Publications
Found 6 results
Filters: Author is Z. Ali [Clear All Filters]
“Characterization of Chinese eggplant isolates of the fungal pathogen Verticillium dahliae from different geographic origins”, vol. 12, pp. 183-195, 2013.
, Arora DK, Hirsch PR and Kerry BR (1996). PCR-based molecular discrimination of Verticillium chlamydosporium isolates. Mycol. Res. 100: 801-809.
http://dx.doi.org/10.1016/S0953-7562(96)80025-6
Bejarano-Alcázar J, Blanco-López MA, Melero-Vara JM and Jiménez-Díaz RM (1996). Etiology, importance, and distribution of Verticillium wilt of cotton in southern Spain. Plant Dis. 80: 1233-1238.
http://dx.doi.org/10.1094/PD-80-1233
Bell AA (1994). Mechanisms of Disease Resistance in Gossypium Species and Variation in Verticillium dahliae. In: Challenging the Future: Proceedings of World Cotton Research Conference 1 (Constable GA and Forrester NW, eds.). CSIRO, Melbourne, 225-235.
Bhat RG and Subbarao KV (1999). Host Range Specificity in Verticillium dahliae. Phytopathology 89: 1218-1225.
http://dx.doi.org/10.1094/PHYTO.1999.89.12.1218
PMid:18944648
Carder JH and Barbara DJ (1991). Molecular variation and restriction fragment length polymorphisms (RFLPs) within and between six species of Verticillium. Mycol. Res. 95: 935-942.
http://dx.doi.org/10.1016/S0953-7562(09)80090-7
Carder JH and Barbara DJ (1994). Molecular variation within some Japanese isolates of Verticillium dahliae. Plant Pathol. 43: 947-950.
http://dx.doi.org/10.1111/j.1365-3059.1994.tb01642.x
Dobinson KF, Patterson NA, White GJ and Grant S (1998). DNA fingerprinting and vegetative compatibility analysis indicate multiple origins for Verticillium dahliae race 2 tomato isolates from Ontario, Canada. Mycol. Res. 102: 1089-1095.
http://dx.doi.org/10.1017/S0953756297006035
Elena K and Paplomatas EJ (1998). Vegetative compatibility groups within Verticillium dahliae isolates from different hosts in Greece. Plant Pathol. 47: 635-640.
http://dx.doi.org/10.1046/j.1365-3059.1998.00273.x
Fradin EF and Thomma BP (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol. 7: 71-86.
http://dx.doi.org/10.1111/j.1364-3703.2006.00323.x
PMid:20507429
Gennari SD, Ercole N and Mirotti A (2000). Vegetative Compatibility Groupings Among Verticillium dahliae Kleb. Isolates from Vegetable Crops. In: Advances in Verticillium: Research and Disease Management (Tjamos EC, Rowe RC, Heale JB and Fravel DR, eds.). APS Press, St. Paul, 112-116.
Grünig CR, Sieber TN and Holdenrieder O (2001). Characterisation of dark septate endophytic fungi (DSE) using inter-simple-sequence-repeat-anchored polymerase chain reaction (ISSR-PCR) amplification. Mycol. Res. 105: 24-32.
http://dx.doi.org/10.1017/S0953756200003658
Hagiwara H (1990). Differentiation of the pathogenicity of Verticillium dahliae in Japan. Plant Prot. 44: 299-303.
Hall RA (1984). Epizootic potential for aphids of different isolates of the fungus Verticillium lecanii. Entomophaga 29: 311-321.
http://dx.doi.org/10.1007/BF02372119
Hiemstra JA and Rataj-Guranowska M (2000). Vegetative Compatibility Groups in Verticillium dahliae in the Netherlands. In: Advances in Verticillium: Research and Disease Management. (Tjamos EC, Rowe RC, Heale JB and Fravel DR, eds.). APS Press, St. Paul, 100-102.
Joaquim TR and Rowe RC (1990). Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology 80: 1160-1166.
http://dx.doi.org/10.1094/Phyto-80-1160
Joaquim TR and Rowe RC (1991). Vegetative compatibility and virulence of strains of Verticillium dahliae from soil and potato plants. Phytopathology 81: 552-558.
http://dx.doi.org/10.1094/Phyto-81-552
Kadow KJ (1934). Seed transmission of Verticillium wilt of eggplants and tomatoes. Phytopathology 24: 1265-1268.
Klosterman SJ, Atallah ZK, Vallad GE and Subbarao KV (2009). Diversity, pathogenicity, and management of Verticillium species. Annu. Rev. Phytopathol. 47: 39-62.
http://dx.doi.org/10.1146/annurev-phyto-080508-081748
PMid:19385730
Koike M, Fujita M, Nagao H and Ohshima S (1996). Random amplified polymorphic DNA analysis of Japanese isolates of Verticillium dahliae and V. albo-atrum. Plant Dis. 80: 1224-1227.
http://dx.doi.org/10.1094/PD-80-1224
Komatsu T, Sumino A and Kageyama K (2001). Characterization of Verticillium dahliae isolates from potato on Hokkaido by random amplified polymorphic DNA (RAPD) and REP-PCR analyses. J. Gen. Plant Pathol. 67: 23-27.
http://dx.doi.org/10.1007/PL00012982
Lee SB and Taylor JW (1990). Isolation of DNA from Fungal Mycelia and Single Spores. In: PCR Protocols: A Guide to Methods and Applications (Innis MA, Gelfand DH, Sninsky JJ and White TJ, eds.). Academic Press, San Diego, 282-287.
