Publications
Found 19 results
Filters: Author is J. Ma [Clear All Filters]
“Decreased miR-134 expression and its tumor-suppressive function in human osteosarcoma”, vol. 14, pp. 16771-16781, 2015.
, “Effect of a pre-microRNA-149 (miR-149) genetic variation on the risk of ischemic stroke in a Chinese Han population”, vol. 14, pp. 2582-2589, 2015.
, “Expression of TRAIL and its receptor DR5 and their significance in acute leukemia cells”, vol. 14, pp. 18562-18568, 2015.
, “Identification of genes associated with the increased number of four-seed pods in soybean (Glycine max L.) using transcriptome analysis”, vol. 14, pp. 18895-18912, 2015.
, “TGF-β1 polymorphism 509 C>T is associated with an increased risk for hepatocellular carcinoma in HCV-infected patients”, vol. 14, pp. 4461-4468, 2015.
, “Cloning and functional prediction of differentially expressed genes in the leaves of Glycine max parents and hybrids at the seedling stage”, vol. 13, pp. 5474-5483, 2014.
, “Cloning flanking sequence by single-primer PCR in transgenic plants”, vol. 13, pp. 8403-8410, 2014.
, “Cloning of flanking sequence in transgenic plants by restriction site-anchored single-primer polymerase chain reaction”, vol. 13, pp. 10556-10561, 2014.
, “Genetic analysis of the major gene plus polygene model in soybean resistance to Leguminivora glycinivorella”, vol. 13, pp. 4983-4989, 2014.
, , “Association of paraoxonase polymorphisms with carotid artery atherosclerosis in essential hypertension patients”, vol. 12, pp. 5174-5185, 2013.
, “Genetic polymorphisms of CCND1 and PTEN in progression of esophageal squamous carcinoma”, vol. 12, pp. 6685-6691, 2013.
, “The genetic variant rs401681C/T is associated with the risk of non-small cell lung cancer in a Chinese mainland population”, vol. 12. pp. 67-73, 2013.
, Bae EY, Lee SY, Kang BK, Lee EJ, et al. (2012). Replication of results of genome-wide association studies on lung cancer susceptibility loci in a Korean population. Respirology 17: 699-706.
http://dx.doi.org/10.1111/j.1440-1843.2012.02165.x
PMid:22404340
Ginsberg MS (2005). Epidemiology of lung cancer. Semin. Roentgenol. 40: 83-89.
http://dx.doi.org/10.1053/j.ro.2005.01.007
PMid:15898406
Girard N, Lou E, Azzoli CG, Reddy R, et al. (2010). Analysis of genetic variants in never-smokers with lung cancer facilitated by an Internet-based blood collection protocol: a preliminary report. Clin. Cancer Res. 16: 755-763.
http://dx.doi.org/10.1158/1078-0432.CCR-09-2437
PMid:20068085 PMCid:2808124
Haiman CA, Chen GK, Vachon CM, Canzian F, et al. (2011). A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat. Genet. 43: 1210-1214.
http://dx.doi.org/10.1038/ng.985
PMid:22037553 PMCid:3279120
Hardin M, Zielinski J, Wan ES, Hersh CP, et al. (2012). CHRNA3/5, IREB2, and ADCY2 are associated with Severe COPD in Poland. Am. J. Respir. Cell Mol. Biol. [Epub ahead of print].
http://dx.doi.org/10.1165/rcmb.2012-0011OC
PMid:22461431
Haugen A, Ryberg D, Mollerup S, Zienolddiny S, et al. (2000). Gene-environment interactions in human lung cancer. Toxicol. Lett. 112-113: 233-237.
http://dx.doi.org/10.1016/S0378-4274(99)00275-1
Hung RJ, McKay JD, Gaborieau V, Boffetta P, et al. (2008). A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452: 633-637.
http://dx.doi.org/10.1038/nature06885
PMid:18385738
Kiyohara C, Yoshimasu K, Takayama K and Nakanishi Y (2007). Lung cancer susceptibility: are we on our way to identifying a high-risk group? Future Oncol. 3: 617-627.
http://dx.doi.org/10.2217/14796694.3.6.617
PMid:18041914
Kollarova H, Janout V and Cizek L (2002). Epidemiology of lung cancer. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 146: 103-114.
http://dx.doi.org/10.5507/bp.2002.022
PMid:12572908
Lam WK (2005). Lung cancer in Asian women-the environment and genes. Respirology 10: 408-417.
