Publications

Found 11 results
Filters: Author is Y. Song  [Clear All Filters]
2011
W. R. Hou, Hou, Y. L., Wu, G. F., Song, Y., Su, X. L., Sun, B., and Li, J., cDNA, genomic sequence cloning and overexpression of ribosomal protein gene L9 (rpL9) of the giant panda (Ailuropoda melanoleuca), vol. 10, pp. 1576-1588, 2011.
Adamski FM, Atkins JF and Gesteland RF (1996). Ribosomal protein L9 interactions with 23 S rRNA: the use of a translational bypass assay to study the effect of amino acid substitutions. J. Mol. Biol. 261: 357-371. http://dx.doi.org/10.1006/jmbi.1996.0469 PMid:8780779 Agafonov DE, Kolb VA and Spirin AS (1997). Proteins on ribosome surface: measurements of protein exposure by hot tritium bombardment technique. Proc. Natl. Acad. Sci. U. S. A. 94: 12892-12897. http://dx.doi.org/10.1073/pnas.94.24.12892 Babu YS, Bugg CE and Cook WJ (1988). Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 204: 191-204. http://dx.doi.org/10.1016/0022-2836(88)90608-0 Biou V, Shu F and Ramakrishnan V (1995). X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO J. 14: 4056-4064. PMid:7664745    PMCid:394484 Brimacombe R, Gornicki P, Greuer B, Mitchell P, et al. (1990). The three-dimensional structure and function of Escherichia coli ribosomal RNA, as studied by cross-linking techniques. Biochim. Biophys. Acta 1050: 8-13. PMid:2207172 Cho JH, Sato S and Raleigh DP (2004). Thermodynamics and kinetics of non-native interactions in protein folding: a single point mutant significantly stabilizes the N-terminal domain of L9 by modulating non-native interactions in the denatured state. J. Mol. Biol. 338: 827-837. http://dx.doi.org/10.1016/j.jmb.2004.02.073 PMid:15099748 Chou PY and Fasman GD (1978). Empirical predictions of protein conformation. Annu. Rev. Biochem. 47: 251-276. http://dx.doi.org/10.1146/annurev.bi.47.070178.001343 PMid:354496 Herbst KL, Nichols LM, Gesteland RF and Weiss RB (1994). A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60 from bacteriophage T4. Proc. Natl. Acad. Sci. U. S. A. 91: 12525-12529. http://dx.doi.org/10.1073/pnas.91.26.12525 Hoffman DW, Davies C, Gerchman SE, Kycia JH, et al. (1994). Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein. EMBO J. 13: 205-212. PMid:8306963    PMCid:394794 Hoffman DW, Cameron CS, Davies C, White SW, et al. (1996). Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy. J. Mol. Biol. 264: 1058-1071. http://dx.doi.org/10.1006/jmbi.1996.0696 PMid:9000630 Horng JC, Moroz V, Rigotti DJ, Fairman R, et al. (2002). Characterization of large peptide fragments derived from the N-terminal domain of the ribosomal protein L9: definition of the minimum folding motif and characterization of local electrostatic interactions. Biochemistry 41: 13360-13369. http://dx.doi.org/10.1021/bi026410c PMid:12416980 Li R, Fan W, Tian G, Zhu H, et al. (2010). The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317. http://dx.doi.org/10.1038/nature08696 PMid:20010809 Lieberman KR, Firpo MA, Herr AJ, Nguyenle T, et al. (2000). The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit. J. Mol. Biol. 297: 1129-1143. http://dx.doi.org/10.1006/jmbi.2000.3621 PMid:10764578 Lillemoen J, Cameron CS and Hoffman DW (1997). The stability and dynamics of ribosomal protein L9: investigations of a molecular strut by amide proton exchange and circular dichroism. J. Mol. Biol. 268: 482-493. http://dx.doi.org/10.1006/jmbi.1997.0982 PMid:9159485 MazurukK, Schoen TJ, Chader GJ, Iwata T, et al. (1996). Structural organization and chromosomal localization of the human ribosomal protein L9 gene. Biochim. Biophys. Acta 1305: 151-162. PMid:8597601 Nag B, Akella SS, Cann PA, Tewari DS, et al. (1991). Monoclonal antibodies to Escherichia coli ribosomal proteins L9 and L10. Effects on ribosome function and localization of L9 on the surface of the 50 S ribosomal subunit. J. Biol. Chem. 266: 22129-22135. PMid:1939233 O’Neil KT and DeGrado WF (1990). A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250: 646-651. Roth HE and Nierhaus KH (1980). Assembly map of the 50-S subunit from Escherichia coli ribosomes, covering the proteins present in the first reconstitution intermediate particle. Eur. J. Biochem. 