Masuda T and Kikuchi O (1992). Pathogenicity of Verticillium lecanii isolates to whitefly and aphids. Jap. J. Appl. Entomol. Zool. 36: 239-245.
http://dx.doi.org/10.1303/jjaez.36.239
Nei M (1979). Proportion of informative families for genetic counseling with linked marker genes. Jinrui. Idengaku. Zasshi 24: 131-142.
http://dx.doi.org/10.1007/BF01888684
PMid:299082
Okoli CAN, Carder JH and Barbara DJ (1993). Molecular variation and sub-specific groupings within Verticillium dahliae. Mycol. Res. 97: 233-239.
http://dx.doi.org/10.1016/S0953-7562(09)80246-3
Okoli CAN, Carder JH and Barbara DJ (1994). Restriction fragment length polymorphisms (RFLPs) and the relationships of some host-adapted isolates of Verticillium dahliae. Plant Pathol. 43: 33-40.
http://dx.doi.org/10.1111/j.1365-3059.1994.tb00550.x
Pérez-Artés E, García-Pedrajas MD, Bejarano-Alcázar J and Jiménez-Díaz RM (2000). Differentiation of cotton-defoliating and nondefoliating pathotypes of Verticillium dahliae by RAPD and specific PCR analyses. Eur. J. Plant Pathol. 106: 507-517.
http://dx.doi.org/10.1023/A:1008756307969
Presley JT (1969). Growth response of Verticillium albo-atrum to sanguinarine in nutrient agar. Phytopathology 59: 1968-1969.
Puhalla JE and Hummel M (1983). Vegetative compatibility groups within Verticillium dahliae. Phytopathology 73: 1305-1308.
http://dx.doi.org/10.1094/Phyto-73-1305
Ramsay JR, Multani DS and Lyon BR (1996). RAPD-PCR identification of Verticillium dahliae isolates with differential pathogenicity on cotton. Aust. J. Agri. Res. 47: 681-693.
http://dx.doi.org/10.1071/AR9960681
Rodrigues KF, Sieber TN, Grunig CR and Holdenrieder O (2004). Characterization of Guignardia mangiferae isolated from tropical plants based on morphology, ISSR-PCR amplifications and ITS1-5.8S-ITS2 sequences. Mycol. Res.108: 45-52.
http://dx.doi.org/10.1017/S0953756203008840
PMid:15035504
Schnathorst WC and Mathre DE (1966). Host range and differentiation of a severe form of Verticillium albo-atrum in cotton. Phytopathology 56: 1155-1161.
Usami T, Abiko M, Shishido M and Amemiya Y (2002). Specific detection of tomato pathotype of Verticillium dahliae by PCR assays. J. Gen. Plant Pathol. 68: 134-140.
http://dx.doi.org/10.1007/PL00013066
Wang S, Miao X, Zhao W, Huang B, et al. (2005). Genetic diversity and population structure among strains of the entomopathogenic fungus, Beauveria bassiana, as revealed by inter-simple sequence repeats (ISSR). Mycol. Res. 109: 1364-1372.
http://dx.doi.org/10.1017/S0953756205003709
PMid:16353636
Wilhelm S (1955). Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology 45: 180-181.
Xiao YH and Lin BQ (1995). Identification of Verticillium wilt resistance on eggplant germplasm. Chin. Veg. 1: 32-33.
Yi J (1998). Advances of breeding on eggplant for Verticillium wilt resistance. Chin. Veg. 6: 52-55.
Yi J, Chen J and Gao J (2000). Evaluation of Verticillium wilt resistance on eggplant germplasm (Chinese). Jiangsu Agri. Sci. 6: 54-57.
Zietkiewicz E, Rafalski A and Labuda D (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176-183.
http://dx.doi.org/10.1006/geno.1994.1151
PMid:8020964
“Identification and characterization of a novel Iraqi isolate of Fusarium pseudograminearum causing crown rot in wheat”, vol. 11, pp. 1341-1348, 2012.
,
Al-Ahmad MA (1993). The solar chamber: an innovative technique for controlling verticillium wilt of olive. EPPO Bull. 23: 531-535.
http://dx.doi.org/10.1111/j.1365-2338.1993.tb01365.x
Aoki T and O'Donnell K (1999). Morphological characterization of Gibberella coronicola sp. nov., obtained through mating experiments of Fusarium pseudograminearum. Mycoscience 40: 443-453.
http://dx.doi.org/10.1007/BF02461021
Bentley AR, Griffiths SP, Burgess LW and Summerell BA (2004). Austrostipa aristiglumis (Plains grass) as an Intermediate Host of Fusarium pseudograminearum and other Fusarium species. Proceedings of the 3rd Australasian Soilborne Diseases Symposium (KMOH Keller BH, ed.). South Australian Research and Development Institute, Adelaide.
Benyon F, Burgess L and Sharp P (1995). Molecular Variation Amongst Fusarium species Responsible for Crown Rots of Winter Cereals in Relation to their Pathogenicity and Morphological Characteristics. In: International Seminar on Fusarium: Mycotoxins, Taxonomy and Pathogenicity, Martina Franca.
