Publications

Found 1 results
Filters: Author is J.L. Reis-Cunha  [Clear All Filters]
2011
C. Martins, Reis-Cunha, J. L., Silva, M. N., Pereira, E. G., Pappas, Jr., G. J., Bartholomeu, D. C., and Zingales, B., Identification of genes encoding hypothetical proteins in open-reading frame expressed sequence tags from mammalian stages of Trypanosoma cruzi, vol. 10, pp. 1589-1630, 2011.
Acosta-Serrano A, Almeida IC, Freitas-Junior LH, Yoshida N, et al. (2001). The mucin-like glycoprotein super-family of Trypanosoma cruzi: structure and biological roles. Mol. Biochem. Parasitol. 114: 143-150. http://dx.doi.org/10.1016/S0166-6851(01)00245-6 Aguero F, Zheng W, Weatherly DB, Mendes P, et al. (2006). TcruziDB: an integrated, post-genomics community resource for Trypanosoma cruzi. Nucleic Acids Res. 34: D428-D431. http://dx.doi.org/10.1093/nar/gkj108 PMid:16381904    PMCid:1347470 Albertti LA, Macedo AM, Chiari E, Andrews NW, et al. (2010). Role of host lysosomal associated membrane protein (LAMP) in Trypanosoma cruzi invasion and intracellular development. Microb. Infect. 12: 784-789. http://dx.doi.org/10.1016/j.micinf.2010.05.015 PMid:20561595    PMCid:2934878 Arner E, Kindlund E, Nilsson D, Farzana F, et al. (2007). Database of Trypanosoma cruzi repeated genes: 20,000 additional gene variants. BMC Genom. 8: 391. http://dx.doi.org/10.1186/1471-2164-8-391 PMid:17963481    PMCid:2204015 Atwood JA III, Weatherly DB, Minning TA, Bundy B, et al. (2005). The Trypanosoma cruzi proteome. Science 309: 473-476. http://dx.doi.org/10.1126/science.1110289 PMid:16020736 Baptista CS, Vencio RZ, Abdala S, Carranza JC, et al. (2006). Differential transcription profiles in Trypanosoma cruzi associated with clinical forms of Chagas disease: Maxicircle NADH dehydrogenase subunit 7 gene truncation in asymptomatic patient isolates. Mol. Biochem. Parasitol. 150: 236-248. http://dx.doi.org/10.1016/j.molbiopara.2006.08.008 PMid:16996148 Bartholomeu DC, Cerqueira GC, Leao AC, daRocha WD, et al. (2009). Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi. Nucleic Acids Res. 37: 3407-3417. http://dx.doi.org/10.1093/nar/gkp172 PMid:19336417    PMCid:2691823 Buscaglia CA, Campo VA, Di Noia JM, Torrecilhas AC, et al. (2004). The surface coat of the mammal-dwelling infective trypomastigote stage of Trypanosoma cruzi is formed by highly diverse immunogenic mucins. J. Biol. Chem. 279: 15860-15869. http://dx.doi.org/10.1074/jbc.M314051200 PMid:14749325 Camargo AA, Samaia HP, Dias-Neto E, Simao DF, et al. (2001). The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome. Proc. Natl. Acad. Sci. U. S. A. 98: 12103-12108. http://dx.doi.org/10.1073/pnas.201182798 PMid:11593022    PMCid:59775 Campbell DA, Westenberger SJ and Sturm NR (2004). The determinants of Chagas disease: connecting parasite and host genetics. Curr. Mol. Med. 4: 549-562. http://dx.doi.org/10.2174/1566524043360249 PMid:15357207 Carranza JC, Valadares HM, D’Avila DA, Baptista RP, et al. (2009). Trypanosoma cruzi maxicircle heterogeneity in Chagas disease patients from Brazil. Int. J. Parasitol. 39: 963-973. http://dx.doi.org/10.1016/j.ijpara.2009.01.009 PMid:19504756 Chou HH and Holmes MH (2001). DNA sequence quality trimming and vector removal. Bioinformatics. 17: 1093-1104. http://dx.doi.org/10.1093/bioinformatics/17.12.1093 PMid:11751217 Dias NE, Caballero OL, Vidigal TH, Pena SD, et al. (1997). Partially degraded DNA of parasitological interest serves as an adequate template for the production of random amplified polymorphic DNAs (RAPDs). J. Parasitol. 83: 753-755. http://dx.doi.org/10.2307/3284257 Dias NE, Correa RG, Verjovski-Almeida S, Briones MR, et al. (2000). Shotgun sequencing of the human transcriptome with ORF expressed sequence tags. Proc. Natl. Acad. Sci. U. S. A. 97: 3491-3496. http://dx.doi.org/10.1073/pnas.97.7.3491 El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, et al. (2005). The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309: 409-415. http://dx.doi.org/10.1126/science.1112631 PMid:16020725 Ewing B and Green P (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8: 186-194. PMid:9521922 Ferella M, Nilsson D, Darban H, Rodrigues C, et al. (2008). Proteomics in Trypanosoma cruzi - localization of novel proteins to various organelles. Proteomics 8: 2735-2749. http://dx.doi.org/10.1002/pmic.200700940 PMid:18546153    PMCid:2706665 Fernandes AB, Neira I, Ferreira AT and Mortara RA (2006). Cell invasion by Trypanosoma cruzi amastigotes of distinct infectivities: studies on signaling pathways. Parasitol. Res. 100: 59-68. http://dx.doi.org/10.1007/s00436-006-0236-6 PMid:16791632 Frasch AC (2000). Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol. Today 16: 282-286. http://dx.doi.org/10.1016/S0169-4758(00)01698-7 Gao W, Wortis HH and Pereira MA (2002). The Trypanosoma cruzi trans-sialidase is a T cell-independent B cell mitogen and an inducer of non-specific Ig secretion. Int. Immunol. 14: 299-308. http://dx.doi.org/10.1093/intimm/14.3.299 PMid:11867566 Grandgenett PM, Coughlin BC, Kirchhoff LV and Donelson JE (2000). Differential expression of GP63 genes in Trypanosoma cruzi. Mol. Biochem. Parasitol. 110: 409-415. http://dx.doi.org/10.1016/S0166-6851(00)00275-9 Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 PMid:10508846    PMCid:310812 Kulkarni MM, Olson CL, Engman DM and McGwire BS (2009). Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infect. Immun. 77: 2193-2200. http://dx.doi.org/10.1128/IAI.01542-08 PMid:19273559    PMCid:2681764 Lander N, Bernal C, Diez N, Anez N, et al. (2010). Localization and developmental regulation of a dispersed gene family 1 protein in Trypanosoma cruzi. Infect. Immun. 78: 231-240. http://dx.doi.org/10.1128/IAI.00780-09 PMid:19841080    PMCid:2798230 Macedo AM and Pena SD (1998). Genetic variability of Trypanosoma cruzi: Implications for the pathogenesis of Chagas disease. Parasitol. Today 14: 119-124. http://dx.doi.org/10.1016/S0169-4758(97)01179-4 Macedo AM, Martins MS, Chiari E and Pena SD (1992). DNA fingerprinting of Trypanosoma cruzi: a new tool for characterization of strains and clones. Mol. Biochem. Parasitol. 55: 147-153. http://dx.doi.org/10.1016/0166-6851(92)90135-7 Macedo AM, Machado CR, Oliveira RP and Pena SD (2004). Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of Chagas disease. Mem. Inst. Oswaldo Cruz 99: 1-12. http://dx.doi.org/10.1590/S0074-02762004000100001 Martins C, Baptista CS, Ienne S, Cerqueira GC, et al. (2008). Genomic organization and transcription analysis of the 195- bp satellite DNA in Trypanosoma cruzi. Mol. Biochem. Parasitol. 160: 60-64. http://dx.doi.org/10.1016/j.molbiopara.2008.03.004 PMid:18440654 Miles MA, Llewellyn MS, Lewis MD, Yeo M, et al. (2009). The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology 136: 1509- 1528. http://dx.doi.org/10.1017/S0031182009990977 PMid:19691868 Minning TA, Weatherly DB, Atwood J, III, Orlando R, et al. (2009). The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genom. 10: 370. http://dx.doi.org/10.1186/1471-2164-10-370 PMid:19664227    PMCid:2907688 Pereira-Chioccola VL, Acosta-Serrano A, Correia dA, I, Ferguson MA, et al. (2000). Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-alpha-galactosyl antibodies. J. Cell Sci. 113 (Pt 7): 1299-1307. PMid:10704380 Pinto Dias JC (2006). The treatment of Chagas disease (South American trypanosomiasis). Ann. Intern. Med. 144: 772-774. PMid:16702594 Pitcovsky TA, Buscaglia CA, Mucci J and Campetella O (2002). A functional network of intramolecular cross-reacting epitopes delays the elicitation of neutralizing antibodies to Trypanosoma cruzi trans-sialidase. J. Infect. Dis. 186: 397-404. http://dx.doi.org/10.1086/341463 PMid:12134236 Teixeira SMR and Da Rocha WD (2003). Control of gene expression and genetic manipulation in Trypanosomatidae. Genet. Mol. Res. 2: 148-158. PMid:12917811 Tibayrenc M (1998). Genetic epidemiology of parasitic protozoa and other infectious agents: the need for an integrated approach. Int. J. Parasitol. 28: 85-104. http://dx.doi.org/10.1016/S0020-7519(97)00180-X Tomazi L, Kawashita SY, Pereira PM, Zingales B, et al. (2009). Haplotype distribution of five nuclear genes based on network genealogies and Bayesian inference indicates that Trypanosoma cruzi hybrid strains are polyphyletic. Genet. Mol. Res. 8: 458-476. http://dx.doi.org/10.4238/vol8-2gmr591 PMid:19551633 Weatherly DB, Boehlke C and Tarleton RL (2009). Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genom. 10: 255. http://dx.doi.org/10.1186/1471-2164-10-255 PMid:19486522    PMCid:2698008 Westenberger SJ, Cerqueira GC, El-Sayed NM, Zingales B, et al. (2006). Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genom. 7: 60. http://dx.doi.org/10.1186/1471-2164-7-60 PMid:16553959    PMCid:1559615 Zingales B, Pereira ME, Almeida KA, Umezawa ES, et al. (1997). Biological parameters and molecular markers of clone CL Brener - the reference organism of the Trypanosoma cruzi genome project. Mem. Inst. Oswaldo Cruz 92: 811- 814. http://dx.doi.org/10.1590/S0074-02761997000600016 Zingales B, Andrade SG, Briones MR, Campbell DA, et al. (2009). A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz 104: 1051-1054. http://dx.doi.org/10.1590/S0074-02762009000700021