Found 27 results
Filters: Author is H. Jiang  [Clear All Filters]
C. Z. Chen, Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., and Zhang, J. B., AMFR gene silencing inhibits the differentiation of porcine preadipocytes, vol. 15, p. -, 2016.
C. Z. Chen, Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., and Zhang, J. B., AMFR gene silencing inhibits the differentiation of porcine preadipocytes, vol. 15, p. -, 2016.
C. Z. Chen, Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., Zhang, J. B., Chen, C. Z., Zhu, Y. N., Chai, M. L., Dai, L. S., Gao, Y., Jiang, H., Zhang, L. J., Ding, Y., Liu, S. Y., Li, Q. Y., Lu, W. F., and Zhang, J. B., AMFR gene silencing inhibits the differentiation of porcine preadipocytes, vol. 15, p. -, 2016.
Y. Y. Shi, Jiang, H., Shi, Y. Y., and Jiang, H., Prognostic role of the cancer stem cell marker CD44 in ovarian cancer: a meta-analysis, vol. 15, p. -, 2016.
Y. Y. Shi, Jiang, H., Shi, Y. Y., and Jiang, H., Prognostic role of the cancer stem cell marker CD44 in ovarian cancer: a meta-analysis, vol. 15, p. -, 2016.
Q. Deng, Gao, Y., Jiang, H., Chen, C. Z., Li, C. H., Yu, W. L., Chen, X., and Zhang, J. B., Association of a hypoxia-inducible factor-3α gene polymorphism with superovulation traits in Changbaishan black cattle, vol. 14, pp. 14539-14547, 2015.
S. Y. Liu, Jiang, H., Yuan, B., Gao, Y., Dai, L. S., and Zhang, J. B., Characterization of a novel CAPN3 transcript generated by alternative splicing in cattle, vol. 14, pp. 457-463, 2015.
Y. P. Zhang, E, Z. G., Jiang, H., Wang, L., Zhou, J., and Zhu, D. F., A comparative study of stress-related gene expression under single stress and intercross stress in rice, vol. 14, pp. 3702-3717, 2015.
Q. Deng, Gao, Y., Li, C. H., Yu, X. F., Ren, J. S., Li, S. J., Chen, C. Z., Yuan, B., Ding, Y., Jiang, H., and Zhang, J. B., Effects of choice of month of treatment and parity order on bovine superovulation traits, vol. 14, pp. 15062-15072, 2015.
C. H. Li, Gao, Y., Wang, S., Xu, F. F., Dai, L. S., Jiang, H., Yu, X. F., Chen, C. Z., Yuan, B., and Zhang, J. B., Expression pattern of JMJD1C in oocytes and its impact on early embryonic development, vol. 14, pp. 18249-18258, 2015.
J. N. Xue, Guo, Y., Song, X., Xue, F., Yang, S. F., Jiang, H., Bu-La, R. Z. W. A., and Lu, C., Relationship between rs1047763 polymorphism of the C1GALT1 gene and susceptibility to immunoglobulin A nephropathy in Xinjiang Uyghur people, vol. 14, pp. 18687-18694, 2015.
H. Jiang, Fu, X. G., and Chen, Y. T., Serum level of endothelial cell-specific molecule-1 and prognosis of colorectal cancer, vol. 14, pp. 5519-5526, 2015.
C. Y. Pang, Deng, T. X., Tang, D. S., Yang, C. Y., Jiang, H., Yang, B. Z., and Liang, X. W., Cloning and sequencing of the rDNA gene family of the water buffalo (Bubalus bubalis), vol. 11, pp. 2878-2883, 2012.
Chen SW and Wang XZ (1996). The PCR methods of amplifying the large fragments of target DNA. Biotechnology 6: 1-2.   He ZY and Li YQ (2001). The role of dimethyl sulfoxide on polymearase chain reaction for human apoE gene. J. Jinan Univ. (Nat. Sci.). 22: 104-107.   Li AL, Jiang T, Ma ZY and Jia JZ (2002). Several methodologies on improving the PCR products. Biotechnol. Bull. 6: 33-35.   Liu Q, Ge S, Tang H, Zhang X, et al. (2006). Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol. 170: 411-420. PMid:16608465   Nieto FG, Gutierrez LB and Fuertes AJ (2004). Fine-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). Ann. Bot. 93: 189-200. PMid:14707002   Peng YY, Baum BR, Ren CZ, Jiang QT, et al. (2010). The evolution pattern of rDNA ITS in Avena and phylogenetic relationship of the Avena species (Poaceae: Aveneae). Hereditas 147: 183-204. PMid:21039456   Tang D, Shi J, Tian Y and Gu W (2002). Multiple site gene targeting in somatic cells and desired site integration of genes. J. Foshan Univ. (Nat. Sci. Edit.). 20: 64-68.   Tang D, Jiang H, Zhang Y, Li Y, et al. (2006). Cloning and sequencing of the complicated rDNA gene family of Bos taurus. Czech J. Anim. Sci. 51: 425-428.   Yu B and Zhang C (2011). In silico PCR analysis. Methods Mol. Biol. 760: 91-107. PMid:21779992
T. H. Ma, Xiong, Q. H., Yuan, B., Jiang, H., Gao, Y., Xu, J. B., Liu, S. Y., Ding, Y., Zhang, G. L., Zhao, Y. M., and Zhang, J. B., Luteinizing hormone receptor splicing variants in bovine Leydig cells, vol. 11, pp. 1721-1730, 2012.