Burgess LW, Backhouse D, Summerell BA and Swan LJ (2001). Crown Rot of Wheat. In: Fusarium: Paul E. Nelson Memorial Symposium (Summerell BA, Leslie JF, Backhouse D, Bryden WL, et al., eds.). American Phytopathological Society Press, Saint Paul, 271-294.
Chappell M, Griffey C, Pridgen T, Chen J, et al. (1999). Assessment and Reaction of Soft Red Winter Wheat Genotypes to Fusarium graminearum and Effects on Traits Related to Yield and Seed Quality. Proceedings of the National Fusarium Head Blight Forum, Sioux Falls, 143-145.
Demeke T, Clear RM, Patrick SK and Gaba D (2005). Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. Int. J. Food Microbiol. 103: 271-284.
http://dx.doi.org/10.1016/j.ijfoodmicro.2004.12.026
PMid:16099312
Diaz MR and Fell JW (2004). High-throughput detection of pathogenic yeasts of the genus Trichosporon. J. Clin. Microbiol. 42: 3696-3706.
http://dx.doi.org/10.1128/JCM.42.8.3696-3706.2004
PMid:15297519 PMCid:497590
Ferrer C, Colom F, Frases S, Mulet E, et al. (2001). Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J. Clin. Microbiol. 39: 2873-2879.
http://dx.doi.org/10.1128/JCM.39.8.2873-2879.2001
PMid:11474006 PMCid:88253
Francis RG and Burgess L (1977). Characteristics of two populations of Fusarium roseum 'Graminearum' in Eastern Australia. Trans. Br. Mycol. Soc. 68: 421-427.
http://dx.doi.org/10.1016/S0007-1536(77)80196-4
Hall R (1996). Principles and Practice of Managing Soilborne Plant Pathogens American Phytopathological Society. APS Press, Saint Paul.
Luck J, Spackman M, Freeman A, Trebicki P, et al. (2011). Climate change and diseases of food crops. Plant Pathol. 60: 113-121.
http://dx.doi.org/10.1111/j.1365-3059.2010.02414.x
McKnight T and Hart J (1966). Some field observations on crown rot disease of wheat caused by Fusarium graminearum. Queensl. J. Agr. Anim. Sci. 23: 373-378.
Mishra PK, Tewari JP, Clear RM and Turkington TK (2006). Genetic diversity and recombination within populations of Fusarium pseudograminearum from western Canada. Int. Microbiol. 9: 65-68.
PMid:16636992
Mitter V, Zhang M, Liu C, Ghosh R, et al. (2006). A high throughput glasshouse bioassay to detect crown rot resistance in wheat germplasm. Plant Pathol. 55: 433-441.
http://dx.doi.org/10.1111/j.1365-3059.2006.01384.x
Moller EM, Bahnweg G, Sandermann H and Geiger HH (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 20: 6115- 6116.
http://dx.doi.org/10.1093/nar/20.22.6115
PMid:1461751 PMCid:334490
Oechsler RA, Feilmeier MR, Ledee DR, Miller D, et al. (2009). Utility of molecular sequence analysis of the ITS rRNA region for identification of Fusarium spp. from ocular sources. Invest. Ophthalmol. Vis. Sci. 50: 2230-2236.
http://dx.doi.org/10.1167/iovs.08-2757
PMid:19136697
Purss G (1966). Studies of varietal resistance to crown rot of wheat caused by Fusarium graminearum Schw. Queensl. J. Agr. Anim. Sci. 23: 475-598.
Saremi H, Ammarellou A and Jafary H (2007). Incidence of crown rot disease of wheat caused by Fusarium pseudograminearum as a new soil born fungal species in north west Iran. Pak. J. Biol. Sci. 10: 3606-3612.
http://dx.doi.org/10.3923/pjbs.2007.3606.3612
PMid:19093469
Smiley RW, Gourlie JA, Easley SA and Patterson LM (2005). Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Dis. 89: 595-604.
http://dx.doi.org/10.1094/PD-89-0595
Trigo RM, Gouveia CM and Barriopedro D (2010). The intense 2007-2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agr. Forest Meteorol. 150: 1245-1257.
http://dx.doi.org/10.1016/j.agrformet.2010.05.006
VanWyk PS, Los O, Pauer GDC and Marasas WFO (1987). Geographic distribution and pathogenicity of Fusarium species associated with crown rot of wheat in the Orange Free State, South Africa. Phytophylactica 19: 271-274.
Wearing A and Burgess L (1977). Distribution of Fusarium roseum 'Graminearum' Group 1 and its mode of survival in eastern Australian wheat belt soils. Trans. Br. Mycol. Soc. 69: 429-442.
http://dx.doi.org/10.1016/S0007-1536(77)80082-X
Wildermuth GB, Thomas GA, Radford BJ, McNamara RB, et al. (1997). Crown rot and common root rot in wheat grown under different tillage and stubble treatments in southern Queensland, Australia. Soil Till. Res. 44: 211-224.
http://dx.doi.org/10.1016/S0167-1987(97)00054-8
“Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.)”, vol. 11, pp. 3676-3687, 2012.
