Found 2 results
Filters: Author is R. Castro  [Clear All Filters]
D. A. P. C. Zuccari, Castro, R., Gavioli, A. F., Mancini, U. M., Frade, C. S., and Leonel, C., Immunohistochemical and molecular analysis of caveolin-1 expression in canine mammary tumors, vol. 11, pp. 153-165, 2012.
Allred CD, Harvey JM, Berardo M and Clark GM (1998). Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod. Pathol. 11: 155-168. PMid:19542014    PMCid:2728297 Amorim I, Lopes CC, Faustino AM and Pereira PD (2010). Immunohistochemical expression of caveolin-1 in normal and neoplastic canine mammary tissue. J. Comp. Pathol. 143: 39-44. PMid:19578358    PMCid:2769203 Bat’ová Z, Bittnerova M, Krenek P and Kyselovic J (2003). Caveolar functions and caveolin structural proteins. Cesk. Fysiol. 52: 166-171. PMid:15322703 Bouras T, Lisanti MP and Pestell RG (2004). Caveolin-1 in breast cancer. Cancer Biol. Ther. 3: 931-941. PMid:18258830 Chen ST, Lin SY, Yeh KT, Kuo SJ, et al. (2004). Mutational, epigenetic and expressional analyses of caveolin-1 gene in breast cancers. Int. J. Mol. Med. 14: 577-582. PMid:21671123 Cordeiro JA (1987). Analysis of Dependency. Relatório Técnico N° 48/87. Instituto de Matemática e Estatística, Unicamp, Campinas. PMid:11679670 Elsheikh SE, Green AR, Rakha EA, Samaka RM, et al. (2008). Caveolin 1 and Caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br. J. Cancer 99: 327-334. PMid:19075105 Ferreira E, Bertagnolli AC, Cavalcanti MF, Schmitt FC, et al. (2009). The relationship between tumour size and expression of prognostic markers in benign and malignant canine mammary tumours. Vet. Comp. Oncol. 7: 230-235. PMid:18451334    PMCid:2574857 Glait C, Tencer L, Ravid D, Sarfstein R, et al. (2006). Caveolin-1 up-regulates IGF-I receptor gene transcription in breast cancer cells via Sp1- and p53-dependent pathways. Exp. Cell Res. 312: 3899-3908. PMid:12091877 Lee H, Park DS, Razani B, Russell RG, et al. (2002). Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am. J. Pathol. 161: 1357-1369. PMid:7624392 Liedtke C, Kersting C, Burger H, Kiesel L, et al. (2007). Caveolin-1 expression in benign and malignant lesions of the breast. World J. Surg. Oncol. 5: 110. PMid:19888324    PMCid:2765616 Mercier I, Casimiro MC, Wang C, Rosenberg AL, et al. (2008). Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy. Cancer Biol. Ther. 7: 1212-1225. Pereira PD, Lopes CC, Matos AJ, Cortez PP, et al. (2010). Caveolin-1 in diagnosis and prognosis of canine mammary tumours: comparison of evaluation systems. J. Comp. Pathol. 143: 87-93. Savage K, Lambros MB, Robertson D, Jones RL, et al. (2007). Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin. Cancer Res. 13: 90-101. Shajahan AN, Wang A, Decker M, Minshall RD, et al. (2007). Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J. Biol. Chem. 282: 5934-5943. Sloan EK, Stanley KL and Anderson RL (2004). Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23: 7893-7897. Sorenmo KU, Kristiansen VM, Cofone MA, Shofer FS, et al. (2009). Canine mammary gland tumours; a histological continuum from benign to malignant; clinical and histopathological evidence. Vet. Comp. Oncol. 7: 162-172. Sotgia F, Rui H, Bonuccelli G, Mercier I, et al. (2006). Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Res. 66: 10647-10651. Vandesompele J, De Preter K, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: RESEARCH0034. Wang Y, Yu J and Zhan Q (2008). BRCA1 regulates caveolin-1 expression and inhibits cell invasiveness. Biochem. Biophys. Res. Commun. 370: 201-206. WHO (2007). World Health Organization-Air Force Institute of Pathology Classification System for Canine Mammary Tumors. Available at []. Accessed July 5, 2009. Williams TM and Lisanti MP (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am. J. Physiol. Cell Physiol. 288: C494-C506. Williams TM, Cheung MW, Park DS, Razani B, et al. (2003). Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol. Biol. Cell 14: 1027-1042. Williams TM, Medina F, Badano I, Hazan RB, et al. (2004). Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J. Biol. Chem. 279: 51630-51646. Williams TM, Sotgia F, Lee H, Hassan G, et al. (2006). Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis: Caveolin-1 antagonizes cyclin D1 function in mammary epithelial cells. Am. J. Pathol. 169: 1784-1801. Zhu H, Weisleder N, Wu P, Cai C, et al. (2008). Caveolae/caveolin-1 are important modulators of store-operated calcium entry in Hs578/T breast cancer cells. J. Pharmacol. Sci. 106: 287-294.
