ddm112
PMid:17510212
Fava C, Montagnana M, Almgren P, Rosberg L, et al. (2007). The functional variant of the CLC-Kb channel T481S is not associated with blood pressure or hypertension in Swedes. J. Hypertens. 25: 111-116.
doi:10.1097/HJH.0b013e3280103a5a
PMid:17143181
Guyton AC (1991). Abnormal renal function and autoregulation in essential hypertension. Hypertension 18: III49-III53.
PMid:1937686
Jeck N, Waldegger P, Doroszewicz J, Seyberth H, et al. (2004a). A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity. Kidney Int. 65: 190-197.
doi:10.1111/j.1523-1755.2004.00363.x
PMid:14675050
Jeck N, Waldegger S, Lampert A, Boehmer C, et al. (2004b). Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension. Hypertension 43: 1175-1181.
doi:10.1161/01.HYP.0000129824.12959.f0
PMid:15148291
Keszei AP, Tisler A, Backx PH, Andrulis IL, et al. (2007). Molecular variants of the thiazide-sensitive Na+-Cl- cotransporter in hypertensive families. J. Hypertens. 25: 2074-2081.
doi:10.1097/HJH.0b013e3282a9be1b
PMid:17885550
Kokubo Y, Iwai N, Tago N, Inamoto N, et al. (2005). Association analysis between hypertension and CYBA, CLCNKB, and KCNMB1 functional polymorphisms in the Japanese population - the Suita Study. Circ. J. 69: 138-142.
doi:10.1253/circj.69.138
PMid:15671602
Lifton RP, Gharavi AG and Geller DS (2001). Molecular mechanisms of human hypertension. Cell 104: 545-556.
doi:10.1016/S0092-8674(01)00241-0
Matsuo A, Katsuya T, Ishikawa K, Sugimoto K, et al. (2004). G2736A polymorphism of thiazide-sensitive Na-Cl cotransporter gene predisposes to hypertension in young women. J. Hypertens. 22: 2123-2127.
doi:10.1097/00004872-200411000-00014
PMid:15480096
Melander O, Orho-Melander M, Bengtsson K, Lindblad U, et al. (2000). Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman’s syndrome and primary hypertension. Hypertension 36: 389-394.
PMid:10988270
Obermüller N, Bernstein P, Velázquez H, Reilly R, et al. (1995). Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am. J. Physiol. 269: F900-F910.
PMid:8594886
Sile S, Velez DR, Gillani NB, Narsia T, et al. (2009). CLCNKB-T481S and essential hypertension in a Ghanaian population. J. Hypertens. 27: 298-304.
doi:10.1097/HJH.0b013e3283140c9e
PMid:19226700
Simon DB, Nelson-Williams C, Bia MJ, Ellison D, et al. (1996). Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat. Genet. 12: 24-30.
doi:10.1038/ng0196-24
PMid:8528245
Speirs HJ, Wang WY, Benjafield AV and Morris BJ (2005). No association with hypertension of CLCNKB and TNFRSF1B polymorphisms at a hypertension locus on chromosome 1p36. J. Hypertens. 23: 1491-1496.
doi:10.1097/01.hjh.0000174300.73992.cc
PMid:16003175
Zhou BF, Wu XG, Tao SQ, Yang J, et al. (1989). Dietary patterns in 10 groups and the relationship with blood pressure. Collaborative Study Group for Cardiovascular Diseases and their Risk Factors. Chin. Med. J. 102: 257-261.