Publications

Found 1 results
Filters: Author is C.C. Lange  [Clear All Filters]
2011
I. Fonseca, Antunes, G. R., Paiva, D. S., Lange, C. C., Guimarães, S. E. F., and Martins, M. F., Differential expression of genes during mastitis in Holstein-Zebu crossbreed dairy cows, vol. 10, pp. 1295-1303, 2011.
Alluwaimi AM, Leutenegger CM, Farver TB, Rossitto PV, et al. (2003). The cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland. J. Vet. Med. B. Infect. Dis. Vet. Public Health 50: 105-111. doi:10.1046/j.1439-0450.2003.00628.x Bannerman DD, Paape MJ, Lee JW, Zhao X, et al. (2004a). Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immunol. 11: 463-472. PMid:15138171    PMCid:404560 Bannerman DD, Paape MJ, Hare WR and Hope JC (2004b). Characterization of the bovine innate immune response to intramammary infection with Klebsiella pneumoniae. J. Dairy Sci. 87: 2420-2432. doi:10.3168/jds.S0022-0302(04)73365-2 Bannerman DD, Chockalingam A, Paape MJ and Hope JC (2005). The bovine innate immune response during experimentally-induced Pseudomonas aeruginosa mastitis. Vet. Immunol. Immunopathol. 107: 201-215. doi:10.1016/j.vetimm.2005.04.012 PMid:15970335 Bannerman DD, Rinaldi M, Vinyard BT, Laihia J, et al. (2009). Effects of intramammary infusion of cis-urocanic acid on mastitis-associated inflammation and tissue injury in dairy cows. Am. J. Vet. Res. 70: 373-382. doi:10.2460/ajvr.70.3.373 PMid:19254150 Bradley A (2002). Bovine mastitis: an evolving disease. Vet. J. 164: 116-128. doi:10.1053/tvjl.2002.0724 PMid:12359466 Burvenich C, Van M, V, Mehrzad J, Diez-Fraile A, et al. (2003). Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 34: 521-564. doi:10.1051/vetres:2003023 PMid:14556694 Cates EA, Connor EE, Mosser DM and Bannerman DD (2009). Functional characterization of bovine TIRAP and MyD88 in mediating bacterial lipopolysaccharide-induced endothelial NF-kappaB activation and apoptosis. Comp. Immunol. Microbiol. Infect. Dis. 32: 477-490. doi:10.1016/j.cimid.2008.06.001 PMid:18760477    PMCid:2821575 Corl CM, Gandy JC and Sordillo LM (2008). Platelet activating factor production and proinflammatory gene expression in endotoxin-challenged bovine mammary endothelial cells. J. Dairy Sci. 91: 3067-3078. doi:10.3168/jds.2008-1066 PMid:18650283 Detilleux JC, Koehler KJ, Freeman AE, Kehrli ME Jr, et al. (1994). Immunological parameters of periparturient Holstein cattle: genetic variation. J. Dairy Sci. 77: 2640-2650. doi:10.3168/jds.S0022-0302(94)77205-2 Embrapa Gado de Leite (2003). Sistema de Produção de Leite (Zona da Mata Atlântica). Available at [http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Leite/LeiteZonadaMataAtlantica/racas1.html]. Accessed October 5, 2009. Embrapa Gado de Leite (2008). Estatística do Leite. Available at [http://www.cnpgl.embrapa.br/nova/informacoes/estatisticas/producao/tabela0230.php]. Accessed October 5, 2009. Ferens WA, Goff WL, Davis WC, Fox LK, et al. (1998). Induction of type 2 cytokines by a staphylococcal enterotoxin superantigen. J. Nat. Toxins. 7: 193-213. PMid:9783259 Fonseca I, Silva PV, Lange CC and Guimarães MFM (2009). Expression profile of genes associated with mastitis in dairy cattle. Genet. Mol. Biol. 32: 776-781. doi:10.1590/S1415-47572009005000074 PMid:21637453    PMCid:3036910 Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, et al. (2004). Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin. Diagn. Lab. Immunol. 11: 174-185. PMid:14715566    PMCid:321333 Griesbeck-Zilch B, Meyer HH, Kuhn CH, Schwerin M, et al. (2008). Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells. J. Dairy Sci. 91: 2215-2224. doi:10.3168/jds.2007-0752 PMid:18487644 Hirschfeld M, Ma Y, Weis JH, Vogel SN, et al. (2000). Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J. Immunol. 165: 618-622. PMid:10878331 Ibeagha-Awemu EM, Lee JW, Ibeagha AE, Bannerman DD, et al. (2008). Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells. Vet. Res. 39: 11. doi:10.1051/vetres:2007047 PMid:18096120 Janeway CA, Tavers P, Walport M and Sholmchik MJ (2002). Imunologia: o Sistema Imune na Saúde e na Doença. Artmed, Porto Alegre. Lahouassa H, Moussay E, Rainard P and Riollet C (2007). Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli. Cytokine 38: 12-21. doi:10.1016/j.cyto.2007.04.006 PMid:17532224 Leutenegger CM, Alluwaimi AM, Smith WL, Perani L, et al. (2000). Quantitation of bovine cytokine mRNA in milk cells of healthy cattle by real-time TaqMan polymerase chain reaction. Vet. Immunol. Immunopathol. 77: 275-287. doi:10.1016/S0165-2427(00)00243-9 Mount JA, Karrow NA, Caswell JL, Boermans HJ, et al. (2009). Assessment of bovine mammary chemokine gene expression in response to lipopolysaccharide, lipotechoic acid + peptidoglycan, and CpG oligodeoxynucleotide 2135. Can. J. Vet. Res. 73: 49-57. PMid:19337396    PMCid:2613597 NMC (1987). Laboratory and Field Handbook on Bovine Mastitis. NMC (National Mastitis Council), Arlington. Oviedo-Boyso J, Valdez-Alarcon JJ, Cajero-Juarez M, Ochoa-Zarzosa A, et al. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect. 54: 399-409. doi:10.1016/j.jinf.2006.06.010 PMid:16882453 Petrovski KR, Trajcev M and Buneski G (2006). A review of the factors affecting the costs of bovine mastitis. J. S. Afr. Vet. Assoc. 77: 52-60. PMid:17120619 Rainard P and Riollet C (2006). Innate immunity of the bovine mammary gland. Vet. Res. 37: 369-400. doi:10.1051/vetres:2006007 PMid:16611554 Rambeaud M, Almeida RA, Pighetti GM and Oliver SP (2003). Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet. Immunol. Immunopathol. 96: 193-205. doi:10.1016/j.vetimm.2003.08.008 PMid:14592732 REST (Relative Expression Software Tool) (2009). Available at [http://www.gene-quantification.de/rest-2009.html]. Accessed July 19, 2010. Riollet C, Rainard P and Poutrel B (2000). Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus. Clin. Diagn. Lab. Immunol. 7: 161-167. PMid:10702487    PMCid:95843 Shuster DE, Kehrli ME Jr and Stevens MG (1993). Cytokine production during endotoxin-induced mastitis in lactating dairy cows. Am. J. Vet. Res. 54: 80-85. PMid:8427476 Shuster DE, Kehrli ME Jr, Rainard P and Paape M (1997). Complement fragment C5a and inflammatory cytokines in neutrophil recruitment during intramammary infection with Escherichia coli. Infect. Immun. 65: 3286-3292. PMid:9234788    PMCid:175465 Singh K, Davis SR, Dobson JM, Molenaar AJ, et al. (2008). cDNA microarray analysis reveals that antioxidant and immune genes are upregulated during involution of the bovine mammary gland. J. Dairy Sci. 91: 2236-2246. doi:10.3168/jds.2007-0900 PMid:18487646 Strandberg Y, Gray C, Vuocolo T, Donaldson L, et al. (2005). Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 31: 72-86. doi:10.1016/j.cyto.2005.02.010 PMid:15882946 Sugimoto M, Fujikawa A, Womack JE and Sugimoto Y (2006). Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance. Proc. Natl. Acad. Sci. U. S. A. 103: 6454-6459. doi:10.1073/pnas.0601015103 PMid:16611727    PMCid:1458905 Swanson KM, Stelwagen K, Dobson J, Henderson HV, et al. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci. 92: 117-129. doi:10.3168/jds.2008-1382 PMid:19109270 Takeuchi O, Hoshino K and Akira S (2000). Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165: 5392-5396. PMid:11067888 Tao W, Mallard B, Karrow N and Bridle B (2004). Construction and application of a bovine immune-endocrine cDNA microarray. Vet. Immunol. Immunopathol. 101: 1-17. doi:10.1016/j.vetimm.2003.10.011 PMid:15261689 Vandesompele J, De Preter K, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: RESEARCH0034. Wang YH, Byrne KA, Reverter A, Harper GS, et al. (2005). Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm. Genome 16: 201-210. doi:10.1007/s00335-004-2419-8 PMid:15834637 Yang W, Zerbe H, Petzl W, Brunner RM, et al. (2008). Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Mol. Immunol. 45: 1385-1397. doi:10.1016/j.molimm.2007.09.004 PMid:17936907