,
Cao Y and Klionsky DJ (2007). Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17: 839-849.
http://dx.doi.org/10.1038/cr.2007.78
PMid:17893711
Chen X, Gu Z, Xin D, Hao L, et al. (2011). Identification and characterization of putative CIPK genes in maize. J. Genet. Genom. 38: 77-87.
http://dx.doi.org/10.1016/j.jcg.2011.01.005
PMid:21356527
Fujiki Y, Yoshimoto K and Ohsumi Y (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143: 1132-1139.
http://dx.doi.org/10.1104/pp.106.093864
PMid:17259285 PMCid:1820928
Gu X and Vander Velden K (2002). DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein 3687 Regulation of ATG6 homologs by abiotic stresses and hormones family. Bioinformatics 18: 500-501.
http://dx.doi.org/10.1093/bioinformatics/18.3.500
PMid:11934757
Harrison-Lowe NJ and Olsen LJ (2008). Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy 4.
Hashiguchi Y, Furuta Y, Kawahara R and Nishida M (2007). Diversification and adaptive evolution of putative sweet taste receptors in threespine stickleback. Gene 396: 170-179.
http://dx.doi.org/10.1016/j.gene.2007.03.015
PMid:17467198
Horton P, Park KJ, Obayashi T and Nakai K (2006). Protein Subcellular Localization Prediction with WoLF PSORT. Citeseer.
Huang J, Wang MM, Bao YM, Sun SJ, et al. (2008). SRWD: a novel WD40 protein subfamily regulated by salt stress in rice (Oryza sativa L.). Gene 424: 71-79.
http://dx.doi.org/10.1016/j.gene.2008.07.027
PMid:18755256
Hung KT and Kao CH (2004). Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J. Plant Physiol. 161: 1347-1357.
http://dx.doi.org/10.1016/j.jplph.2004.05.011
PMid:15658805
Jung KH, Dardick C, Bartley LE, Cao P, et al. (2008). Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy. PLoS One 3: e3337.
http://dx.doi.org/10.1371/journal.pone.0003337
PMid:18836531 PMCid:2556097
Kametaka S, Okano T, Ohsumi M and Ohsumi Y (1998). Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 273: 22284-22291.
http://dx.doi.org/10.1074/jbc.273.35.22284
PMid:9712845
Liu Y, Schiff M, Czymmek K, Talloczy Z, et al. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121: 567-577.
http://dx.doi.org/10.1016/j.cell.2005.03.007
PMid:15907470
Meng XB, Zhao WS, Lin RM, Wang M, et al. (2006). Molecular cloning and characterization of a rice blast-inducible RING-H2 type zinc finger gene. DNA Seq. 17: 41-48.
http://dx.doi.org/10.1080/10425170500476509
PMid:16753816
Michiorri S, Gelmetti V, Giarda E, Lombardi F, et al. (2010). The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death. Differ. 17: 962-974.
http://dx.doi.org/10.1038/cdd.2009.200
PMid:20057503
Mochida K, Kawaura K, Shimosaka E, Kawakami N, et al. (2006). Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol. Genet. Genom. 276: 304-312.
http://dx.doi.org/10.1007/s00438-006-0120-1
PMid:16832693
Moriyasu Y and Ohsumi Y (1996). Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 111: 1233-1241.
PMid:12226358 PMCid:161001
Nielsen R and Yang Z (1998). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148: 929-936.
PMid:9539414 PMCid:1460041
Qin G, Ma Z, Zhang L, Xing S, et al. (2007). Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res. 17: 249-263.
PMid:17339883
Ramalingam J, Pathan MS, Feril O, Ross K, et al. (2006). Structural and functional analyses of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genome 49: 1324-1340.
http://dx.doi.org/10.1139/g06-094
PMid:17218960
Rana RM, Dong S, Ali Z, Khan AI, et al. (2012). Identification and characterization of the Bcl-2-associated athanogene (BAG) protein family in rice. Afr. J. Biotechnol. 11: 88-99.
Sato Y and Yokoya S (2008). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep. 27: 329-334.
http://dx.doi.org/10.1007/s00299-007-0470-0
PMid:17968552
Sinha S and Levine B (2008). The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27 (Suppl 1): S137-S148.
http://dx.doi.org/10.1038/onc.2009.51
PMid:19641499 PMCid:2731580
Suzuki K, Kirisako T, Kamada Y, Mizushima N, et al. (2001). The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20: 5971-5981.
http://dx.doi.org/10.1093/emboj/20.21.5971
PMid:11689437 PMCid:125692
Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.
http://dx.doi.org/10.1093/molbev/msr121
PMid:21546353 PMCid:3203626
Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
http://dx.doi.org/10.1093/nar/22.22.4673
PMid:7984417 PMCid:308517
Waterhouse AM, Procter JB, Martin DM, Clamp M, et al. (2009). Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191.
http://dx.doi.org/10.1093/bioinformatics/btp033
PMid:19151095 PMCid:2672624
Wolfe KH, Gouy M, Yang YW, Sharp PM, et al. (1989). Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. U. S. A. 86: 6201-6205.
http://dx.doi.org/10.1073/pnas.86.16.6201
PMid:2762323 PMCid:297805
Wu S, Yu Z, Wang F, Li W, et al. (2007). Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.). Mol. Biotechnol. 36: 102-112.
http://dx.doi.org/10.1007/s12033-007-0009-1
PMid:17914189
Xia K, Liu T, Ouyang J, Wang R, et al. (2011). Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res. 18: 363-377.
http://dx.doi.org/10.1093/dnares/dsr024
PMid:21795261 PMCid:3190957
Yang Z (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24: 1586-1591.
http://dx.doi.org/10.1093/molbev/msm088
PMid:17483113
Yang Z and Nielsen R (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19: 908-917.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a004148
PMid:12032247
Yang Z, Nielsen R, Goldman N and Pedersen AM (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155: 431-449.