103: 95-98. http://dx.doi.org/10.1111/j.1432-1033.1980.tb04292.x PMid:6153613 SambrookJ, Fritsch EF and Maniatis T (1989). Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. Sato S and Raleigh DP (2002). pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J. Mol. Biol. 318: 571-582. http://dx.doi.org/10.1016/S0022-2836(02)00015-3 Sato S, Luisi DL and Raleigh DP (2000). pH jump studies of the folding of the multidomain ribosomal protein L9: the structural organization of the N-terminal domain does not affect the anomalously slow folding of the C-terminal domain. Biochemistry 39: 4955-4962. http://dx.doi.org/10.1021/bi992608u PMid:10769155 Sato S, Xiang S and Raleigh DP (2001). On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9. J. Mol. Biol. 312: 569- 577. http://dx.doi.org/10.1006/jmbi.2001.4968 PMid:11563917 Schmidt A, Hollmann M and Schafer U (1996). A newly identified Minute locus, M(2)32D, encodes the ribosomal protein L9 in Drosophila melanogaster. Mol. Gen. Genet. 251: 381-387. http://dx.doi.org/10.1007/BF02172530 Shan B, Bhattacharya S, Eliezer D and Raleigh DP (2008). The low-pH unfolded state of the C-terminal domain of the ribosomal protein L9 contains significant secondary structure in the absence of denaturant but is no more compact than the low-pH urea unfolded state. Biochemistry 47: 9565-9573. http://dx.doi.org/10.1021/bi8006862 PMid:18707127    PMCid:2730213 Voelz VA, Bowman GR, Beauchamp K and Pande VS (2010). Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J. Am. Chem. Soc. 132: 1526-1528. http://dx.doi.org/10.1021/ja9090353 PMid:20070076    PMCid:2835335 Walleczek J, Redl B, Stoffler-Meilicke M and Stoffler G (1989). Protein-protein cross-linking of the 50 S ribosomal subunit of Escherichia coli using 2-iminothiolane. Identification of cross-links by immunoblotting techniques. J. Biol. Chem. 264: 4231-4237. PMid:2645289
Y. Song, Hou, Y. - L., Hou, W. - R., Wu, G. - F., and Zhang, T., cDNA, genomic sequence cloning and overexpression of the ribosomal protein S13 gene in the giant panda (Ailuropoda melanoleuca), vol. 10, pp. 121-132, 2011.
Barakat A, Szick-Miranda K, Chang IF, Guyot R, et al. (2001). The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol. 127: 398-415. http://dx.doi.org/10.1104/pp.010265 PMid:11598216 PMCid:125077   Bortoluzzi S, d'Alessi F, Romualdi C and Danieli GA (2001). Differential expression of genes coding for ribosomal proteins in different human tissues. Bioinformatics 17: 1152-1157. http://dx.doi.org/10.1093/bioinformatics/17.12.1152 PMid:11751223   Draper DE and Reynaldo LP (1999). RNA binding strategies of ribosomal proteins. Nucleic Acids Res. 27: 381-388. http://dx.doi.org/10.1093/nar/27.2.381 PMid:9862955 PMCid:148190   Du YJ, Luo XY, Hao YZ, Zhang T, et al. (2007). cDNA cloning and overexpression of acidic ribosomal phosphoprotein P1 gene (RPLP1) from the giant panda. Int. J. Biol. Sci. 3: 428-433. http://dx.doi.org/10.7150/ijbs.3.428 PMid:18071584 PMCid:2043164   Hou WR, Chen Y, Peng Z, Wu X, et al. (2007a). cDNA cloning and sequences analysis of ubiquinol-cytochrome c reductase complex ubiquinone-binding protein (QP-C) from giant panda. Acta Theriol. Sin. 27: 190-194.   