Aatsinki JT, Pietila EM, Lakkakorpi JT and Rajaniemi HJ (1992). Expression of the LH/CG receptor gene in rat ovarian tissue is regulated by an extensive alternative splicing of the primary transcript. Mol. Cell Endocrinol. 84: 127-135.   Apaja PM, Tuusa JT, Pietila EM, Rajaniemi HJ, et al. (2006). Luteinizing hormone receptor ectodomain splice variant misroutes the full-length receptor into a subcompartment of the endoplasmic reticulum. Mol. Biol. Cell 17: 2243- 2255. PMid:16495341 PMCid:1446094   Ascoli M, Fanelli F and Segaloff DL (2002). The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr. Rev. 23: 141-174. PMid:11943741   Bacich DJ, Rohan RM, Norman RJ and Rodgers RJ (1994). Characterization and relative abundance of alternatively spliced luteinizing hormone receptor messenger ribonucleic acid in the ovine ovary. Endocrinology 135: 735-744. PMid:7518389   Bacich DJ, Earl CR, O'Keefe DS, Norman RJ, et al. (1999). Characterization of the translated products of the alternatively spliced luteinizing hormone receptor in the ovine ovary throughout the oestrous cycle. Mol. Cell Endocrinol. 147: 113-124.   Buratini J Jr, Teixeira AB, Costa IB, Glapinski VF, et al. (2005). Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor-3c and -4, in bovine antral follicles. Reproduction 130: 343-350. PMid:16123241   Chandolia RK, Luetjens CM, Wistuba J, Yeung CH, et al. (2006). Changes in endocrine profile and reproductive organs during puberty in the male marmoset monkey (Callithrix jacchus). Reproduction 132: 355-363. PMid:16885543   Chuzel F, Schteingart H, Vigier M, Avallet O, et al. (1995). Transcription and post-transcriptional regulation of luteotropin/ chorionic gonadotropin receptor by the agonist in Leydig cells. Eur. J. Biochem. 229: 316-325. PMid:7744046   Davis JS, May JV and Keel BA (1996). Mechanisms of hormone and growth factor action in the bovine corpus luteum. Theriogenology 45: 1351-1380.   Dickinson RE, Myers M and Duncan WC (2008). Novel regulated expression of the SLIT/ROBO pathway in the ovary: possible role during luteolysis in women. Endocrinology 149: 5024-5034. PMid:18566128   Gromoll J, Eiholzer U, Nieschlag E and Simoni M (2000). Male hypogonadism caused by homozygous deletion of exon 10 of the luteinizing hormone (LH) receptor: differential action of human chorionic gonadotropin and LH. J. Clin. Endocrinol. Metab. 85: 2281-2286. PMid:10852464   Kawate N (2004). Studies on the regulation of expression of luteinizing hormone receptor in the ovary and the mechanism of follicular cyst formation in ruminants. J. Reprod. Dev. 50: 1-8. PMid:15007196   Kishi H, Minegishi T, Tano M, Abe Y, et al. (1997). Down-regulation of LH/hCG receptor in rat cultured granulosa cells. FEBS Lett. 402: 198-202.   Lakkakorpi JT, Pietila EM, Aatsinki JT and Rajaniemi HJ (1993). Human chorionic gonadotrophin (CG)-induced down-regulation of the rat luteal LH/CG receptor results in part from the down-regulation of its synthesis, involving increased alternative processing of the primary transcript. J. Mol. Endocrinol. 10: 153-162. PMid:8484864   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.   Loosfelt H, Misrahi M, Atger M, Salesse R, et al. (1989). Cloning and sequencing of porcine LH-hCG receptor cDNA: variants lacking transmembrane domain. Science 245: 525-528. PMid:2502844   Lu DL, Peegel H, Mosier SM and Menon KM (1993). Loss of lutropin/human choriogonadotropin receptor messenger ribonucleic acid during ligand-induced down-regulation occurs post transcriptionally. Endocrinology 132: 235-240. PMid:8419125   Michel C, Gromoll J, Chandolia R, Luetjens CM, et al. (2007). LHR splicing variants and gene expression in the marmoset monkey. Mol. Cell Endocrinol. 279: 9-15. PMid:17913340   Minegishi T, Tano M, Abe Y, Nakamura K, et al. (1997). Expression of luteinizing hormone/human chorionic gonadotrophin (LH/HCG) receptor mRNA in the human ovary. Mol. Hum. Reprod. 3: 101-107. PMid:9239715   Müller T, Gromoll J and Simoni M (2003). Absence of exon 10 of the human luteinizing hormone (LH) receptor impairs LH, but not human chorionic gonadotropin action. J. Clin. Endocrinol. Metab. 88: 2242-2249. PMid:12727981   Nakamura K, Yamashita S, Omori Y and Minegishi T (2004). A splice variant of the human luteinizing hormone (LH) receptor modulates the expression of wild-type human LH receptor. Mol. Endocrinol. 18: 1461-1470. PMid:15031322   Nishimori K, Dunkel L, Hsueh AJ, Yamoto M, et al. (1995). Expression of luteinizing hormone and chorionic gonadotropin receptor messenger ribonucleic acid in human corpora lutea during menstrual cycle and pregnancy. J. Clin. Endocrinol. Metab. 80: 1444-1448. PMid:7714122   Payne AH, Downing JR and Wong KL (1980). Luteinizing hormone receptors and testosterone synthesis in two distinct populations of Leydig cells. Endocrinology 106: 1424-1429. PMid:6244930   Reinholz MM, Zschunke MA and Roche PC (2000). Loss of alternately spliced messenger RNA of the luteinizing hormone receptor and stability of the follicle-stimulating hormone receptor messenger RNA in granulosa cell tumors of the human ovary. Gynecol. Oncol. 79: 264-271. PMid:11063655   Robert C, McGraw S, Massicotte L, Pravetoni M, et al. (2002). Quantification of housekeeping transcript levels during the development of bovine preimplantation embryos. Biol. Reprod. 67: 1465-1472. PMid:12390877   Robert C, Gagne D, Lussier JG, Bousquet D, et al. (2003). Presence of LH receptor mRNA in granulosa cells as a potential marker of oocyte developmental competence and characterization of the bovine splicing isoforms. Reproduction 125: 437-446. PMid:12611607   Saint-Dizier M, Chopineau M, Dupont J, Daels PF, et al. (2003). Expression and binding activity of luteinizing hormone/ chorionic gonadotropin receptors in the primary corpus luteum during early pregnancy in the mare. Biol. Reprod. 69: 1743-1749. PMid:12890729   Sanger F, Nicklen S and Coulson AR (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U. S. A. 74: 5463-5467. PMid:271968 PMCid:431765   Shiraishi K and Ascoli M (2007). Lutropin/choriogonadotropin stimulate the proliferation of primary cultures of rat Leydig cells through a pathway that involves activation of the extracellularly regulated kinase 1/2 cascade. Endocrinology 148: 3214-3225. PMid:17412805 PMCid:2085235   Smith CW, Patton JG and Nadal-Ginard B (1989). Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23: 527-577. PMid:2694943   Svechnikov KV, Sultana T and Soder O (2001). Age-dependent stimulation of Leydig cell steroidogenesis by interleukin-1 isoforms. Mol. Cell Endocrinol. 182: 193-201.   Wilson JD, Griffin JE, George FW and Leshin M (1981). The role of gonadal steroids in sexual differentiation. Recent Prog. Horm. Res. 37: 1-39. PMid:7280356   Wu SM and Chan WY (1999). Male pseudohermaphroditism due to inactivating luteinizing hormone receptor mutations. Arch. Med. Res. 30: 495-500.   You S, Kim H, Hsu CC, El Halawani ME, et al. (2000). Three different turkey luteinizing hormone receptor (tLH-R) isoforms I: characterization of alternatively spliced tLH-R isoforms and their regulated expression in diverse tissues. Biol. Reprod. 62: 108-116. PMid:10611074   Zamecnik J, Barbe G, Moger WH and Armstrong DT (1977). Radioimmunoassays for androsterone, 5alpha-androstane- 3a, 17β-diol and 5a-androstane-3β, 17β-diol. Steroids 30: 679-689.   Zhang FP, Kero J and Huhtaniemi I (1998). The unique exon 10 of the human luteinizing hormone receptor is necessary for expression of the receptor protein at the plasma membrane in the human luteinizing hormone receptor, but deleterious when inserted into the human follicle-stimulating hormone receptor. Mol. Cell Endocrinol. 142: 165-174.   Zhang FP, Poutanen M, Wilbertz J and Huhtaniemi I (2001). Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol. Endocrinol. 15: 172-183. PMid:11145748
A. - X. Wang, Xu, B., Tong, N., Chen, S. - Q., Yang, Y., Zhang, X. - W., Jiang, H., Liu, N., Liu, J., Hu, X. - N., Sha, G. - Z., and Chen, M., Meta-analysis confirms that a common G/C variant in the pre-miR-146a gene contributes to cancer susceptibility and that ethnicity, gender and smoking status are risk factors, vol. 11, pp. 3051-3062, 2012.