http://dx.doi.org/10.1111/j.1440-1843.2005.00723.x
PMid:16135162
Law MH, Montgomery GW, Brown KM, Martin NG, et al. (2012). Meta-analysis combining new and existing data sets confirms that the TERT-CLPTM1L locus influences melanoma risk. J. Invest. Dermatol. 132: 485-487.
http://dx.doi.org/10.1038/jid.2011.322
PMid:21993562 PMCid:3258346
Liu Z, Li G, Wei S, Niu J, et al. (2010). Genetic variations in TERT-CLPTM1L genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 31: 1977-1981.
http://dx.doi.org/10.1093/carcin/bgq179
PMid:20802237 PMCid:2966556
McKay JD, Hung RJ, Gaborieau V, Boffetta P, et al. (2008). Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40: 1404-1406.
http://dx.doi.org/10.1038/ng.254
PMid:18978790 PMCid:2748187
Rafnar T, Sulem P, Stacey SN, Geller F, et al. (2009). Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41: 221-227.
http://dx.doi.org/10.1038/ng.296
PMid:19151717
Sanchez-Cespedes M (2009). Lung cancer biology: a genetic and genomic perspective. Clin. Transl. Oncol. 11: 263-269.
http://dx.doi.org/10.1007/s12094-009-0353-7
PMid:19451058
Sugimura H, Tao H, Suzuki M, Mori H, et al. (2011). Genetic susceptibility to lung cancer. Front Biosci. 3: 1463-1477.
http://dx.doi.org/10.2741/237
Thill PG, Goswami P, Berchem G and Domon B (2011). Lung cancer statistics in Luxembourg from 1981 to 2008. Bull. Soc. Sci. Med. Grand Duche Luxemb. 43-55.
PMid:22272445
Vossen RH, Aten E, Roos A and den Dunnen JT (2009). High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum. Mutat. 30: 860-866.
http://dx.doi.org/10.1002/humu.21019
PMid:19418555
Weinrich SL, Pruzan R, Ma L, Ouellette M, et al. (1997). Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17: 498-502.
http://dx.doi.org/10.1038/ng1297-498
PMid:9398860
Wu C, Hu Z, Yu D, Huang L, et al. (2009). Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res. 69: 5065-5072.
http://dx.doi.org/10.1158/0008-5472.CAN-09-0081
PMid:19491260
“Improving yield and quality traits of durum wheat by introgressing chromosome segments from hexaploid wheat”, vol. 12, pp. 6120-6129, 2013.
, “Molecular cloning and functional analysis of MRLC2 in Tianfu, Boer, and Chengdu Ma goats”, vol. 12, pp. 3510-3520, 2013.
, “rDNA ITS sequences among morphotypes of Keratell cochlearis, Keratell quadrata and Brachionus forficula (Rotifera)”, vol. 11, pp. 765-774, 2012.
, Bradshaw AD (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115-155.
http://dx.doi.org/10.1016/S0065-2660(08)60048-6
Cheng XF, Xi YL and Li HB (2008). Seasonal changes in the genetic structure of a Brachionus calyciflorus population in Lake Liantang based on ITS sequences. Acta Zoolog. Sin. 54: 245-255.
Ciros-Pérez J, Gómez A and Serra M (2001). On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. J. Plankton Res. 23: 1311-1328.
http://dx.doi.org/10.1093/plankt/23.12.1311
Derry AM, Hebert PDN and Prepas EE (2003). Evolution of rotifers in saline and subsaline lakes: A molecular phylogenetic approach. Limnol. Oceanogr. 48: 675-685.
http://dx.doi.org/10.4319/lo.2003.48.2.0675
Felleisen RS (1997). Comparative sequence analysis of 5.8S rRNA genes and internal transcribed spacer (ITS) regions of trichomonadid protozoa. Parasitology 115: 111-119.
http://dx.doi.org/10.1017/S0031182097001212
PMid:10190167
Fontaneto D, Barraclough TG, Chen K, Ricci C, et al. (2008). Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Mol. Ecol. 17: 3136-3146.
http://dx.doi.org/10.1111/j.1365-294X.2008.03806.x
PMid:18522694
Fu Y, Hirayama K and Natuskari Y (1991). Genetic divergence between S and L type strains of the rotifer Brachionus plicatilis O. F. Müller. J. Exp. Mar. Biol. Ecol. 151: 43-56.
http://dx.doi.org/10.1016/0022-0981(91)90014-N
Gilbert JJ (1963). Mictic female production in the rotifer Brachionus calyciflorus. J. Exp. Zool. 153: 113-124.
http://dx.doi.org/10.1002/jez.1401530204
Gilbert JJ and Walsh EJ (2005). Brachionus calyciflorus is a species complex: mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia 546: 257-265.
http://dx.doi.org/10.1007/s10750-005-4205-3
Gómez A (2005). Molecular ecology of rotifers: from population differentiation to speciation. Hydrobiologia 546: 89-99.