Hou WR, Du YJ, Chen Y, Wu X, et al. (2007b). Nucleotide sequence of cDNA encoding the mitochondrial precursor protein of the ATPase inhibitor from the giant panda (Ailuropoda melanoleuca). DNA Cell Biol. 26: 799-802. http://dx.doi.org/10.1089/dna.2007.0626 PMid:17822358   Hou YL, Hou WR, Ren ZL, Hao YZ, et al. (2008). cDNA, genomic sequence and overexpression of crystallin alpha-B gene (CRYAB) of the giant panda. Int. J. Biol. Sci. 4: 415-421. http://dx.doi.org/10.7150/ijbs.4.415 PMid:19043608 PMCid:2586680   Hou YL, Du YJ, Hou WR, Zhou CQ, et al. (2009a). Cloning and sequence analysis of translocase of inner mitochondrial membrane 10 homolog (yeast) gene (TIMM10) from the giant panda. J. Cell Anim. Biol. 3: 9-14.   Hou YL, Hou WR, Ren ZL, Hao YZ, et al. (2009b). cDNA cloning and overexpression of ribosomal protein S19 gene (RPS19) from the giant panda. DNA Cell Biol. 28: 41-47. http://dx.doi.org/10.1089/dna.2008.0799 PMid:19072723   Ishii K, Washio T, Uechi T, Yoshihama M, et al. (2006). Characteristics and clustering of human ribosomal protein genes. BMC Genomics 7: 37. http://dx.doi.org/10.1186/1471-2164-7-37 PMid:16504170 PMCid:1459141   Jagannathan I and Culver GM (2003). Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8. J. Mol. Biol. 330: 373-383. http://dx.doi.org/10.1016/S0022-2836(03)00586-2   Kumar R, Drouaud J, Raynal M and Small I (1995). Characterization of the nuclear gene encoding chloroplast ribosomal protein S13 from Arabidopsis thaliana. Curr. Genet. 28: 346-352. http://dx.doi.org/10.1007/BF00326432 PMid:8590480   Li R, Fan W, Tian G, Zhu H, et al. (2010). The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317. http://dx.doi.org/10.1038/nature08696 PMid:20010809   Liao MJ, Zhu MY, Zhang ZH, Zhang AJ, et al. (2003). Cloning and sequence analysis of FSH and LH in the giant panda (Ailuropoda melanoleuca). Anim. Reprod. Sci. 77: 107-116. http://dx.doi.org/10.1016/S0378-4320(02)00275-0   Mager WH (1988). Control of ribosomal protein gene expression. Biochim. Biophys. Acta 949: 1-15. http://dx.doi.org/10.1016/0167-4781(88)90048-6   Malygin A, Parakhnevitch N and Karpova G (2005). Human ribosomal protein S13: cloning, expression, refolding, and structural stability. Biochim. Biophys. Acta 1747: 93-97. http://dx.doi.org/10.1016/j.bbapap.2004.10.001 PMid:15680243   Mather JP, Moore A and Li RH (1997). Activins, inhibins, and follistatins: further thoughts on a growing family of regulators. Proc. Soc. Exp. Biol. Med. 215: 209-222. PMid:9207855   Montali RJ (1990). Causes of neonatal mortality in giant panda. Tokyo Zoolog. Park Soc. 83-94.   Perry RP (2005). The architecture of mammalian ribosomal protein promoters. BMC Evol. Biol. 5: 15. http://dx.doi.org/10.1186/1471-2148-5-15 PMid:15707503 PMCid:554972   Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning. A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.   Sanchez H, Fester T, Kloska S, Schroder W, et al. (1996). Transfer of rps19 to the nucleus involves the gain of an RNP-binding motif which may functionally replace RPS13 in Arabidopsis mitochondria. EMBO J. 15: 2138-2149. PMid:8641279 PMCid:450136   Shi Y, Zhai H, Wang X, Han Z, et al. (2004). Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Exp. Cell Res. 296: 337-346. http://dx.doi.org/10.1016/j.yexcr.2004.02.009 PMid:15149863   Wool IG (1996). Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21: 164-165. PMid:8871397   Wool IG, Chan YL and Gluck A (1995). Structure and evolution of mammalian ribosomal proteins. Biochem. Cell Biol. 73: 933-947. http://dx.doi.org/10.1139/o95-101 PMid:8722009   Wu ZA, Liu WX, Murphy C and Gall J (1990). Satellite 1 DNA sequence from genomic DNA of the giant panda Ailuropoda melanoleuca. Nucleic Acids Res. 18: 1054. http://dx.doi.org/10.1093/nar/18.4.1054 PMid:2315021 PMCid:330371   Yoshihama M, Uechi T, Asakawa S, Kawasaki K, et al. (2002). The human ribosomal protein genes: sequencing and comparative analysis of 73 genes. Genome Res. 12: 379-390. http://dx.doi.org/10.1101/gr.214202 PMid:11875025 PMCid:155282   Zeng JZ, Hong Y, Wang HY, Wang ZX, et al. (2001). Cloning and expression of ribosomal protein L26 in hepatocellular carcinoma. China J. Exp. Surg. 18: 108-109.