Akkiz H, Bayram S, Bekar A, Akgollu E, et al. (2011). No association of pre-microRNA-146a rs2910164 polymorphism and risk of hepatocellular carcinoma development in Turkish population: a case-control study. Gene 486: 104-109. PMid:21807077   Ambros V (2004). The functions of animal microRNAs. Nature 431: 350-355. PMid:15372042   Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.   Bentwich I, Avniel A, Karov Y, Aharonov R, et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37: 766-770. PMid:15965474   Bhaumik D, Scott GK, Schokrpur S, Patil CK, et al. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27: 5643-5647. PMid:18504431 PMCid:2811234   Bond GL and Levine AJ (2007). A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene 26: 1317-1323. PMid:17322917   Catucci I, Yang R, Verderio P, Pizzamiglio S, et al. (2010). Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases. Hum. Mutat. 31: E1052-E1057. PMid:19847796   Gao LB, Bai P, Pan XM, Jia J, et al. (2011). The association between two polymorphisms in pre-miRNAs and breast cancer risk: a meta-analysis. Breast Cancer Res. Treat. 125: 571-574. PMid:20640596   Garcia AI, Cox DG, Barjhoux L, Verny-Pierre C, et al. (2011). The rs2910164:G>C SNP in the MIR146A gene is not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Hum Mutat. DOI 10.1002/humu.21539.   George GP, Gangwar R, Mandal RK, Sankhwar SN, et al. (2011). Genetic variation in microRNA genes and prostate cancer risk in North Indian population. Mol. Biol. Rep. 38: 1609-1615. PMid:20842445   Guo H, Wang K, Xiong G, Hu H, et al. (2010). A functional varient in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Fam. Cancer 9: 599-603. PMid:20680470   Hecht SS (2002). Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 3: 461-469.   Hirschhorn JN, Lohmueller K, Byrne E and Hirschhorn K (2002). A comprehensive review of genetic association studies. Genet. Med. 4: 45-61. PMid:11882781   Hishida A, Matsuo K, Goto Y, Naito M, et al. (2011). Combined effect of miR-146a rs2910164 G/C polymorphism and Toll-like receptor 4 +3725 G/C polymorphism on the risk of severe gastric atrophy in Japanese. Dig. Dis. Sci. 56: 1131-1137. PMid:20721625   Hoffman AE, Zheng T, Yi C, Leaderer D, et al. (2009). microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 69: 5970-5977. PMid:19567675 PMCid:2716085   Hu Z, Liang J, Wang Z, Tian T, et al. (2009). Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum. Mutat. 30: 79-84. PMid:18634034   Jazdzewski K, Murray EL, Franssila K, Jarzab B, et al. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl. Acad. Sci. U. S. A. 105: 7269-7274. PMid:18474871 PMCid:2438239   Ji X, Zhang W, Xie C, Wang B, et al. (2011). Nasopharyngeal carcinoma risk by histologic type in central China: impact of smoking, alcohol and family history. Int. J. Cancer 129: 724-732. PMid:20878958   Liang PS, Chen TY and Giovannucci E (2009). Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int. J. Cancer 124: 2406-2415. PMid:19142968   Liu Z, Li G, Wei S, Niu J, et al. (2010). Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck. Cancer 116: 4753-4760. PMid:20549817 PMCid:3030480   Mittal RD, Gangwar R, George GP, Mittal T, et al. (2011). Investigative role of pre-microRNAs in bladder cancer patients: a case-control study in North India. DNA Cell Biol. 30: 401-406. PMid:21345130   Okubo M, Tahara T, Shibata T, Yamashita H, et al. (2010). Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. Helicobacter 15: 524-531. PMid:21073609   Pallante P, Visone R, Ferracin M, Ferraro A, et al. (2006). MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer 13: 497-508. PMid:16728577   Pastrello C, Polesel J, Della Puppa L, Viel A, et al. (2010). Association between hsa-mir-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. Carcinogenesis 31: 2124-2126. PMid:20810544   Permuth-Wey J, Thompson RC, Burton NL, Olson JJ, et al. (2011). A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J. Neurooncol. 105: 639-646. PMid:21744077   Perry MM, Moschos SA, Williams AE, Shepherd NJ, et al. (2008). Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J. Immunol. 180: 5689-5698. PMid:18390754 PMCid:2639646   Qiu LX, He J, Wang MY, Zhang RX, et al. (2011). The association between common genetic variant of microRNA-146a and cancer susceptibility. Cytokine 56: 695-698. PMid:21978540   Reis LO, Pereira TC, Lopes-Cendes I and Ferreira U (2010). MicroRNAs: a new paradigm on molecular urological oncology. Urology 76: 521-527. PMid:20472270   Srivastava K, Srivastava A and Mittal B (2010). Common genetic variants in pre-microRNAs and risk of gallbladder cancer in North Indian population. J. Hum. Genet. 55: 495-499. PMid:20520619   Taganov KD, Boldin MP, Chang KJ and Baltimore D (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U. S. A. 103: 12481-12486. PMid:16885212 PMCid:1567904   Tian T, Shu Y, Chen J, Hu Z, et al. (2009). A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol. Biomarkers Prev. 18: 1183-1187. PMid:19293314   Volinia S, Calin GA, Liu CG, Ambs S, et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S. A. 103: 2257-2261. PMid:16461460 PMCid:1413718   Wang J, Bi J, Liu X, Li K, et al. (2012). Has-miR-146a polymorphism (rs2910164) and cancer risk: a meta-analysis of 19 case-control studies. Mol. Biol. Rep. 39: 4571-4579. PMid:21947843   Wang X, Tang S, Le SY, Lu R, et al. (2008). Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3: e2557. PMid:18596939 PMCid:2438475   Xu B, Feng NH, Li PC, Tao J, et al. (2010). A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate 70: 467-472.   Xu T, Zhu Y, Wei QK, Yuan Y, et al. (2008). A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 29: 2126-2131. PMid:18711148   Xu W, Xu J, Liu S, Chen B, et al. (2011). Effects of common polymorphisms rs11614913 in miR-196a2 and rs2910164 in miR-146a on cancer susceptibility: a meta-analysis. PLoS One 6: e20471. PMid:21637771 PMCid:3102728   Yue C, Wang M, Ding B, Wang W, et al. (2011). Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population. Gynecol. Oncol. 122: 33-37. PMid:21529907   Zeng Y, Sun QM, Liu NN, Dong GH, et al. (2010). Correlation between pre-miR-146a C/G polymorphism and gastric cancer risk in Chinese population. World J. Gastroenterol. 16: 3578-3583. PMid:20653068 PMCid:2909559   Zhou B, Wang K, Wang Y, Xi M, et al. (2011). Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma. Mol. Carcinog. 50: 499-505. PMid:21319225   Zhou J, Lv R, Song X, Li D, et al. (2012). Association between two genetic variants in miRNA and primary liver cancer risk in the Chinese population. DNA Cell Biol. 31: 524-530. PMid:21861697
Y. Gao, Zhang, Y. H., Jiang, H., Xiao, S. Q., Wang, S., Ma, Q., Sun, G. J., Li, F. J., Deng, Q., Dai, L. S., Zhao, Z. H., Cui, X. S., Zhang, S. M., Liu, D. F., and Zhang, J. B., Detection of differentially expressed genes in the longissimus dorsi of Northeastern Indigenous and Large White pigs, vol. 10, pp. 779-791, 2011.