D. A. P. C. Zuccari, Castro, R., Gelaleti, G. B., and Mancini, U. M., Interleukin-8 expression associated with canine mammary tumors, vol. 10, pp. 1522-1532, 2011.
Allred DC, Harvey JM, Berardo M and Clark GM (1998). Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod. Pathol. 11: 155-168. PMid:9504686 Benoy IH, Salgado R, Van Dam P, Geboers K, et al. (2004). Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin. Cancer Res. 10: 7157-7162. doi:10.1158/1078-0432.CCR-04-0812 PMid:15534087 Bobrovnikova-Marjon EV, Marjon PL, Barbash O, Vander Jagt DL, et al. (2004). Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 is highly responsive to ambient glutamine availability: role of nuclear factor-kappaB and activating protein-1. Cancer Res. 64: 4858-4869. doi:10.1158/0008-5472.CAN-04-0682 PMid:15256456 Brodey RS, Goldschmidt MH and Roszel JR (1983). Canine mammary gland neoplasms. J. Am. Anim. Hosp. Assoc. 19: 61-69. Cordeiro JA (1987). Análises de Dependência. Relatório Técnico No. 48/87. Instituto de Matemática e Estatística UNICAMP, Campinas. De Larco JE, Wuertz BR, Rosner KA, Erickson SA, et al. (2001). A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. Am. J. Pathol. 158: 639-646. doi:10.1016/S0002-9440(10)64005-9 De Larco JE, Wuertz BR, Yee D, Rickert BL, et al. (2003). Atypical methylation of the interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 100: 13988-13993. doi:10.1073/pnas.2335921100 PMid:14623984    PMCid:283533 Derin D, Soydinc HO, Guney N, Tas F, et al. (2007). Serum IL-8 and IL-12 levels in breast cancer. Med. Oncol. 24: 163-168. doi:10.1007/BF02698035 PMid:17848739 Elston CW and Ellis IO (Editors) (1998). Assessment of Histological Grade. In: The Breast. Vol. 13. Churchill Livingstone, Edinburgh, New York, 356-384. Ferreira E, Bertagnolli AC, Cavalcanti MF, Schmitt FC, et al. (2009). The relationship between tumour size and expression of prognostic markers in benign and malignant canine mammary tumours. Vet. Comp. Oncol. 7: 230-235. doi:10.1111/j.1476-5829.2009.00193.x PMid:19891693 Freund A, Jolivel V, Durand S, Kersual N, et al. (2004). Mechanisms underlying differential expression of interleukin-8 in breast cancer cells. Oncogene 23: 6105-6114. doi:10.1038/sj.onc.1207815 PMid:15208657    PMCid:2668865 Karayannopoulou M, Kaldrymidou E, Constantinidis TC and Dessiris A (2005). Histological grading and prognosis in dogs with mammary carcinomas: application of a human grading method. J. Comp. Pathol. 133: 246-252. doi:10.1016/j.jcpa.2005.05.003 PMid:16202421 Knupfer H, Schmidt R, Stanitz D, Brauckhoff M, et al. (2004). CYP2C and IL-6 expression in breast cancer. Breast 13: 28-34. doi:10.1016/j.breast.2003.07.002 PMid:14759713 Lee LF, Hellendall RP, Wang Y, Haskill JS, et al. (2000). IL-8 reduced tumorigenicity of human ovarian cancer in vivo due to neutrophil infiltration. J. Immunol. 164: 2769-2775. PMid:10679119 Li Q, Bostick-Bruton F and Reed E (1998). Effect of interleukin-1 alpha and tumour necrosis factor-alpha on cisplatin-induced ERCC-1 mRNA expression in a human ovarian carcinoma cell line. Anticancer Res. 18: 2283-2287. PMid:9703867 Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods 25: 402-408. doi:10.1006/meth.2001.1262 PMid:11846609 MacEwen EG (1990). Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev. 9: 125-136. doi:10.1007/BF00046339 Misdorp W, Else RW, Héllmén E and Lipscomb TP (1999). Histological Classification of Mammary Tumors of the Dog and the Cat. Armed Forces Institute of Pathology, Washington. Monton M, Lopez-Farre A, Mosquera JR, Sanchez de ML, et al. (1997). Endogenous angiotensin II produced by endothelium regulates interleukin-1beta-stimulated nitric oxide generation in rat isolated vessels. Hypertension 30: 1191-1197. PMid:9369275 Moulton JE (Editor) (1990). Tumors of the Mammary Gland. In: Tumors in Domestic Animals. 