D. Qu, Song, Y., Li, W. M., Pei, X. W., Wang, Z. X., Jia, S. R., and Zhang, Y. Q., Isolation and characterization of the organ-specific and light-inducible promoter of the gene encoding rubisco activase in potato (Solanum tuberosum), vol. 10, pp. 621-631, 2011.
Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. doi:10.1093/nar/25.17.3389 PMid:9254694    PMCid:146917 Anonymous (1985). A simple and general method for transferring genes into plants. Science 227: 1229-1231. doi:10.1126/science.227.4691.1229 Ayala-Ochoa A, Vargas-Suarez M, Loza-Tavera H, Leon P, et al. (2004). In maize, two distinct ribulose 1,5-bisphosphate carboxylase/oxygenase activase transcripts have different day/night patterns of expression. Biochimie 86: 439-449. doi:10.1016/j.biochi.2004.06.007 PMid:15308333 Chomczynski P and Sacchi N (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. doi:10.1016/0003-2697(87)90021-2 de Souza CR, Aragao FJ, Moreira EC, Costa CN, et al. (2009). Isolation and characterization of the promoter sequence of a cassava gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in storage roots. Genet. Mol. Res. 8: 334-344. doi:10.4238/vol8-1gmr560 PMid:19440969 Gilmartin PM, Sarokin L, Memelink J and Chua NH (1990). Molecular light switches for plant genes. Plant Cell 2: 369- 378. PMid:2152164    PMCid:159894 Halfon MS (2006). (Re)modeling the transcriptional enhancer. Nat. Genet. 38: 1102-1103. doi:10.1038/ng1006-1102 PMid:17006462 Higo K, Ugawa Y, Iwamoto M and Korenaga T (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27: 297-300. doi:10.1093/nar/27.1.297 PMid:9847208    PMCid:148163 Hodgson C (1991). Dispersal of apterous aphids (Homoptera: Aphididae) from their host plant and its significance. Bull. Entomol. Res. 81: 417-427. doi:10.1017/S0007485300031989 Jacobsen E and Schouten HJ (2007). Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotechnol. 25: 219-223. doi:10.1016/j.tibtech.2007.03.008 PMid:17383037 Jefferson RA, Kavanagh TA and Bevan MW (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901-3907. PMid:3327686    PMCid:553867 Law RD and Crafts-Brandner SJ (2001). High temperature stress increases the expression of wheat leaf ribulose-1, 5-bisphosphate carboxylase/oxygenase activase protein. Arch. Biochem. Biophys. 386: 261-267. doi:10.1006/abbi.2000.2225 PMid:11368350 Lescot M, Dehais P, Thijs G, Marchal K, et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30: 325-327. doi:10.1093/nar/30.1.325 PMid:11752327    PMCid:99092 Liu Z, Taub CC and McClung CR (1996). Identification of an Arabidopsis thaliana ribulose-1,5-bisphosphate carboxylase/ oxygenase activase (RCA) minimal promoter regulated by light and the circadian clock. Plant Physiol. 112: 43-51. doi:10.1104/pp.112.1.43 PMid:8819320    PMCid:157921 Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x Nomura M, Katayama K, Nishimura A, Ishida Y, et al. (2000). The promoter of rbcS in a C3 plant (rice) directs organ-specific, light-dependent expression in a C4 plant (maize), but does not confer bundle sheath cell-specific expression. Plant Mol. Biol. 44: 99-106. doi:10.1023/A:1006461812053 PMid:11094984 Orozco BM and Ogren WL (1993). Localization of light-inducible and tissue-specific regions of the spinach ribulose bisphosphate carboxylase/oxygenase (rubisco) activase promoter in transgenic tobacco plants. Plant Mol. Biol. 23: 1129-1138. doi:10.1007/BF00042347 PMid:8292778 Park TH and Jones JDG (2008). A new resistance gene to powdery mildew identified in Solanum neorossii has been localized on the short arm of potato chromosome 6. Euphytica 166: 331-339. doi:10.1007/s10681-008-9811-5 Pilgrim ML and McClung CR (1993). Differential involvement of the circadian clock in the expression of genes required for ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis, assembly, and activation in Arabidopsis thaliana. Plant Physiol. 