Amri EZ, Bertrand B, Ailhaud G and Grimaldi P (1991). Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J. Lipid Res. 32: 1449-1456. PMid:1753215 Arber S, Barbayannis FA, Hanser H, Schneider C, et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805-809. doi:10.1038/31729 PMid:9655397 Ball SG, Shuttleworth CA and Kielty CM (2007). Platelet-derived growth factor receptor-alpha is a key determinant of smooth muscle alpha-actin filaments in bone marrow-derived mesenchymal stem cells. Int. J. Biochem. Cell Biol. 39: 379-391. doi:10.1016/j.biocel.2006.09.005 Britton CH, Mackey DW, Esser V, Foster DW, et al. (1997). Fine chromosome mapping of the genes for human liver and muscle carnitine palmitoyltransferase I (CPT1A and CPT1B). Genomics 40: 209-211. doi:10.1006/geno.1996.4539 PMid:9070950 Brouns F and van der Vusse GJ (1998). Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br. J. Nutr. 79: 117-128. doi:10.1079/BJN19980022 Chmurzynska A (2006). The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47: 39-48. doi:10.1007/BF03194597 PMid:16424607 Clement S, Hinz B, Dugina V, Gabbiani G, et al. (2005). The N-terminal Ac-EEED sequence plays a role in alpha-smooth-muscle actin incorporation into stress fibers. J. Cell Sci. 118: 1395-1404. doi:10.1242/jcs.01732 PMid:15769852 Douaire M, Le Fur N, el Khadir-Mounier C, Langlois P, et al. (1992). Identifying genes involved in the variability of genetic fatness in the growing chicken. Poult. Sci. 71: 1911-1920. PMid:1437978 Fu Y, Luo N, Klein RL and Garvey WT (2005). Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46: 1369-1379. doi:10.1194/jlr.M400373-JLR200 PMid:15834118 Gardan D, Louveau I and Gondret F (2007). Adipocyte- and heart-type fatty acid binding proteins are both expressed in subcutaneous and intramuscular porcine (Sus scrofa) adipocytes. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 148: 14-19. doi:10.1016/j.cbpb.2007.03.017 PMid:17600747 Gregoire FM, Smas CM and Sul HS (1998). Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809. PMid:9674695 Hamilton DN, Miller KD, Ellis M, McKeith FK, et al. (2003). Relationships between longissimus glycolytic potential and swine growth performance, carcass traits, and pork quality. J. Anim. Sci. 81: 2206-2212. PMid:12968695 Kadowaki T and Yamauchi T (2005). Adiponectin and adiponectin receptors. Endocr. Rev. 26: 439-451. doi:10.1210/er.2005-0005 PMid:15897298 Kadowaki T, Yamauchi T, Kubota N, Hara K, et al. (2007). Adiponectin and adiponectin receptors in obesity-linked insulin resistance. Novartis Found. Symp. 286: 164-176. doi:10.1002/9780470985571.ch15 Malmstrom J, Lindberg H, Lindberg C, Bratt C, et al. (2004). Transforming growth factor-beta 1 specifically induce proteins involved in the myofibroblast contractile apparatus. Mol. Cell Proteomics 3: 466-477. doi:10.1074/mcp.M300108-MCP200 Marrube G, Rozen F, Pinto GB, Pacienza N, et al. (2004). New polymorphism of FASN gene in chicken. J. Appl. Genet. 45: 453-455. PMid:15523156 Morris CA, Cullen NG, Glass BC, Hyndman DL, et al. (2007). Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome 18: 64-74. doi:10.1007/s00335-006-0102-y PMid:17242864 Muñoz G, Óvilo C, Noguera JL, Sanchez A, et al. (2003). Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Anim. Genet. 34: 234-235. doi:10.1046/j.1365-2052.2003.00987.x PMid:12755829 Nowacka-Woszuk J, Szczerbal I, Fijak-Nowak H and Switonski M (2008). Chromosomal localization of 13 candidate genes for human obesity in the pig genome. J. Appl. Genet. 49: 373-377. doi:10.1007/BF03195636 PMid:19029685 Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. doi:10.1093/nar/29.9.e45 Picard B, Lefaucheur L, Berri C and Duclos MJ (2002). Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 42: 415-431. doi:10.1051/rnd:2002035 Ponsuksili S, Murani E, Walz C, Schwerin M, et al. (2007). Pre- and postnatal hepatic gene expression profiles of two pig breeds differing in body composition: insight into pathways of metabolic regulation. Physiol. Genomics 29: 267-279. doi:10.1152/physiolgenomics.00178.2006 PMid:17264241 Price NT, Jackson VN, van der Leij FR, Cameron JM, et al. (2003). Cloning and expression of the liver and muscle isoforms of ovine carnitine palmitoyltransferase 1: residues within the N-terminus of the muscle isoform influence the kinetic properties of the enzyme. Biochem. J. 372: 871-879. doi:10.1042/BJ20030086 PMid:12662154    PMCid:1223454 Roy R, Gautier M, Hayes H, Laurent P, et al. (2001). Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in situ hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell Genet. 93: 141-142. doi:10.1159/000056970 Roy R, Ordovas L, Zaragoza P, Romero A, et al. (2006). Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim. Genet. 37: 215-218. doi:10.1111/j.1365-2052.2006.01434.x PMid:16734679 Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Woodbury. Sourdioux M, Brevelet C, Delabrosse Y and Douaire M (1999). Association of fatty acid synthase gene and malic enzyme gene polymorphisms with fatness in turkeys. Poult. Sci. 78: 1651-1657. PMid:10626637 Spiegelman BM, Frank M and Green H (1983). Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J. Biol. Chem. 258: 10083-10089. PMid:6411703 Tichopad A, Dilger M, Schwarz G and Pfaffl MW (2003). Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 31: e122. doi:10.1093/nar/gng122 PMCid:219490 van der Leij FR, Takens J, van der Veen AY, Terpstra P, et al. (1997). Localization and intron usage analysis of the human CPT1B gene for muscle type carnitine palmitoyltransferase I. Biochim. Biophys. Acta 1352: 123-128. PMid:9199240 van der Leij FR, Cox KB, Jackson VN, Huijkman NC, et al. (2002). Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals. J. Biol. Chem. 277: 26994-27005. doi:10.1074/jbc.M203189200 PMid:12015320 Wang D, Harrison W, Buja LM, Elder FF, et al. (1998). Genomic DNA sequence, promoter expression, and chromosomal mapping of rat muscle carnitine palmitoyltransferase I. Genomics 48: 314-323. doi:10.1006/geno.1997.5184 PMid:9545636 Yamazaki N, Yamanaka Y, Hashimoto Y, Shinohara Y, et al. (1997). Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I. FEBS Lett. 409: 401-406. doi:10.1016/S0014-5793(97)00561-9 Yang YA, Morin PJ, Han WF, Chen T, et al. (2003). Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp. Cell Res. 282: 132-137. doi:10.1016/S0014-4827(02)00023-X Yu GS, Lu YC and Gulick T (1998). Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase Ibeta gene promoters by fatty acid enzyme substrate. J. Biol. Chem. 273: 32901-32909. doi:10.1074/jbc.273.49.32901 PMid:9830040 Zhao S, Wang J, Song X, Zhang X, et al. (2010). Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 7: 6. doi:10.1186/1743-7075-7-6 Zhao SH, Recknor J, Lunney JK, Nettleton D, et al. (2005). Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics 86: 618-625. doi:10.1016/j.ygeno.2005.08.001 PMid:16216716
L. S. Dai, Zhao, Y. M., Zhang, G. L., Zhao, R. F., Jiang, H., Ma, T. H., Gao, Y., Yuan, B., Xu, Y. L., Yu, W. Y., Zhao, Z. H., and Zhang, J. B., Molecular cloning and sequence analysis of follicle-stimulating hormone beta polypeptide precursor cDNA from the bovine pituitary gland, vol. 10, pp. 1504-1513, 2011.
Aizawa Y and Ishii S (2003). Cloning of complimentary deoxyribonucleic acid encoding follicle-stimulating hormone and luteinizing hormone beta subunit precursor molecules in Reeves’s turtle (Geoclemys reevesii) and Japanese grass lizard (Takydromus tachydromoides). Gen. Comp. Endocrinol. 132: 465-473. doi:10.1016/S0016-6480(03)00103-5 Barreau C, Paillard L and Osborne HB (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33: 7138-7150. doi:10.1093/nar/gki1012 PMid:16391004    PMCid:1325018 Chien JT, Shen ST, Lin YS and Yu JY (2005). Molecular cloning of the cDNA encoding follicle-stimulating hormone beta subunit of the Chinese soft-shell turtle Pelodiscus sinensis, and its gene expression. Gen. Comp. Endocrinol. 141: 190-200. doi:10.1016/j.ygcen.2004.12.017 PMid:15748721 Dai L, Zhao Z, Zhao R, Xiao S, et al. (2009). Effects of novel single nucleotide polymorphisms of the FSH beta-subunit gene on semen quality and fertility in bulls. Anim. Reprod. Sci. 114: 14-22. doi:10.1016/j.anireprosci.2008.08.021 PMid:18829190 de Kretser DM, Buzzard JJ, Okuma Y, O’Connor AE, et al. (2004). The role of activin, follistatin and inhibin in testicular physiology. Mol. Cell Endocrinol. 225: 57-64. doi:10.1016/j.mce.2004.07.008 PMid:15451568 Dias JA, Cohen BD, Lindau-Shepard B, Nechamen CA, et al. (2002). Molecular, structural, and cellular biology of follitropin and follitropin receptor. Vitam. Horm. 64: 249-322. doi:10.1016/S0083-6729(02)64008-7 Druet T, Fritz S, Sellem E, Basso B, et al. (2009). Estimation of genetic parameters and genome scan for 15 semen characteristics traits of Holstein bulls. J. Anim. Breed. Genet. 126: 269-277. doi:10.1111/j.1439-0388.2008.00788.x PMid:19630877 Geyer CB, Inselman AL, Sunman JA, Bornstein S, et al. (2009). A missense mutation in the Capza3 gene and disruption of F-actin organization in spermatids of repro32 infertile male mice. Dev. Biol. 330: 142-152. doi:10.1016/j.ydbio.2009.03.020 PMid:19341723    PMCid:2688473 Gharib SD, Wierman ME, Shupnik MA and Chin WW (1990). Molecular biology of the pituitary gonadotrophins. Endocr. Rev. 11: 177-199. doi:10.1210/edrv-11-1-177 PMid:2108012 Jameson JL, Becker CB, Lindell CM and Habener JF (1988). Human follicle-stimulating hormone β-subunit gene encodes multiple messenger ribonucleic acids. Mol. Endocrinol. 2: 806-815. doi:10.1210/mend-2-9-806 PMid:3139991 Jarrousse AS, Petit F, Kreutzer-Schmid C, Gaedigk R, et al. (1999). Possible involvement of proteasomes (prosomes) in AUUUA-mediated mRNA decay. J. Biol. Chem. 274: 5925-5930. doi:10.1074/jbc.274.9.5925 PMid:10026217 Kikuchi M, Kobayashi M, Ito T, Kato Y, et al. (1998). Cloning of complementary deoxyribonucleic acid for the follicle-stimulating hormone-beta subunit in the Japanese quail. Gen. Comp. Endocrinol. 111: 376-385. doi:10.1006/gcen.1998.7123 PMid:9707483 Komoike Y and Ishii S (2003). Cloning of cDNAs encoding the three pituitary glycoprotein hormone beta subunit precursor molecules in the Japanese toad, Bufo japonicus. Gen. Comp. Endocrinol. 132: 333-347. doi:10.1016/S0016-6480(03)00095-9 Koura M, Handa H, Noguchi Y, Takano K, et al. (2004). Sequence analysis of cDNA encoding follicle-stimulating hormone and luteinizing hormone beta-subunits in the Mongolian gerbil (Meriones unguiculatus). Gen. Comp. Endocrinol. 136: 406-410. doi:10.1016/j.ygcen.2004.01.012 PMid:15081841 Kumar S, Nei M, Dudley J and Tamura K (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9: 299-306. doi:10.1093/bib/bbn017 PMid:18417537    PMCid:2562624 Kumar TR (2005). What have we learned about gonadotropin function from gonadotropin subunit and receptor knockout mice? Reproduction 130: 293-302. doi:10.1530/rep.1.00660 PMid:16123236 Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. doi:10.1093/bioinformatics/btm404 PMid:17846036 Lawrence SB, Vanmontfort DM, Tisdall DJ, McNatty KP, et al. (1997). The follicle-stimulating hormone beta-subunit gene of the common brushtail possum (Trichosurus vulpecula): analysis of cDNA sequence and expression. Reprod. Fertil. Dev. 9: 795-801. doi:10.1071/R98009 Li MD, Rohrer GA, Wise TH and Ford JJ (2000). Identification and characterization of a new allele for the beta subunit of follicle-stimulating hormone in Chinese pig breeds. Anim. Genet. 