Publications

Found 3 results
Filters: Author is R.M. Rana  [Clear All Filters]
2012
M. A. Hameed, Rana, R. M., and Ali, Z., Identification and characterization of a novel Iraqi isolate of Fusarium pseudograminearum causing crown rot in wheat, vol. 11, pp. 1341-1348, 2012.
Al-Ahmad MA (1993). The solar chamber: an innovative technique for controlling verticillium wilt of olive. EPPO Bull. 23: 531-535. http://dx.doi.org/10.1111/j.1365-2338.1993.tb01365.x   Aoki T and O'Donnell K (1999). Morphological characterization of Gibberella coronicola sp. nov., obtained through mating experiments of Fusarium pseudograminearum. Mycoscience 40: 443-453. http://dx.doi.org/10.1007/BF02461021   Bentley AR, Griffiths SP, Burgess LW and Summerell BA (2004). Austrostipa aristiglumis (Plains grass) as an Intermediate Host of Fusarium pseudograminearum and other Fusarium species. Proceedings of the 3rd Australasian Soilborne Diseases Symposium (KMOH Keller BH, ed.). South Australian Research and Development Institute, Adelaide.   Benyon F, Burgess L and Sharp P (1995). Molecular Variation Amongst Fusarium species Responsible for Crown Rots of Winter Cereals in Relation to their Pathogenicity and Morphological Characteristics. In: International Seminar on Fusarium: Mycotoxins, Taxonomy and Pathogenicity, Martina Franca.   Burgess LW, Backhouse D, Summerell BA and Swan LJ (2001). Crown Rot of Wheat. In: Fusarium: Paul E. Nelson Memorial Symposium (Summerell BA, Leslie JF, Backhouse D, Bryden WL, et al., eds.). American Phytopathological Society Press, Saint Paul, 271-294.   Chappell M, Griffey C, Pridgen T, Chen J, et al. (1999). Assessment and Reaction of Soft Red Winter Wheat Genotypes to Fusarium graminearum and Effects on Traits Related to Yield and Seed Quality. Proceedings of the National Fusarium Head Blight Forum, Sioux Falls, 143-145.   Demeke T, Clear RM, Patrick SK and Gaba D (2005). Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. Int. J. Food Microbiol. 103: 271-284. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.12.026 PMid:16099312   Diaz MR and Fell JW (2004). High-throughput detection of pathogenic yeasts of the genus Trichosporon. J. Clin. Microbiol. 42: 3696-3706. http://dx.doi.org/10.1128/JCM.42.8.3696-3706.2004 PMid:15297519 PMCid:497590   Ferrer C, Colom F, Frases S, Mulet E, et al. (2001). Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J. Clin. Microbiol. 39: 2873-2879. http://dx.doi.org/10.1128/JCM.39.8.2873-2879.2001 PMid:11474006 PMCid:88253   Francis RG and Burgess L (1977). Characteristics of two populations of Fusarium roseum 'Graminearum' in Eastern Australia. Trans. Br. Mycol. Soc. 68: 421-427. http://dx.doi.org/10.1016/S0007-1536(77)80196-4   Hall R (1996). Principles and Practice of Managing Soilborne Plant Pathogens American Phytopathological Society. APS Press, Saint Paul.   Luck J, Spackman M, Freeman A, Trebicki P, et al. (2011). Climate change and diseases of food crops. Plant Pathol. 60: 113-121. http://dx.doi.org/10.1111/j.1365-3059.2010.02414.x   McKnight T and Hart J (1966). Some field observations on crown rot disease of wheat caused by Fusarium graminearum. Queensl. J. Agr. Anim. Sci. 23: 373-378.   Mishra PK, Tewari JP, Clear RM and Turkington TK (2006). Genetic diversity and recombination within populations of Fusarium pseudograminearum from western Canada. Int. Microbiol. 9: 65-68. PMid:16636992   Mitter V, Zhang M, Liu C, Ghosh R, et al. (2006). A high throughput glasshouse bioassay to detect crown rot resistance in wheat germplasm. Plant Pathol. 