PMid:10790415 PMCid:1461088
“Elucidation of thermotolerance diversity in cotton (Gossypium hirsutum L.) using physio-molecular approaches”, vol. 10, pp. 1156-1167, 2011.
, Altschuler M and Mascarenhas JP (1982). Heat shock proteins and effects of heat shock in plants. Plant Mol. Biol. 1: 103-115.
doi:10.1007/BF00024974
Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15.
doi:10.1104/pp.24.1.1
PMid:16654194 PMCid:437905
Ashraf M, Saeed MM and Qureshi MJ (1994). Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ. Exp. Bot. 34: 275-283.
doi:10.1016/0098-8472(94)90048-5
Azhar FM, Ali Z, Akhtar MM, Khan AA, et al. (2009). Genetic variability of heat tolerance, and its effect on yield and fibre quality traits in upland cotton (Gossypium hirsutum L.). Plant Breed. 128: 356-362.
doi:10.1111/j.1439-0523.2008.01574.x
Bhatti AS (1974). Treatment of cotton seeds for germination. Plant and Soil 41: 681-683.
doi:10.1007/BF02185827
Bibi AC, Oosterhuis DM and Gonias ED (2008). Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J. Cotton Sci. 12: 150-159.
Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
doi:10.1016/0003-2697(76)90527-3
Burke JJ (2001). Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol. Plantarum 112: 167-170.
doi:10.1034/j.1399-3054.2001.1120203.x
Burke JJ and O’Mahony PJ (2001). Protective role in acquired thermotolerance of developmentally regulated heat shock proteins in cotton seeds. J. Cotton Sci. 5: 174-183.
Chaudhary L, Sindhu A, Kumar M, Kumar R, et al. (2010). Estimation of genetic divergence among some cotton varieties by RAPD analysis. JPBCS 2: 039-043.
El-Sharkawi HM and Salama FM (1977). Effects of drought and salinity on some growth contributing parameters in wheat and barley. Plant and Soil 46: 423-433.
doi:10.1007/BF00010098
Guy C (1999). The Influence of Temperature Extremes on Gene Expression, Genomic Structure, and the Evolution of Induced Tolerance in Plants. In: Plant Responses to Environmental Stresses (Lerner HR, ed.). Marcel Dekker, New York, 497-548.
Hall AE (1992). Breeding for heat tolerance. Plant Breed. Rev. 10: 129-167.
Hall AE (2001). Consideration of Crop response to Environment in Plant Breeding. In: Crop Response to Environment. CRC Press LLC, Boca Raton, 197-208.
Ismail AM and Hall AE (1999). Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in Cowpea. Crop Sci. 39: 1762-1768.
doi:10.2135/cropsci1999.3961762x
Key JL, Lin CY and Chen YM (1981). Heat shock proteins in higher plants. PNAS 78: 3526-3530.
doi:10.1073/pnas.78.6.3526
Khan IA, Awan FS, Ahmad A and Khan AA (2004). A modified mini-prep method for economical and rapid extraction of genomic DNA in plants. Plant Mol. Bio. Rep. 22: 89a-89c.
doi:10.1007/BF02773355
Krieg DR (1986). Feedback Control and Stress Effects on Photosynthesis. In: Proceedings of the Beltwide Cotton Conference. Natl. Cotton Counc. Am., Memphis, 227-243.
Lather BPS, Saini ML and Punia MS (2001). Hybrid cotton retrospect and prospects in Indian context. Nat. J. Plant Improv. 3: 61-68.
Ledesma NA, Kawabata S and Sugiama N (2004). Effect of high temperature on protein expression in strawberry plants. Biol. Plant. 48: 73-79.
doi:10.1023/B:BIOP.0000024278.62419.ee
Martineau JR, Specht JE, Williams JH and Sullivan CY (1979). Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19: 75-78.
doi:10.2135/cropsci1979.0011183X001900010017x
Moustafa YMM, Yui S and Uemura M (2006). Chilling tolerance and field performance of an F1 cooking tomato cultivar, Nitaki-Koma, relative to its parents. Breed. Sci. 56: 269-276.
doi:10.1270/jsbbs.56.269
Mukhtar MS, Rahman M and Zafar Y (2002). Assessment of genetic diversity among wheat (Triticum aestivum L.) cultivars from a range of localities across Pakistan using random amplified polymorphic DNA (RAPD) analysis. Euphytica 128: 417-425.
doi:10.1023/A:1021261811454
Multani DS and Lyon BR (1995). Genetic fingerprinting of Australian cotton cultivars with RAPD markers. Genome 38: 1005-1008.
doi:10.1139/g95-132
PMid:18470223
Nei M (1972). Genetic distance between populations. Am. Nat. 106: 283-292.
doi:10.1086/282771
Oosterhuis DM (1997). Effects of Temperature Extremes on Cotton Yields in Arkansas. In: Proceeding of Cotton Research Meeting and Research Summaries (Oosterhuis DM, ed.). University of Arkansas Agricultural Experiment Station Special Report, Fayetteville, 94-98.
Oosterhuis DM (2002). Day or night high temperatures: a major cause of yield variability. Cott. Grow. 46: 8-9.