31: 28-30. doi:10.1046/j.1365-2052.2000.00581.x PMid:10690358 Liao MJ, Zhu MY, Zhang ZH, Zhang AJ, et al. (2003). Cloning and sequence analysis of FSH and LH in the giant panda (Ailuropoda melanoleuca). Anim. Reprod. Sci. 77: 107-116. doi:10.1016/S0378-4320(02)00275-0 Lin CL, Jennen DG, Ponsuksili S, Tholen E, et al. (2006). Haplotype analysis of beta-actin gene for its association with sperm quality and boar fertility. J. Anim. Breed. Genet. 123: 384-388. doi:10.1111/j.1439-0388.2006.00622.x PMid:17177693 Manjithaya RR and Dighe RR (2004). The 3’ untranslated region of bovine follicle-stimulating hormone beta messenger RNA downregulates reporter expression: involvement of AU-rich elements and transfactors. Biol. Reprod. 71: 1158-1166. doi:10.1095/biolreprod.104.030130 PMid:15189830 Maurer RA (1987). Molecular cloning and nucleotide sequence analysis of complementary deoxyribonucleic acid for the beta-subunit of rat follicle stimulating hormone. Mol. Endocrinol. 1: 717-723. doi:10.1210/mend-1-10-717 PMid:3155259 Maurer RA and Beck A (1986). Isolation and nucleotide sequence analysis of a cloned cDNA encoding the beta-subunit of bovine follicle-stimulating hormone. DNA 5: 363-369. doi:10.1089/dna.1986.5.363 PMid:3096676 Mountford PS, Bello PA, Brandon MR and Adams TE (1989). Cloning and DNA sequence analysis of the cDNA for the precursor of ovine follicle stimulating hormone beta-subunit. Nucleic Acids Res. 17: 6391. doi:10.1093/nar/17.15.6391 PMid:2505233    PMCid:318292 Noguchi Y, Takano K, Koura M, Uchio-Yamada K, et al. (2006). Sequence analysis of cDNA encoding rabbit follicle-stimulating hormone beta-subunit precursor protein. Gen. Comp. Endocrinol. 147: 231-235. doi:10.1016/j.ygcen.2006.01.001 PMid:16476428 Pesole G, Mignone F, Gissi C, Grillo G, et al. (2001). Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276: 73-81. doi:10.1016/S0378-1119(01)00674-6 Pierce JG and Parsons TF (1981). Glycoprotein hormones: structure and function. Annu. Rev. Biochem. 50: 465-495. doi:10.1146/ PMid:6267989 Rabani M, Kertesz M and Segal E (2008). Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc. Natl. Acad. Sci. U. S. A. 105: 14885-14890. doi:10.1073/pnas.0803169105 PMid:18815376    PMCid:2567462 Ren DR, Ren J, Xing YY, Guo YM, et al. (2009). A genome scan for quantitative trait loci affecting male reproductive traits in a White Duroc x Chinese Erhualian resource population. J. Anim. Sci. 87: 17-23. doi:10.2527/jas.2008-0923 PMid:18599669 Saneyoshi T, Min KS, Jing MX, Nambo Y, et al. (2001). Equine follicle-stimulating hormone: molecular cloning of beta subunit and biological role of the asparagine-linked oligosaccharide at asparagine56 of alpha subunit. Biol. Reprod. 65: 1686-1690. doi:10.1095/biolreprod65.6.1686 PMid:11717129 Scammell JG, Funkhouser JD, Moyer FS, Gibson SV, et al. (2008). Molecular cloning of pituitary glycoprotein alpha-subunit and follicle stimulating hormone and chorionic gonadotropin beta-subunits from New World squirrel monkey and owl monkey. Gen. Comp. Endocrinol. 155: 534-541. doi:10.1016/j.ygcen.2007.08.004 PMid:17897645    PMCid:2277479 Schmidt A, Gromoll J, Weinbauer GF, Galla HJ, et al. (1999). Cloning and expression of cynomolgus monkey (Macaca fascicularis) gonadotropins luteinizing hormone and follicle-stimulating hormone and identification of two polymorphic sites in the luteinizing hormone beta subunit. Mol. Cell Endocrinol. 156: 73-83. doi:10.1016/S0303-7207(99)00140-9 Shen ST and Yu JY (2002). Cloning and gene expression of a cDNA for the chicken follicle-stimulating hormone (FSH)- beta-subunit. Gen. Comp. Endocrinol. 125: 375-386. doi:10.1006/gcen.2001.7763 PMid:11884082 Shen ST, Cheng YS, Shen TY and Yu JY (2006). Molecular cloning of follicle-stimulating hormone (FSH)-beta subunit cDNA from duck pituitary. Gen. Comp. Endocrinol. 148: 388-394. doi:10.1016/j.ygcen.2006.03.013 PMid:16674957 Strausberg RL, Feingold EA, Grouse LH, Derge JG, et al. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. U. S. A. 99: 16899-16903. doi:10.1073/pnas.242603899 PMid:12477932    PMCid:139241 Takano K, Koura M, Noguchi Y, Yamamoto Y, et al. (2004). Sequence analysis of cDNA encoding follicle-stimulating hormone and luteinizing hormone beta-subunits in the Mastomys (Praomys coucha). Gen. Comp. Endocrinol. 138: 281-286. doi:10.1016/j.ygcen.2004.06.009 PMid:15364211 Wimmers K, Lin CL, Tholen E, Jennen DG, et al. (2005). Polymorphisms in candidate genes as markers for sperm quality and boar fertility. Anim. Genet. 36: 152-155. doi:10.1111/j.1365-2052.2005.01267.x PMid:15771727 Xing Y, Ren J, Ren D, Guo Y, et al. (2009). A whole genome scanning for quantitative trait loci on traits related to sperm quality and ejaculation in pigs. Anim. Reprod. Sci. 114: 210-218. doi:10.1016/j.anireprosci.2008.08.008 PMid:18789839 Zhang T, Kruys V, Huez G and Gueydan C (2002). AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem. Soc. Trans. 30: 952-958. doi:10.1042/BST0300952
X. Hu, Cheng, X., Jiang, H., Zhu, S., Cheng, B., and Xiang, Y., Genome-wide analysis of cyclins in maize (Zea mays), vol. 9, pp. 1490-1503, 2010.