3rd edn. University of California Press, California, 518-550. Perez Alenza MD, Pena L, del Castillo N and Nieto AI (2000). Factors influencing the incidence and prognosis of canine mammary tumours. J. Small Anim. Pract. 41: 287-291. doi:10.1111/j.1748-5827.2000.tb03203.x Queiroga F and Lopes C (2002). Tumores Mamários Caninos: Novas Perspectiva. In: Congresso de Ciências Veterinárias, Oeiras. Sociedade Portuguesa de Ciências Veterinárias, Lisboa, 183-190. Schmidt A, Bengtsson A, Tylman M and Blomqvist L (2007). Pro-inflammatory cytokines in elective flap surgery. J. Surg. Res. 137: 117-121. doi:10.1016/j.jss.2006.05.040 PMid:17084411 Schwaninger R, Rentsch CA, Wetterwald A, van der Horst G, et al. (2007). Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases. Am. J. Pathol. 170: 160-175. doi:10.2353/ajpath.2007.051276 PMid:17200191    PMCid:1762703 Simeone AM, Nieves-Alicea R, McMurtry VC, Colella S, et al. (2007). Cyclooxygenase-2 uses the protein kinase C/ interleukin-8/urokinase-type plasminogen activator pathway to increase the invasiveness of breast cancer cells. Int. J. Oncol. 30: 785-792. PMid:17332916 Slater D (Editor) (2007). Oncology in Reproductive System. In: Manual of Small Animal Surgery. 2nd edn. Manole, São Paulo, 2566-2592. Snoussi K, Mahfoudh W, Bouaouina N, Ahmed SB, et al. (2006). Genetic variation in IL-8 associated with increased risk and poor prognosis of breast carcinoma. Hum. Immunol. 67: 13-21. doi:10.1016/j.humimm.2006.03.018 PMid:16698420 Sorenmo K (1998). An Update on Canine Mammary Gland Tumors. In: Proceedings of the 16th Annual ACVIM Veterinary Medical Forum, San Diego, 387-388. Sorenmo KU, Kristiansen VM, Cofone MA, Shofer FS, et al. (2009). Canine mammary gland tumours; a histological continuum from benign to malignant; clinical and histopathological evidence. Vet. Comp. Oncol. 7: 162-172. doi:10.1111/j.1476-5829.2009.00184.x PMid:19691645 Thomas E and Berner G (2000). Prognostic and predictive implications of HER2 status for breast cancer patients. Eur. J. Oncol. Nurs. 4: 10-17. doi:10.1054/ejon.2000.0073 PMid:12849612 van’t Veer LJ, Paik S and Hayes DF (2005). Gene expression profiling of breast cancer: a new tumor marker. J. Clin. Oncol. 23: 1631-1635. doi:10.1200/JCO.2005.12.005 PMid:15755970 Vazquez-Martin A, Colomer R and Menendez JA (2007). Protein array technology to detect HER2 (erbB-2)-induced ‘cytokine signature’ in breast cancer. Eur. J. Cancer 43: 1117-1124. doi:10.1016/j.ejca.2007.01.037 PMid:17379503 Wahl LM and Kleinman HK (1998). Tumor-associated macrophages as targets for cancer therapy. J. Natl. Cancer Inst. 90: 1583-1584. doi:10.1093/jnci/90.21.1583 Wang J, Huang M, Lee P, Komanduri K, et al. (1996). Interleukin-8 inhibits non-small cell lung cancer proliferation: a possible role for regulation of tumor growth by autocrine and paracrine pathways. J. Interferon Cytokine Res. 16: 53-60. doi:10.1089/jir.1996.16.53 Yao C, Lin Y, Ye CS, Bi J, et al. (2007). Role of interleukin-8 in the progression of estrogen receptor-negative breast cancer. Chin. Med. J. 120: 1766-1772. Yoshimura T, Matsushima K, Tanaka S, Robinson EA, et al. (1987). Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc. Natl. Acad. Sci. U. S. A. 84: 9233-9237. doi:10.1073/pnas.84.24.9233 Zhou S, Wang GP, Liu C and Zhou M (2006). Eukaryotic initiation factor 4E (eIF4E) and angiogenesis: prognostic markers for breast cancer. BMC Cancer 6: 231. doi:10.1186/1471-2407-6-231 PMid:17010208    PMCid:1599748 Zuccari DAPC, Santana AE and Rocha NS (2001). Fine needle aspiration cytologic and histologic correlation in canine mammary tumors. Braz. J. Vet. Res. Anim. Sci. 38: 38-41. doi:10.1590/S1413-95962001000100007 Zuccari DAPC, Pavam MV, Terzian ACB, Pereira RS, et al. (2008). Immunohistochemical evaluation of e-cadherin, Ki-67 and PCNA in canine mammary neoplasias: correlation of prognostic factors and clinical outcome. Pesq. Vet. Bras. 28: 207-215. doi:10.1590/S0100-736X2008000400003