Saadalla MM, Shanahan JF and Quick JS (1990). Heat tolerance in winter wheat: hardening and genetic effect on membrane thermostability. Crop Sci. 30: 1243-1247.
doi:10.2135/cropsci1990.0011183X003000060017x
Santarius KA and Müller M (1979). Investigation on heat resistance in spinach leaves. Planta 146: 529-538.
doi:10.1007/BF00388828
Sharma RP and Mohapatra T (1996). Molecular mapping and tagging of genes in crop plants. Genetica 97: 313-320.
doi:10.1007/BF00055317
PMid:9081859
Snider JL, Oosterhuis DM, Skulman BW and Kawakami EM (2009). Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiol. Plant 137: 125-138.
doi:10.1111/j.1399-3054.2009.01266.x
PMid:19656331
Soltani F, Yukari A, Abdolkarim K, Zabihollah Z, et al. (2010). Characterization of Iranian melon landraces of Cucumis melo L. Groups Flexuosus and Dudaim by analysis of morphological characters and random amplified polymorphic DNA. Breed. Sci. 60: 34-45.
doi:10.1270/jsbbs.60.34
Sullivan CY (1972). Mechanisms of Heat and Drought Resistance in Grain Sorghum and Methods of Measurement. In: Sorghum in the Seventies (Rao NGP and House LR, eds.). Oxford & IBH Publishing Co., New Delhi, 247-264.
Tripathy JN, Zhang J, Robin S, Nguyen TT, et al. (2000). QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor. Appl. Genet. 100: 1197-1202.
doi:10.1007/s001220051424
Vierling E (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579-620.
doi:10.1146/annurev.pp.42.060191.003051
Wakui K, Iwata H, Takahashi Y, Takahata Y, et al. (2009). Assessment of the congruity of genetic relationships and variation revealed by individual- and bulked-samples-based approaches using RAPD and ISSR markers in Japanese turnip (Brassica rapa ssp. rapa) cultivars. Breed. Sci. 59: 447-452.
doi:10.1270/jsbbs.59.447
“Expressed sequence tag-simple sequence repeat-based molecular variance in two Salicornia (Amaranthaceae) populations”, vol. 10, pp. 1262-1276, 2011.
, Andersen JR and Lübberstedt T (2003). Functional markers in plants. Trends Plant Sci. 8: 554-560.
doi:10.1016/j.tplants.2003.09.010
PMid:14607101
Anderson JA, Churchill GA, Autrique JE, Tanksley SD, et al. (1993). Optimizing parental selection for genetic linkage maps. Genome 36: 181-186.
doi:10.1139/g93-024
PMid:18469981
Anonymous (2010). Botenica systematica. Available at [http://www.homolaicus.com/scienza/erbario/utility/botanica_ sistematica/hypertext/1726.htm]. Accessed April 2010.
Asp T, Frei UK, Didion T, Nielsen KK, et al. (2007). Frequency, type, and distribution of EST-SSRs from three genotypes of Lolium perenne, and their conservation across orthologous sequences of Festuca arundinacea, Brachypodium distachyon, and Oryza sativa. BMC Plant Biol. 7: 36.
doi:10.1186/1471-2229-7-36
PMid:17626623 PMCid:1950305
Ayala F and O’Leary JW (1995). Growth and physiology of Salicornia bigelovii Torr. at suboptimal salinity. Int. J. Plant. Sci. 156: 197-205.
doi:10.1086/297241
Ball PW (1964). Salicornia. In: Flora Europaea (Tutin TG, Heywood VH, Burges NA and Valentine DH, eds.). Cambridge University Press, London, 101-102.
Bandelt HJ, Forster P, Sykes BC and Richards MB (1995). Mitochondrial portraits of human populations using median networks. Genetics 141: 743-753.
PMid:8647407 PMCid:1206770
Bassam BJ, Caetano-Anollés G and Gresshoff PM (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83.
doi:10.1016/0003-2697(91)90120-I
Boorman LA, Hazelden J and Boorman M (2001). The effect of rates of sedimentation and tidal submersion regimes on the growth of salt marsh plants. Continent. Shelf Res. 21: 2155-2165.
doi:10.1016/S0278-4343(01)00049-8
Botstein D, White RL, Skolnick M and Davis RW (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331.
PMid:6247908 PMCid:1686077
Christiansen R (2008). Sea asparagus can be oilseed feedstock for biodiesel. Biomass Magazine, August, 2008. Available at [http://www.biomassmagazine.com/article.jsp?articleid=1864]. Accessed May 26, 2010.
Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
Ellegren H (2000). Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet. 16: 551-558.
doi:10.1016/S0168-9525(00)02139-9
Eujayl I, Sorrells ME, Baum M, Wolters P, et al. (2002). Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor. Appl. Genet. 104: 399-407.
doi:10.1007/s001220100738
PMid:12582712
Ge’hu JM and Ge’hu-Franck J (1992). Les Salicornes Annuelles du Nord-ouest de la France et leur Phytoecologie. In: Colloques Phytosociologiques. Cramer, Berlin Stuttgart, 25-40.
Ge’hu JM, Caron B and Franck J (1979). Essai de cle pour les salicornes annuelles presentes sur les cotes du projet de carte floristique IFFP. Doc. Flor 2: 17-24.