Barroco RM, De Veylder L, Magyar Z, Engler G, et al. (2003). Novel complexes of cyclin-dependent kinases and a cyclin-like protein from Arabidopsis thaliana with a function unrelated to cell division. Cell Mol. Life Sci. 60: 401-412. PMid:12678503   Booher RN, Alfa CE, Hyams JS and Beach DH (1989). The fission yeast cdc2/cdc13/suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58: 485-497.   Breyne P, Dreesen R, Vandepoele K, De Veylder L, et al. (2002). Transcriptome analysis during cell division in plants. Proc. Natl. Acad. Sci. U.S.A. 99: 14825-14830. PMid:12393816 PMCid:137503   Cyr RJ and Palevitz BA (1995). Organization of cortical microtubules in plant cells. Curr. Opin. Cell Biol. 7: 65-71.   Gutierrez C, Ramirez-Parra E, Castellano MM and del Pozo JC (2002). G(1) to S transition: more than a cell cycle engine switch. Curr. Opin. Plant Biol. 5: 480-486.   Hata S, Kouchi H, Suzuka I and Ishii T (1991). Isolation and characterization of cDNA clones for plant cyclins. EMBO J. 10: 2681-2688. PMid:1831125 PMCid:452970   Horne MC, Goolsby GL, Donaldson KL, Tran D, et al. (1996). Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression. J. Biol. Chem. 271: 6050-6061. PMid:8626390   Jiang S and Ramachandran S (2004). Identification and molecular characterization of myosin gene family in Oryza sativa genome. Plant Cell Physiol. 45: 590-599. PMid:15169941   John PCL, Mews M and Moore R (2001). Cyclin/CDK complexes: Their involvement in cell cycle progression and mitotic division. Protoplasma 216: 119-142. PMid:11732181   Kumar S, Tamura K and Nei M (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163. PMid:15260895   La H, Li J, Ji Z, Cheng Y, et al. (2006). Genome-wide analysis of cyclin family in rice (Oryza sativa L.). Mol. Genet. Genomics 275: 374-386. PMid:16435118   Lehner CF and O'Farrell PH (1990). The roles of Drosophila cyclins A and B in mitotic control. Cell 61: 535-547.   Nakamura T, Sanokawa R, Sasaki YF, Ayusawa D, et al. (1995). Cyclin I: a new cyclin encoded by a gene isolated from human brain. Exp. Cell Res. 221: 534-542. PMid:7493655   Nieduszynski CA, Murray J and Carrington M (2002). Whole-genome analysis of animal A- and B-type cyclins. Genome Biol. 3: RESEARCH0070.   Nugent JH, Alfa CE, Young T and Hyams JS (1991). Conserved structural motifs in cyclins identified by sequence analysis. J. Cell Sci. 99 (Pt 3): 669-674. PMid:1834684   Obaya AJ and Sedivy JM (2002). Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol. Life Sci. 59: 126-142. PMid:11846025   Pagano M, Pepperkok R, Verde F, Ansorge W, et al. (1992). Cyclin A is required at two points in the human cell cycle. EMBO J. 11: 961-971. PMid:1312467 PMCid:556537   Pines J (2002). Confirmational change. Nature 376: 294-295. PMid:7630391   Plowman GD, Sudarsanam S, Bingham J, Whyte D, et al. (1999). The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc. Natl. Acad. Sci. U.S.A. 96: 13603-13610. PMid:10570119 PMCid:24111   Potuschak T and Doerner P (2001). Cell cycle controls: genome-wide analysis in Arabidopsis. Curr. Opin. Plant Biol. 4: 501-506.   Quiroz-Figueroa F and Vázquez-Ramos JM (2006). Expression of maize D-type cyclins: comparison, regulation by phytohormones during seed germination and description of a new D cyclin. Physiol. Plantarum 128: 556-568.   Renaudin JP, Colasanti J, Rime H, Yuan Z, et al. (1994). Cloning of four cyclins from maize indicates that higher plants have three structurally distinct groups of mitotic cyclins. Proc. Natl. Acad. Sci. U.S.A. 91: 7375-7379. PMid:8041798 PMCid:44402   Renaudin JP, Doonan JH, Freeman D, Hashimoto J, et al. (1996). Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol. Biol. 32: 1003-1018. PMid:9002599   Rossi V and Varotto S (2002). Insights into the G1/S transition in plants. Planta 215: 345-356. PMid:12111215   Roudier F, Fedorova E, Gyorgyey J, Feher A, et al. (2000). Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIRE-type cyclin-dependent kinase and a retinoblastoma protein. Plant J. 23: 73-83. PMid:10929103   Schnable PS, Ware D, Fulton RS, Stein JC, et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112-1115. PMid:19965430   Shen WH (2002). The plant E2F-Rb pathway and epigenetic control. Trends Plant Sci. 7: 505-511.   Sherr CJ and Roberts JM (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13: 1501-1512. PMid:10385618   Smith LG (1999). Divide and conquer: cytokinesis in plant cells. Curr. Opin. Plant Biol. 2: 447-453.   Stals H and Inze D (2001). When plant cells decide to divide. Trends Plant Sci. 6: 359-364.   Sun Y, Flannigan BA and Setter TL (1999). Regulation of endoreduplication in maize (Zea mays L.) endosperm. Isolation of a novel B1-type cyclin and its quantitative analysis. Plant Mol. Biol. 41: 245-258. PMid:10579491   Trimarchi JM and Lees JA (2002). Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3: 11-20. PMid:11823794   Umeda M, Iwamoto N, Umeda-Hara C, Yamaguchi M, et al. (1999). Molecular characterization of mitotic cyclins in rice plants. Mol. Gen. Genet. 262: 230-238. PMid:10517318   Vandepoele K, Raes J, De Veylder L, Rouze P, et al. (2002). Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14: 903-916. PMid:11971144 PMCid:150691   Vision TJ, Brown DG and Tanksley SD (2000). The origins of genomic duplications in Arabidopsis. Science 290: 2114-2117. PMid:11118139   Wang GF, Kong HZ, Sun YJ and Zhang XH (2004). Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol. 135: 1084-1099. PMid:15208425 PMCid:514142   Yamaguchi M, Fabian T, Sauter M, Bhalerao RP, et al. (2000). Activation of CDK-activating kinase is dependent on interaction with H-type cyclins in plants. Plant J. 24: 11-20. PMid:11029700   Yu Y, Steinmetz A, Meyer D, Brown S, et al. (2003). The tobacco A-type cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation. Plant Cell 15: 2763-2777. PMid:14615597 PMCid:282795
X. Cheng, Jiang, H., Zhang, J., Qian, Y., Zhu, S., and Cheng, B., Overexpression of type-A rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins, vol. 9, pp. 348-359, 2010.
