Publications

Found 6 results
Filters: Author is B. Sun  [Clear All Filters]
2011
W. R. Hou, Hou, Y. L., Wu, G. F., Song, Y., Su, X. L., Sun, B., and Li, J., cDNA, genomic sequence cloning and overexpression of ribosomal protein gene L9 (rpL9) of the giant panda (Ailuropoda melanoleuca), vol. 10, pp. 1576-1588, 2011.
Adamski FM, Atkins JF and Gesteland RF (1996). Ribosomal protein L9 interactions with 23 S rRNA: the use of a translational bypass assay to study the effect of amino acid substitutions. J. Mol. Biol. 261: 357-371. http://dx.doi.org/10.1006/jmbi.1996.0469 PMid:8780779 Agafonov DE, Kolb VA and Spirin AS (1997). Proteins on ribosome surface: measurements of protein exposure by hot tritium bombardment technique. Proc. Natl. Acad. Sci. U. S. A. 94: 12892-12897. http://dx.doi.org/10.1073/pnas.94.24.12892 Babu YS, Bugg CE and Cook WJ (1988). Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 204: 191-204. http://dx.doi.org/10.1016/0022-2836(88)90608-0 Biou V, Shu F and Ramakrishnan V (1995). X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO J. 14: 4056-4064. PMid:7664745    PMCid:394484 Brimacombe R, Gornicki P, Greuer B, Mitchell P, et al. (1990). The three-dimensional structure and function of Escherichia coli ribosomal RNA, as studied by cross-linking techniques. Biochim. Biophys. Acta 1050: 8-13. PMid:2207172 Cho JH, Sato S and Raleigh DP (2004). Thermodynamics and kinetics of non-native interactions in protein folding: a single point mutant significantly stabilizes the N-terminal domain of L9 by modulating non-native interactions in the denatured state. J. Mol. Biol. 338: 827-837. http://dx.doi.org/10.1016/j.jmb.2004.02.073 PMid:15099748 Chou PY and Fasman GD (1978). Empirical predictions of protein conformation. Annu. Rev. Biochem. 47: 251-276. http://dx.doi.org/10.1146/annurev.bi.47.070178.001343 PMid:354496 Herbst KL, Nichols LM, Gesteland RF and Weiss RB (1994). A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60 from bacteriophage T4. Proc. Natl. Acad. Sci. U. S. A. 91: 12525-12529. http://dx.doi.org/10.1073/pnas.91.26.12525 Hoffman DW, Davies C, Gerchman SE, Kycia JH, et al. (1994). Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein. EMBO J. 13: 205-212. PMid:8306963    PMCid:394794 Hoffman DW, Cameron CS, Davies C, White SW, et al. (1996). Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy. J. Mol. Biol. 264: 1058-1071. http://dx.doi.org/10.1006/jmbi.1996.0696 PMid:9000630 Horng JC, Moroz V, Rigotti DJ, Fairman R, et al. (2002). Characterization of large peptide fragments derived from the N-terminal domain of the ribosomal protein L9: definition of the minimum folding motif and characterization of local electrostatic interactions. Biochemistry 41: 13360-13369. http://dx.doi.org/10.1021/bi026410c PMid:12416980 Li R, Fan W, Tian G, Zhu H, et al. (2010). The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317. http://dx.doi.org/10.1038/nature08696 PMid:20010809 Lieberman KR, Firpo MA, Herr AJ, Nguyenle T, et al. (2000). The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit. J. Mol. Biol. 297: 1129-1143. http://dx.doi.org/10.1006/jmbi.2000.3621 PMid:10764578 Lillemoen J, Cameron CS and Hoffman DW (1997). The stability and dynamics of ribosomal protein L9: investigations of a molecular strut by amide proton exchange and circular dichroism. J. Mol. Biol. 268: 482-493. http://dx.doi.org/10.1006/jmbi.1997.0982 PMid:9159485 MazurukK, Schoen TJ, Chader GJ, Iwata T, et al. (1996). Structural organization and chromosomal localization of the human ribosomal protein L9 gene. Biochim. Biophys. Acta 1305: 151-162. PMid:8597601 Nag B, Akella SS, Cann PA, Tewari DS, et al. (1991). Monoclonal antibodies to Escherichia coli ribosomal proteins L9 and L10. Effects on ribosome function and localization of L9 on the surface of the 50 S ribosomal subunit. J. Biol. Chem. 266: 22129-22135. PMid:1939233 O’Neil KT and DeGrado WF (1990). A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250: 646-651. Roth HE and Nierhaus KH (1980). Assembly map of the 50-S subunit from Escherichia coli ribosomes, covering the proteins present in the first reconstitution intermediate particle. Eur. J. Biochem. 103: 95-98. http://dx.doi.org/10.1111/j.1432-1033.1980.tb04292.x PMid:6153613 SambrookJ, Fritsch EF and Maniatis T (1989). Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. Sato S and Raleigh DP (2002). pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J. Mol. Biol. 318: 571-582. http://dx.doi.org/10.1016/S0022-2836(02)00015-3 Sato S, Luisi DL and Raleigh DP (2000). pH jump studies of the folding of the multidomain ribosomal protein L9: the structural organization of the N-terminal domain does not affect the anomalously slow folding of the C-terminal domain. Biochemistry 39: 4955-4962. http://dx.doi.org/10.1021/bi992608u PMid:10769155 Sato S, Xiang S and Raleigh DP (2001). On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9. J. Mol. Biol. 312: 569- 577. http://dx.doi.org/10.1006/jmbi.2001.4968 PMid:11563917 Schmidt A, Hollmann M and Schafer U (1996). A newly identified Minute locus, M(2)32D, encodes the ribosomal protein L9 in Drosophila melanogaster. Mol. Gen. Genet. 251: 381-387. http://dx.doi.org/10.1007/BF02172530 Shan B, Bhattacharya S, Eliezer D and Raleigh DP (2008). The low-pH unfolded state of the C-terminal domain of the ribosomal protein L9 contains significant secondary structure in the absence of denaturant but is no more compact than the low-pH urea unfolded state. Biochemistry 47: 9565-9573. http://dx.doi.org/10.1021/bi8006862 PMid:18707127    PMCid:2730213 Voelz VA, Bowman GR, Beauchamp K and Pande VS (2010). Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J. Am. Chem. Soc. 132: 1526-1528. http://dx.doi.org/10.1021/ja9090353 PMid:20070076    PMCid:2835335 Walleczek J, Redl B, Stoffler-Meilicke M and Stoffler G (1989). Protein-protein cross-linking of the 50 S ribosomal subunit of Escherichia coli using 2-iminothiolane. Identification of cross-links by immunoblotting techniques. J. Biol. Chem. 264: 4231-4237. PMid:2645289