55: 433-441. http://dx.doi.org/10.1111/j.1365-3059.2006.01384.x   Moller EM, Bahnweg G, Sandermann H and Geiger HH (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 20: 6115- 6116. http://dx.doi.org/10.1093/nar/20.22.6115 PMid:1461751 PMCid:334490   Oechsler RA, Feilmeier MR, Ledee DR, Miller D, et al. (2009). Utility of molecular sequence analysis of the ITS rRNA region for identification of Fusarium spp. from ocular sources. Invest. Ophthalmol. Vis. Sci. 50: 2230-2236. http://dx.doi.org/10.1167/iovs.08-2757 PMid:19136697   Purss G (1966). Studies of varietal resistance to crown rot of wheat caused by Fusarium graminearum Schw. Queensl. J. Agr. Anim. Sci. 23: 475-598.   Saremi H, Ammarellou A and Jafary H (2007). Incidence of crown rot disease of wheat caused by Fusarium pseudograminearum as a new soil born fungal species in north west Iran. Pak. J. Biol. Sci. 10: 3606-3612. http://dx.doi.org/10.3923/pjbs.2007.3606.3612 PMid:19093469   Smiley RW, Gourlie JA, Easley SA and Patterson LM (2005). Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Dis. 89: 595-604. http://dx.doi.org/10.1094/PD-89-0595   Trigo RM, Gouveia CM and Barriopedro D (2010). The intense 2007-2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agr. Forest Meteorol. 150: 1245-1257. http://dx.doi.org/10.1016/j.agrformet.2010.05.006   VanWyk PS, Los O, Pauer GDC and Marasas WFO (1987). Geographic distribution and pathogenicity of Fusarium species associated with crown rot of wheat in the Orange Free State, South Africa. Phytophylactica 19: 271-274.   Wearing A and Burgess L (1977). Distribution of Fusarium roseum 'Graminearum' Group 1 and its mode of survival in eastern Australian wheat belt soils. Trans. Br. Mycol. Soc. 69: 429-442. http://dx.doi.org/10.1016/S0007-1536(77)80082-X   Wildermuth GB, Thomas GA, Radford BJ, McNamara RB, et al. (1997). Crown rot and common root rot in wheat grown under different tillage and stubble treatments in southern Queensland, Australia. Soil Till. Res. 44: 211-224. http://dx.doi.org/10.1016/S0167-1987(97)00054-8
R. M. Rana, Dong, S., Ali, Z., Huang, J., and Zhang, H. S., Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.), vol. 11, pp. 3676-3687, 2012.
Cao Y and Klionsky DJ (2007). Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17: 839-849. http://dx.doi.org/10.1038/cr.2007.78 PMid:17893711   Chen X, Gu Z, Xin D, Hao L, et al. (2011). Identification and characterization of putative CIPK genes in maize. J. Genet. Genom. 38: 77-87. http://dx.doi.org/10.1016/j.jcg.2011.01.005 PMid:21356527   Fujiki Y, Yoshimoto K and Ohsumi Y (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143: 1132-1139. http://dx.doi.org/10.1104/pp.106.093864 PMid:17259285 PMCid:1820928   Gu X and Vander Velden K (2002). DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein 3687 Regulation of ATG6 homologs by abiotic stresses and hormones family. Bioinformatics 18: 500-501. http://dx.doi.org/10.1093/bioinformatics/18.3.500 PMid:11934757   Harrison-Lowe NJ and Olsen LJ (2008). Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy 4.   Hashiguchi Y, Furuta Y, Kawahara R and Nishida M (2007). Diversification and adaptive evolution of putative sweet taste receptors in threespine stickleback. Gene 396: 170-179. http://dx.doi.org/10.1016/j.gene.2007.03.015 PMid:17467198   Horton P, Park KJ, Obayashi T and Nakai K (2006). Protein Subcellular Localization Prediction with WoLF PSORT. Citeseer.   Huang J, Wang MM, Bao YM, Sun SJ, et al. (2008). SRWD: a novel WD40 protein subfamily regulated by salt stress in rice (Oryza sativa L.). Gene 424: 71-79. http://dx.doi.org/10.1016/j.gene.2008.07.027 PMid:18755256   Hung KT and Kao CH (2004). Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J. Plant Physiol. 161: 1347-1357. http://dx.doi.org/10.1016/j.jplph.2004.05.011 PMid:15658805   Jung KH, Dardick C, Bartley LE, Cao P, et al. (2008). Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy. PLoS One 3: e3337. http://dx.doi.org/10.1371/journal.pone.0003337 PMid:18836531 PMCid:2556097   Kametaka S, Okano T, Ohsumi M and Ohsumi Y (1998). Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 273: 22284-22291. http://dx.doi.org/10.1074/jbc.273.35.22284 PMid:9712845   Liu Y, Schiff M, Czymmek K, Talloczy Z, et al. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121: 567-577. http://dx.doi.org/10.1016/j.cell.2005.03.007 PMid:15907470   Meng XB, Zhao WS, Lin RM, Wang M, et al. (2006). Molecular cloning and characterization of a rice blast-inducible RING-H2 type zinc finger gene. DNA Seq. 17: 41-48. http://dx.doi.org/10.1080/10425170500476509 PMid:16753816   Michiorri S, Gelmetti V, Giarda E, Lombardi F, et al. (2010). The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death. Differ. 17: 962-974. http://dx.doi.org/10.1038/cdd.2009.200 PMid:20057503   Mochida K, Kawaura K, Shimosaka E, Kawakami N, et al. (2006). Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol. Genet. Genom. 276: 304-312. http://dx.doi.org/10.1007/s00438-006-0120-1 PMid:16832693   Moriyasu Y and Ohsumi Y (1996). Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 111: 1233-1241. PMid:12226358 PMCid:161001   Nielsen R and Yang Z (1998). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148: 929-936. PMid:9539414 PMCid:1460041   Qin G, Ma Z, Zhang L, Xing S, et al. (2007). Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res. 17: 249-263. PMid:17339883   Ramalingam J, Pathan MS, Feril O, Ross K, et al. (2006). Structural and functional analyses of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genome 49: 1324-1340. http://dx.doi.org/10.1139/g06-094 PMid:17218960   Rana RM, Dong S, Ali Z, Khan AI, et al. (2012). Identification and characterization of the Bcl-2-associated athanogene (BAG) protein family in rice. Afr. J. Biotechnol. 11: 88-99.   Sato Y and Yokoya S (2008). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep. 27: 329-334. http://dx.doi.org/10.1007/s00299-007-0470-0 PMid:17968552   Sinha S and Levine B (2008). The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27 (Suppl 1): S137-S148. http://dx.doi.org/10.1038/onc.2009.51 PMid:19641499 PMCid:2731580   Suzuki K, Kirisako T, Kamada Y, Mizushima N, et al. (2001). The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20: 5971-5981. http://dx.doi.org/10.1093/emboj/20.21.5971 PMid:11689437 PMCid:125692   Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121 PMid:21546353 PMCid:3203626   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   Waterhouse AM, Procter JB, Martin DM, Clamp M, et al. (2009). Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191. http://dx.doi.org/10.1093/bioinformatics/btp033 PMid:19151095 PMCid:2672624   Wolfe KH, Gouy M, Yang YW, Sharp PM, et al. (1989). Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. U. S. A. 86: 6201-6205. http://dx.doi.org/10.1073/pnas.86.16.6201 PMid:2762323 PMCid:297805   Wu S, Yu Z, Wang F, Li W, et al. (2007). Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.). Mol. Biotechnol. 36: 102-112. http://dx.doi.org/10.1007/s12033-007-0009-1 PMid:17914189   Xia K, Liu T, Ouyang J, Wang R, et al. (2011). Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res. 18: 363-377. http://dx.doi.org/10.1093/dnares/dsr024 PMid:21795261 PMCid:3190957   Yang Z (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24: 1586-1591. http://dx.doi.org/10.1093/molbev/msm088 PMid:17483113   Yang Z and Nielsen R (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19: 908-917. http://dx.doi.org/10.1093/oxfordjournals.molbev.a004148 PMid:12032247   Yang Z, Nielsen R, Goldman N and Pedersen AM (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155: 431-449. PMid:10790415 PMCid:1461088
2011
R. M. Rana, Khan, S. H., Ali, Z., Khan, A. I., and Khan, I. A., Elucidation of thermotolerance diversity in cotton (Gossypium hirsutum L.) using physio-molecular approaches, vol. 10, pp. 1156-1167, 2011.