Asakura Y, Hagino T, Ohta Y, Aoki K, et al. (2003). Molecular characterization of His-Asp phosphorelay signaling factors in maize leaves: implications of the signal divergence by cytokinin-inducible response regulators in the cytosol and the nuclei. Plant Mol. Biol. 52: 331-341. PMid:12856940   Brandstatter I and Kieber JJ (1998). Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10: 1009-1019. PMid:9634588 PMCid:144033   Gan and Amansino (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986-1988. PMid:8592746   Giulini A, Wang J and Jackson D (2004). Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430: 1031-1034. PMid:15329722   Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, et al. (2004). In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. U. S. A. 101: 8821-8826. PMid:15166290 PMCid:423279   Hirose N, Makita N, Kojima M, Kamada-Nobusada T, et al. (2007). Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol. 48: 523-539. PMid:17293362   Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, et al. (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59: 75-83. PMid:17872922   Hutchison CE, Li J, Argueso C, Gonzalez M, et al. (2006). The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18: 3073-3087. PMid:17122069 PMCid:1693944   Hwang I and Sheen J (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413: 383-389. PMid:11574878   Hwang I, Chen HC and Sheen J (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129: 500-515. PMid:12068096 PMCid:161668   Imamura A, Hanaki N, Umeda H, Nakamura A, et al. (1998). Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 95: 2691-2696. PMid:9482949 PMCid:19464   Inoue T, Higuchi M, Hashimoto Y, Seki M, et al. (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409: 1060-1063. PMid:11234017   Ito Y and Kurata N (2006). Identification and characterization of cytokinin-signalling gene families in rice. Gene 382: 57-65. PMid:16919402   Jain M, Tyagi AK and Khurana JP (2006). Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol. 6: 1. PMid:16472405 PMCid:1382228   Kakimoto T (1996). CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274: 982-985. PMid:8875940   Kakimoto T (2003). Perception and signal transduction of cytokinins. Annu. Rev. Plant Biol. 54: 605-627. PMid:14503005   Kiba T, Yamada H, Sato S, Kato T, et al. (2003). The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol. 44: 868-874. PMid:12941880   Lee DJ, Park JY, Ku SJ, Ha YM, et al. (2007). Genome-wide expression profiling of Arabidopsis response regulator 7 (ARR7) overexpression in cytokinin response. Mol. Genet. Genomics 277: 115-137. PMid:17061125   Lohrmann J and Harter K (2002). Plant two-component signaling systems and the role of response regulators. Plant Physiol. 128: 363-369. PMid:11842140 PMCid:1540209   Lohrmann J, Buchholz G, Keitel C, Sweere U, et al. (1999). Differential expression and nuclear localization of response regulator-like proteins from Arabidopsis thaliana. Plant Biol. 5: 495-505.   Miller CO, Skoog F, Von Saltza MH and Strong F (1955). Kinetin, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 77: 1392.   Mok DW and Mok MC (2001). Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 89-118. PMid:11337393   Muller B and Sheen J (2007). Advances in cytokinin signaling. Science 318: 68-69. PMid:17916725   Nishimura C, Ohashi Y, Sato S, Kato T, et al. (2004). Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16: 1365-1377. PMid:15155880 PMCid:490032   Osakabe Y, Miyata S, Urao T, Seki M, et al. (2002). Overexpression of Arabidopsis response regulators, ARR4/ATRR1/ IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochem. Biophys. Res. Commun. 293: 806-815.   Porra RJ, Thompson WA and Kriedemann PE (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975: 384-394.   Sakai H, Aoyama T, Bono H and Oka A (1998). Two-component response regulators from Arabidopsis thaliana contain a putative DNA-binding motif. Plant Cell Physiol. 39: 1232-1239. PMid:9891419   Sakai H, Aoyama T and Oka A (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24: 703-711. PMid:11135105   Sakakibara H, Suzuki M, Takei K, Deji A, et al. (1998). A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant J. 14: 337-344. PMid:9628026   Sentoku N, Sato Y and Matsuoka M (2000). Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev. Biol. 220: 358-364. PMid:10753522   Stock AM, Robinson VL and Goudreau PN (2000). Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215. PMid:10966457   Suzuki T, Imamura A, Ueguchi C and Mizuno T (1998). Histidine-containing phosphotransfer (HPt) signal transducers implicated in His-to-Asp phosphorelay in Arabidopsis. Plant Cell Physiol 39: 1258-1268. PMid:10050311   Suzuki T, Miwa K, Ishikawa K, Yamada H, et al. (2001). The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins. Plant Cell Physiol. 42: 107-113. PMid:11230563   Taniguchi M, Kiba T, Sakakibara H, Ueguchi C, et al. (1998). Expression of Arabidopsis response regulator homologs is induced by cytokinins and nitrate. FEBS Lett. 429: 259-262.   Ueguchi C, Koizumi H, Suzuki T and Mizuno T (2001a). Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol. 42: 231-235. PMid:11230578   Ueguchi C, Sato S, Kato T and Tabata S (2001b). The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol. 42: 751-755. PMid:11479382   Urao T, Yakubov B, Yamaguchi-Shinozaki K and Shinozaki K (1998). Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett. 427: 175-178.   Werner T, Motyka V, Laucou V, Smets R, et al. (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532-2550. PMid:14555694 PMCid:280559   West AH and Stock AM (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26: 369-376.   Yonekura-Sakakibara K, Kojima M, Yamaya T and Sakakibara H (2004). Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 134: 1654-1661. PMid:15064375 PMCid:419839