Glenn EP, O’Leary JW, Watson MC, Thompson TL, et al. (1991). Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251: 1065-1067.
doi:10.1126/science.251.4997.1065
PMid:17802093
Glenn EP, Brown J and O’Leary J (1998). Irrigating crops with seawater. Sci. Am. 279: 56-61.
doi:10.1038/scientificamerican0898-76
Glenn EP, Brown JJ and Blumwald E (1999). Salt tolerance and crop potential of halophytes. Crit. Ver. Plant Sci. 18: 227-255.
doi:10.1016/S0735-2689(99)00388-3
Han Z, Wang C, Song X, Guo W, et al. (2006). Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor. Appl. Genet. 112: 430-439.
doi:10.1007/s00122-005-0142-9
PMid:16341684
Kadereit G, Ball P, Beer S, Mucina L, et al. (2007). A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae). Taxon 56: 1143-1170.
doi:10.2307/25065909
Kantety RV, La Rota M, Matthews DE and Sorrells ME (2002). Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48: 501-510.
doi:10.1023/A:1014875206165
PMid:11999831
Lahondère C (2004). Les Salicornes s.l. (Salicornia L., Sarcocornia A. J. Scott et Arthrocnemum Moq.) sur les Côtes Françaises. Socité Botanique du Centre-Oest, Saint-Sulpice-de-Royan.
Liu K and Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129.
doi:10.1093/bioinformatics/bti282
PMid:15705655
Lübberstedt T, Zein I, Andersen JR, Wenzel G, et al. (2005). Development and application of functional markers in maize. Euphytica 146: 101-108.
doi:10.1007/s10681-005-0892-0
Noble SM, Davy AJ and Oliver RP (1992). Ribosomal DNA variation and population differentiation in Salicornia L. New Phytol. 122: 553-565.
doi:10.1111/j.1469-8137.1992.tb00085.x
OASE Foundation (2010). Biosaline Agriculture. Amsterdam, The Netherlands. Available at [http://www.oasefoundation.eu/project_sub/163]. Accessed April 2010.
Ochieng JW, Shepherd M, Baverstock PR, Nikles G, et al. (2010). Two sympatric spotted gum species are molecularly homogeneous. Conserv. Genet. 11: 45-56.
doi:10.1007/s10592-009-0001-3
Peng JH and Lapitan NL (2005). Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct. Integr. Genomics 5: 80-96.
doi:10.1007/s10142-004-0128-8
Pritchard JK, Stephens M and Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
PMid:10835412 PMCid:1461096
Sagane Y, Sato K and Momonoki YS (2003). Identification of Salicornia populations: comparison between morphological characterization and RAPD fingerprinting. Plant Prod. Sci. 6: 287-294.
doi:10.1626/pps.6.287
Salem KFM, Varshney RK, Röder MS and Börner A (2010). EST-SSR based estimates on functional genetic variation in a barley (Hordeum vulgare L.). collection from Egypt. Genet. Res. Crop Evol. 57: 515-521.
doi:10.1007/s10722-009-9489-0
Stace CA (1997). New Flora of the British Isles. Cambridge University Press, Cambridge.
Temnykh S, Temnykh S, Lukashova A, Lipovich L, et al. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11: 1441-1452.
doi:10.1101/gr.184001
PMid:11483586 PMCid:311097
Thiel T, Michalek W, Varshney RK and Graner A (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106: 411-422.
PMid:12589540
Varshney RK, Graner A and Sorrells ME (2005). Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23: 48-55.
doi:10.1016/j.tibtech.2004.11.005
PMid:15629858
Weber DJ, Ansari R, Gul B and Khan MA (2007). Potential of halophytes as sources of edible oil. J. Arid Environ. 68: 315-321.
doi:10.1016/j.jaridenv.2006.05.010
Weber JL (1990). Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7: 524-530.
doi:10.1016/0888-7543(90)90195-Z
Wierdl M, Dominska M and Petes TD (1997). Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146: 769-779.
PMid:9215886 PMCid:1208050
Zerai DB, Glenn EP, Chatervedi R, Lu Z, et al. (2010). Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol. Eng. 36: 730-739.
doi:10.1016/j.ecoleng.2010.01.002
Zhu G, Mosyakin SL and Clemants SE (2003). Chenopodiaceae Ventenat. Flora China 5: 351-414.
“Molecular diversity analysis of eggplant (Solanum melongena) genetic resources”, vol. 10, pp. 1141-1155, 2011.
, Ajibade SR, Weeden NF and Chite SM (2000). Inter-simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica 111: 47-55.
doi:10.1023/A:1003763328768
Ajmone-Marsan P, Castiglioni P, Fusari F, Kuiper M, et al. (1998). Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96: 219-227.
doi:10.1007/s001220050730
Chai XY, Chen SL and Xu W (2010). Using inter-simple sequence repeat markers to analyze the genetic structure of natural Pteroceltis tatarinowii populations and implications for species conservation. Plant Syst. Evol. 285: 65-73.
doi:10.1007/s00606-009-0256-7
Choudhury B (1976). Vegetables. 4th Revised edn. National Book Trust, New Delhi.
Cowen RK (1985). Large scale pattern of recruitment by the labrid, Semicossyphus pulcher: causes and implications. J. Marine Res. 43: 719-742.
doi:10.1357/002224085788440376
Cox DR and Snell EJ (1989). The Analysis of Binary Data. 2nd edn. Chapman and Hall, London.