103: 553-564. PMid:12231961    PMCid:159015 Portis AR Jr (2003). Rubisco activase - rubisco’s catalytic chaperone. Photosynth. Res. 75: 11-27. doi:10.1023/A:1022458108678 PMid:16245090 Portis AR Jr, Li C, Wang D and Salvucci ME (2008). Regulation of rubisco activase and its interaction with rubisco. J. Exp. Bot. 59: 1597-1604. doi:10.1093/jxb/erm240 PMid:18048372 Prestridge DS (1991). SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput. Appl. Biosci. 7: 203-206. PMid:2059845 Qian J and Rodermel SR (1993). Ribulose-1,5-bisphosphate carboxylase/oxygenase activase cDNAs from Nicotiana tabacum. Plant Physiol. 102: 683-684. doi:10.1104/pp.102.2.683 PMid:8108517    PMCid:158830 Roesler KR and Ogren WL (1990). Primary structure of Chlamydomonas reinhardtii ribulose 1,5-bisphosphate carboxylase/oxygenase activase and evidence for a single polypeptide. Plant Physiol. 94: 1837-1841. doi:10.1104/pp.94.4.1837 PMid:16667924    PMCid:1077461 Rundle SJ and Zielinski RE (1991). Organization and expression of two tandemly oriented genes encoding ribulose bisphosphate carboxylase/oxygenase activase in barley. J. Biol. Chem. 266: 4677-4685. PMid:2002016 Schouten HJ and Jacobsen E (2008). Cisgenesis and intragenesis, sisters in innovative plant breeding. Trends Plant Sci. 13: 260-261. doi:10.1016/j.tplants.2008.04.005 PMid:18486525 Salvucci ME (2008). Association of rubisco activase with chaperonin-60beta: a possible mechanism for protecting photosynthesis during heat stress. J. Exp. Bot. 59: 1923-1933. doi:10.1093/jxb/erm343 PMid:18353762 Salvucci ME and Crafts-Brandner SJ (2004). Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol. 134: 1460-1470. doi:10.1104/pp.103.038323 PMid:15084731    PMCid:419822 Salvucci ME, Werneke JM, Ogren WL and Portis AR (1987). Purification and species distribution of rubisco activase. Plant Physiol. 84: 930-936. doi:10.1104/pp.84.3.930 PMid:16665546    PMCid:1056697 Salvucci ME, van de Loo FJ and Stecher D (2003). Two isoforms of rubisco activase in cotton, the products of separate genes not alternative splicing. Planta 216: 736-744. PMid:12624760 Salvucci ME, DeRidder BP and Portis AR Jr (2006). Effect of activase level and isoform on the thermotolerance of photosynthesis in Arabidopsis. J. Exp. Bot. 57: 3793-3799. doi:10.1093/jxb/erl140 PMid:16997900 Shelton AM, Zhao JZ and Roush RT (2002). Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. Annu. Rev. Entomol. 47: 845-881. doi:10.1146/annurev.ento.47.091201.145309 PMid:11729093 Stewart CN Jr, Richards HA and Halfhill MD (2000). Transgenic plants and biosafety: science, misconceptions and public perceptions. Biotechniques 29: 832-843. PMid:11056815 Terzaghi WB and Cashmore AR (1995). Light-regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 445-474. doi:10.1146/annurev.pp.46.060195.002305 To KY, Suen DF and Chen SC (1999). Molecular characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice leaves. Planta 209: 66-76. doi:10.1007/s004250050607 PMid:10467032 Ueda T, Pichersky E, Malik VS and Cashmore AR (1989). Level of expression of the tomato rbcS-3A gene is modulated by a far upstream promoter element in a developmentally regulated manner. Plant Cell. 1: 217-227. PMid:2535544    PMCid:159754 Watillon B, Kettmann R, Boxus P and Burny A (1993). Developmental and circadian pattern of rubisco activase