Altschuler M and Mascarenhas JP (1982). Heat shock proteins and effects of heat shock in plants. Plant Mol. Biol. 1: 103-115. doi:10.1007/BF00024974 Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15. doi:10.1104/pp.24.1.1 PMid:16654194    PMCid:437905 Ashraf M, Saeed MM and Qureshi MJ (1994). Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ. Exp. Bot. 34: 275-283. doi:10.1016/0098-8472(94)90048-5 Azhar FM, Ali Z, Akhtar MM, Khan AA, et al. (2009). Genetic variability of heat tolerance, and its effect on yield and fibre quality traits in upland cotton (Gossypium hirsutum L.). Plant Breed. 128: 356-362. doi:10.1111/j.1439-0523.2008.01574.x Bhatti AS (1974). Treatment of cotton seeds for germination. Plant and Soil 41: 681-683. doi:10.1007/BF02185827 Bibi AC, Oosterhuis DM and Gonias ED (2008). Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J. Cotton Sci. 12: 150-159. Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. doi:10.1016/0003-2697(76)90527-3 Burke JJ (2001). Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol. Plantarum 112: 167-170. doi:10.1034/j.1399-3054.2001.1120203.x Burke JJ and O’Mahony PJ (2001). Protective role in acquired thermotolerance of developmentally regulated heat shock proteins in cotton seeds. J. Cotton Sci. 5: 174-183. Chaudhary L, Sindhu A, Kumar M, Kumar R, et al. (2010). Estimation of genetic divergence among some cotton varieties by RAPD analysis. JPBCS 2: 039-043. El-Sharkawi HM and Salama FM (1977). Effects of drought and salinity on some growth contributing parameters in wheat and barley. Plant and Soil 46: 423-433. doi:10.1007/BF00010098 Guy C (1999). The Influence of Temperature Extremes on Gene Expression, Genomic Structure, and the Evolution of Induced Tolerance in Plants. In: Plant Responses to Environmental Stresses (Lerner HR, ed.). Marcel Dekker, New York, 497-548. Hall AE (1992). Breeding for heat tolerance. Plant Breed. Rev. 10: 129-167. Hall AE (2001). Consideration of Crop response to Environment in Plant Breeding. In: Crop Response to Environment. CRC Press LLC, Boca Raton, 197-208. Ismail AM and Hall AE (1999). Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in Cowpea. Crop Sci. 39: 1762-1768. doi:10.2135/cropsci1999.3961762x Key JL, Lin CY and Chen YM (1981). Heat shock proteins in higher plants. PNAS 78: 3526-3530. doi:10.1073/pnas.78.6.3526 Khan IA, Awan FS, Ahmad A and Khan AA (2004). A modified mini-prep method for economical and rapid extraction of genomic DNA in plants. Plant Mol. Bio. Rep. 22: 89a-89c. doi:10.1007/BF02773355 Krieg DR (1986). Feedback Control and Stress Effects on Photosynthesis. In: Proceedings of the Beltwide Cotton Conference. Natl. Cotton Counc. Am., Memphis, 227-243. Lather BPS, Saini ML and Punia MS (2001). Hybrid cotton retrospect and prospects in Indian context. Nat. J. Plant Improv. 3: 61-68. Ledesma NA, Kawabata S and Sugiama N (2004). Effect of high temperature on protein expression in strawberry plants. Biol. Plant. 48: 73-79. doi:10.1023/B:BIOP.0000024278.62419.ee Martineau JR, Specht JE, Williams JH and Sullivan CY (1979). Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19: 75-78. doi:10.2135/cropsci1979.0011183X001900010017x Moustafa YMM, Yui S and Uemura M (2006). Chilling tolerance and field performance of an F1 cooking tomato cultivar, Nitaki-Koma, relative to its parents. Breed. Sci. 56: 269-276. doi:10.1270/jsbbs.56.269 Mukhtar MS, Rahman M and Zafar Y (2002). Assessment of genetic diversity among wheat (Triticum aestivum L.) cultivars from a range of localities across Pakistan using random amplified polymorphic DNA (RAPD) analysis. Euphytica 128: 417-425. doi:10.1023/A:1021261811454 Multani DS and Lyon BR (1995). Genetic fingerprinting of Australian cotton cultivars with RAPD markers. Genome 38: 1005-1008. doi:10.1139/g95-132 PMid:18470223 Nei M (1972). Genetic distance between populations. Am. Nat. 106: 283-292. doi:10.1086/282771 Oosterhuis DM (1997). Effects of Temperature Extremes on Cotton Yields in Arkansas. In: Proceeding of Cotton Research Meeting and Research Summaries (Oosterhuis DM, ed.). University of Arkansas Agricultural Experiment Station Special Report, Fayetteville, 94-98. Oosterhuis DM (2002). Day or night high temperatures: a major cause of yield variability. Cott. Grow. 46: 8-9. Saadalla MM, Shanahan JF and Quick JS (1990). Heat tolerance in winter wheat: hardening and genetic effect on membrane thermostability. Crop Sci. 30: 1243-1247. doi:10.2135/cropsci1990.0011183X003000060017x Santarius KA and Müller M (1979). Investigation on heat resistance in spinach leaves. Planta 146: 529-538. doi:10.1007/BF00388828 Sharma RP and Mohapatra T (1996). Molecular mapping and tagging of genes in crop plants. Genetica 97: 313-320. doi:10.1007/BF00055317 PMid:9081859 Snider JL, Oosterhuis DM, Skulman BW and Kawakami EM (2009). Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiol. Plant 137: 125-138. doi:10.1111/j.1399-3054.2009.01266.x PMid:19656331 Soltani F, Yukari A, Abdolkarim K, Zabihollah Z, et al. (2010). Characterization of Iranian melon landraces of Cucumis melo L. Groups Flexuosus and Dudaim by analysis of morphological characters and random amplified polymorphic DNA. Breed. Sci. 60: 34-45. doi:10.1270/jsbbs.60.34 Sullivan CY (1972). Mechanisms of Heat and Drought Resistance in Grain Sorghum and Methods of Measurement. In: Sorghum in the Seventies (Rao NGP and House LR, eds.). Oxford & IBH Publishing Co., New Delhi, 247-264. Tripathy JN, Zhang J, Robin S, Nguyen TT, et al. (2000). QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor. Appl. Genet. 100: 1197-1202. doi:10.1007/s001220051424 Vierling E (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579-620. doi:10.1146/annurev.pp.42.060191.003051 Wakui K, Iwata H, Takahashi Y, Takahata Y, et al. (2009). Assessment of the congruity of genetic relationships and variation revealed by individual- and bulked-samples-based approaches using RAPD and ISSR markers in Japanese turnip (Brassica rapa ssp. rapa) cultivars. Breed. Sci. 59: 447-452. doi:10.1270/jsbbs.59.447