Crema S, Cristofolini G, Rossi M and Conte L (2009). High genetic diversity detected in the endemic Primula apennina Widmer (Primulaceae) using ISSR fingerprinting. Plant Syst. Evol. 280: 29-36.
doi:10.1007/s00606-009-0167-7
Dreisigacker S, Zhang P, Warburton ML, Van Ginkel M, et al. (2004). SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments. Crop Sci. 44: 381-388.
doi:10.2135/cropsci2004.0381
Falconer DS and Mackay TFC (1996). Introduction to Quantitative Genetics. 4th edn. Longman, London.
Fasoula VA and Fasoula DA (2002). Principles underlying genetic improvement for high and stable crop yield potential. Field Crops Res. 75: 191-209.
doi:10.1016/S0378-4290(02)00026-6
Fernández ME, Figueiras AM and Benito C (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor. Appl. Genet. 104: 845-851.
doi:10.1007/s00122-001-0848-2
PMid:12582645
Han YC, Teng CZ, Wahiti GR, Zhou MQ, et al. (2009). Mating system and genetic diversity in natural populations of Nelumbo nucifera (Nelumbonaceae) detected by ISSR markers. Plant Syst. Evol. 277: 13-20.
doi:10.1007/s00606-008-0096-x
Karihaloo JL and Gottlieb LD (1995). Allozyme variation in the eggplant, Solanum melongena L. (Solanaceae). Theor. Appl. Genet. 90: 578-583.
Karihaloo JL, Brauner S and Gottlieb LD (1995). Random amplified polymorphic DNA variation in the eggplant, Solanum melongena L. (Solanaceae). Theor. Appl. Genet. 90: 767-770.
doi:10.1007/BF00222010
Lester RN and Hasan SMZ (1991). Origin and Domestication of the Brinjal Egg-Plant, Solanum melongena, from S. incanum, in Africa and Asia. In: Solanaceae III Taxonomy, Chemistry, Evolution (Hawkes JG, Lester RN, Nees M and Estrada N, eds.). Royal Botanic Gardens, Kew, 369-387.
Lu X, Liu L, Gong Y, Zhao L, et al (2009). Cultivar identification and genetic diversity analysis of broccoli and its related species with RAPD and ISSR markers. Sci. Hort. 122: 648 -645.
doi:10.1016/j.scienta.2009.06.017
Mace ES, Lester RN and Gebhardt CG (1999). AFLP analysis of genetic relationships among the cultivated eggplant, Solanum melongena L., and wild relatives (Solanaceae). Theor. Appl. Genet. 99: 626-633.
doi:10.1007/s001220051277
Martin FW and Rhodes AM (1979). Subspecific grouping of eggplant hybrid cultivars. Euphytica 28: 367-383.
doi:10.1007/BF00056595
Maughan PJ, Saghai Maroof MA, Buss GR and Huestis GM (1996). Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor. Appl. Genet. 93: 392-401.
doi:10.1007/BF00223181
Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325.
doi:10.1093/nar/8.19.4321
PMid:7433111 PMCid:324241
Nagaoka T and Ogihara Y (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94: 597-602.
doi:10.1007/s001220050456
Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273.
doi:10.1073/pnas.76.10.5269
Paul S, Wachira FN, Powell W and Waugh R (1997). Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. 94: 255-263.
doi:10.1007/s001220050408
Polignano G, Uggenti P, Bisignano V and Gatta CD (2010). Genetic divergence analysis in eggplant (Solanum melongena L.) and allied species. Genet. Resour. Crop Evol. 57: 171-181.
doi:10.1007/s10722-009-9459-6
Sakata Y and Lester RN (1997). Chloroplast DNA diversity in brinjal eggplant (Solanum melongena L.) and related species. Euphytica 97: 295-301.
doi:10.1023/A:1003000612441
Shannon CE (1948). A mathematical theory of communication. Bell Syst. Tech. J. 379-423, 623-659.
Sneath PHA and Sokal RR (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. Freeman, San Francisco.
Sneller CH (1994). Pedigree analysis of elite soybean lines. Crop Sci. 34: 1515-1522.
doi:10.2135/cropsci1994.0011183X003400060019x
Souframanien J and Gopalakrishna T (2004). A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor. Appl. Genet. 109: 1687-1693.
doi:10.1007/s00122-004-1797-3
PMid:15368042
Xu WW, Sleper DA and Krause GF (1994). Genetic diversity of tall fescue germplasm based on RFLPs. Crop Sci. 34: 246-252.
doi:10.2135/cropsci1994.0011183X003400010045x
Yi JX (2000). A numerical classification on eggplant germplasm. Acta Hort. Sinica 27: 345-350.
Yi JX and Yang QY (1997). A study on genetic distance and cluster analysis of quantitative characters among parents in eggplant. Jiangsu J. Agri. Sci. 13: 40-43.
Zhang LJ and Dai SL (2009). Genetic variation within and among populations of Orychophragmus violaceus (Cruciferae) in China as detected by ISSR analysis. Genet. Res. Crop Evol. 57: 55-64.
doi:10.1007/s10722-009-9450-2
Zhou X, Carter TE, Cui Z, Miyazaki J, et al. (2000). Genetic base of Japanese soybean hybrid cultivars released during 1950 to 1988. Crop Sci. 40: 1794-1802.
doi:10.2135/cropsci2000.4061794x
Zietkiewicz E, Rafalski A and Labuda D (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176-183.3.