mRNA accumulation in apple plants. Plant Mol. Biol. 23: 501-509. doi:10.1007/BF00019298 PMid:8219085 Weber D (2003). Colorado bettle: pest on the move. Pestic. Outlook 14: 256-259. doi:10.1039/b314847p Werneke JM, Zielinski RE and Ogren WL (1988). Structure and expression of spinach leaf cDNA encoding ribulose bisphosphate carboxylase/oxygenase activase. Proc. Natl. Acad. Sci. U. S. A. 85: 787-791. doi:10.1073/pnas.85.3.787 Xie Y, Liu Y, Meng M, Chen L, et al. (2003). Isolation and identification of a super strong plant promoter from cotton leaf curl Multan virus. Plant Mol. Biol. 53: 1-14. doi:10.1023/B:PLAN.0000009257.37471.02 PMid:14756302 Xu K, He B, Zhou S, Li Y, et al. (2010). Cloning and characterization of the rubisco activase gene from Ipomoea batatas (L.) Lam. Mol. Biol. Rep. 37: 661-668. doi:10.1007/s11033-009-9510-x PMid:19296237 Yin Z, Meng F, Song H, Wang X, et al. (2010). Expression quantitative trait loci analysis of two genes encoding rubisco activase in soybean. Plant Physiol. 152: 1625-1637. doi:10.1104/pp.109.148312 PMid:20032079    PMCid:2832260
2010
G. - F. Wu, Hou, Y. - L., Hou, W. - R., Song, Y., and Zhang, T., Giant panda ribosomal protein S14: cDNA, genomic sequence cloning, sequence analysis, and overexpression, vol. 9, pp. 2004-2015, 2010.
Boultwood J, Lewis S and Wainscoat JS (1994). The 5q-syndrome. Blood 84: 3253-3260. PMid:7949083   Boultwood J, Fidler C, Strickson AJ, Watkins F, et al. (2002). Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood 99: 4638-4641. http://dx.doi.org/10.1182/blood.V99.12.4638 PMid:12036901   Boultwood J, Pellagatti A, Cattan H, Lawrie CH, et al. (2007). Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br. J. Haematol. 139: 578-589. http://dx.doi.org/10.1111/j.1365-2141.2007.06833.x PMid:17916100   Diaz JJ and Roufa DJ (1992). Fine-structure map of the human ribosomal protein gene RPS14. Mol. Cell Biol. 12: 1680- 1686. PMid:1549121 PMCid:369611   Du YJ, Luo XY, Hao YZ, Zhang T, et al. (2007). cDNA cloning and overexpression of acidic ribosomal phosphoprotein P1 gene (RPLP1) from the giant panda. Int. J. Biol. Sci. 3: 428-433. http://dx.doi.org/10.7150/ijbs.3.428 PMid:18071584 PMCid:2043164   Ebert BL, Pretz J, Bosco J, Chang CY, et al. (2008). Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451: 335-339. http://dx.doi.org/10.1038/nature06494 PMid:18202658   Ferreira-Cerca S, Poll G, Gleizes PE, Tschochner H, et al. (2005). Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol. Cell 20: 263-275. http://dx.doi.org/10.1016/j.molcel.2005.09.005 PMid:16246728   Fewell SW and Woolford JL Jr (1999). Ribosomal protein S14 of Saccharomyces cerevisiae regulates its expression by binding to RPS14B pre-mRNA and to 18S rRNA. Mol. Cell Biol. 19: 826-834. PMid:9858605 PMCid:83939   Ford CL, Randal-Whitis L and Ellis SR (1999). Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res. 59: 704-710. PMid:9973221   Giagounidis AA, Germing U, Haase S, Hildebrandt B, et al. (2004). Clinical, morphological, cytogenetic, and prognostic features of patients with myelodysplastic syndromes and del(5q) including band q31. Leukemia 18: 113-119. http://dx.doi.org/10.1038/sj.leu.2403189 PMid:14586479   Hou WR, Sun GL, Chen Y, Wu X, et al. (2008). Molecular cloning of ribosomal protein L26 (RPL26) cDNA from Ailuropoda melanoleuca and its potential value in phylogenetic study. Biochem. Syst. Ecol. 36: 194-200. http://dx.doi.org/10.1016/j.bse.2007.08.010   Hou YL, Hou WR, Ren ZL, Hao YZ, et al. (2009). cDNA cloning and overexpression of ribosomal protein S19 gene (RPS19) from the giant panda. DNA Cell Biol. 28: 41-47. http://dx.doi.org/10.1089/dna.2008.0799 PMid:19072723   Hwang KC, Cui XS, Park SP, Shin MR, et al. (2004). Identification of differentially regulated genes in bovine blastocysts using an annealing control primer system. Mol. Reprod. Dev. 69: 43-51. http://dx.doi.org/10.1002/mrd.20156 PMid:15278903   Jakovljevic J, de Mayolo PA, Miles TD, Nguyen TM, et al. (2004). The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol. Cell 14: 331-342. http://dx.doi.org/10.1016/S1097-2765(04)00215-1   Larkin JC, Thompson JR and Woolford JL Jr (1987). Structure and expression of the Saccharomyces cerevisiae CRY1 gene: a highly conserved ribosomal protein gene. Mol. Cell Biol. 7: 1764-1775. PMid:3037334 PMCid:365278   Li R, Fan W, Tian G, Zhu H, et al. (2010). The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317. http://dx.doi.org/10.1038/nature08696 PMid:20010809   Li Z, Paulovich AG and Woolford JL Jr (1995). Feedback inhibition of the yeast ribosomal protein gene CRY2 is mediated by the nucleotide sequence and secondary structure of CRY2 pre-mRNA. Mol. Cell Biol. 15: 6454-6464. PMid:7565797 PMCid:230896   Liao MJ, Zhu MY, Zheng X, Zhang ZH, et al. (2003). cDNA cloning of growth hormone from giant panda (Ailuropoda melanoleuca) and its expression in Escherichia coli. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 135: 109-116. PMid:12781978   Martin NJ and Roufa DJ (1997). Functional analysis of human RPS14 null alleles. J. Cell Sci. 110: 955-963.   Mayolo PA and Woolford JL Jr (2003). Interactions of yeast ribosomal protein rpS14 with RNA. J. Mol. Biol. 333: 697- 709. http://dx.doi.org/10.1016/j.jmb.2003.09.006   Moritz M, Paulovich AG, Tsay YF and Woolford JL Jr (1990). Depletion of yeast ribosomal proteins L16 or rp59 disrupts ribosome assembly. J. Cell Biol. 111: 2261-2274. http://dx.doi.org/10.1083/jcb.111.6.2261 PMid:2277060   Paulovich AG, Thompson JR, Larkin JC, Li Z, et al. (1993). Molecular genetics of cryptopleurine resistance in Saccharomyces cerevisiae: expression of a ribosomal protein gene family. Genetics 135: 719-730. PMid:8293976 PMCid:1205715   Ramakrishnan V and Moore PB (2001). Atomic structures at last: the ribosome in 2000. Curr. Opin. Struct. Biol. 11: 144-154. http://dx.doi.org/10.1016/S0959-440X(00)00184-6   Rogers JH (1990). The role of introns in evolution. FEBS Lett. 268: 339-343. http://dx.doi.org/10.1016/0014-5793(90)81282-S   Roy SW, Fedorov A and Gilbert W (2003). Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc. Natl. Acad. Sci. U. S. A. 100: 7158-7162. http://dx.doi.org/10.1073/pnas.1232297100 PMid:12777620 PMCid:165846   Wool IG (1979). The structure and function of eukaryotic ribosomes. Annu. Rev. Biochem. 48: 719-754. http://dx.doi.org/10.1146/annurev.bi.48.070179.003443 PMid:382996   Wool IG, Chan YL and Gluck A (1995). Structure and evolution of mammalian ribosomal proteins. Biochem. Cell Biol. 73: 933-947. http://dx.doi.org/10.1139/o95-101 PMid:8722009   Yoshihama M, Uechi T, Asakawa S, Kawasaki K, et al. (2002). The human ribosomal protein genes: sequencing and comparative analysis of 73 genes. Genome Res. 12: 379-390. http://dx.doi.org/10.1101/gr.214202 PMid:11875025 PMCid:155282   Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, et al. (2001). Crystal structure of the ribosome at 5.5 A resolution. Science 292: 883-896. http://dx.doi.org/10.1126/science.1060089 PMid:11283358   Zhang T, Hou WR, Hou YL, Hao YZ, et al. (2009). cDNA, genomic sequence cloning and overexpression of ribosomal protein s20 gene (RPS20) from the giant panda (Ailuropoda melanoleuca). African J. Biotech. 8: 5627-5632