Gómez A and Serra M (1995). Behavioral reproductive isolation among sympatric strains of Brachionus plicatilis Muller 1786: insights into the status of this taxonomic species. Hydrobiologia 313/314: 111-119.
http://dx.doi.org/10.1007/BF00025938
Gómez A, Adcock GJ, Lunt DH and Carvalho GR (2002). The interplay between colonization history and gene flow in passively dispersing zooplankton: microsatellite analysis of rotifer resting egg banks. Int. J. Syst. Evol. Microbiol. 15: 158-171.
Green J (2005). Morphological variation of Keratella cochlearis (Gosse) in a backwater of the River Thames. Hydrobiologia 546: 189-196.
http://dx.doi.org/10.1007/s10750-005-4121-6
Hao JS, Yang Q, Li CX and Zhang KY (2003). Molecular phylogeny of Lophotrochozoa based on 18S rRNA genes sequences - with comment on the phylogenetic position of Bryozoa. J. Genet. Mol. Biol. 14: 64-72.
Hillbricht-Ilkowska A (1972). Morphological variation of Keratella cochlearis (Gosse) (Rotatoria) in several Masurian lakes of different trophic level. Pol. Arch. Hydrobiol. 19: 253-264.
Karabin A (1982). The Changes of the Abundance and Composition of Zooplankton Along the Eutrophication Process in Masurian Lakes, Poland. Ph.D. thesis, Institute of Ecology PAS, Poland.
Li HB, Xi YL, Cheng XF and Xiang XL (2008). Sympatric speciation in rotifers: evidence from molecular phylogenetic relationships and reproductive isolation among Brachionus calyciforus clones. Acta Zoolog. Sin. 54: 256-264.
Li SH, Zhu H, Xia YZ and Yu MJ (1959). The mass culture of unicellular green algae. Acta Hydrobiol. Sin. 4: 462-472.
Librado P and Rozas J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452.
http://dx.doi.org/10.1093/bioinformatics/btp187
PMid:19346325
Miner BG, Sultan SE, Morgan SG, Padilla DK, et al. (2005). Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20: 685-692.
http://dx.doi.org/10.1016/j.tree.2005.08.002
Papakostas S, Triantafyllidis A, Kappas I and Abatzopoulos TJ (2005). The utility of the 16S gene in investigating cryptic speciation within the Brachionus plicatilis species complex. Mar. Biol. 147: 1129-1139.
http://dx.doi.org/10.1007/s00227-005-0012-7
Pigliucci M, Murren CJ and Schlichting CD (2006). Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 209: 2362-2367.
http://dx.doi.org/10.1242/jeb.02070
PMid:16731812
Posada D and Crandall KA (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818.
http://dx.doi.org/10.1093/bioinformatics/14.9.817
PMid:9918953
Richards EJ (2006). Inherited epigenetic variation-revisiting soft inheritance. Nat. Rev. Genet. 7: 395-401.
http://dx.doi.org/10.1038/nrg1834
PMid:16534512
Ronquist F and Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
http://dx.doi.org/10.1093/bioinformatics/btg180
PMid:12912839
Sarma SSS and Rao TR (1987). Effect of food level on body size and egg size in a growing population of the rotifer Brachionus patulus Muller. Arch. Hydrobiol. 111: 245-253.
Schlichting CD (1986). The evolution of phynotypic plasticity in plants. Ann. Rev. Ecol. Evol. Systemat. 17: 667-693.
http://dx.doi.org/10.1146/annurev.es.17.110186.003315
Schlichting CD and Smith H (2002). Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol. Ecol. 16: 189-211.
http://dx.doi.org/10.1023/A:1019624425971
Schröder T and Walsh EJ (2007). Cryptic speciation in the cosmopolitan Epiphanes senta complex (Monogononta, Rotifera) with the description of new species. Hydrobiologia 593: 129-140.
http://dx.doi.org/10.1007/s10750-007-9066-5
Segers H (1995). Nomenclatural consequences of some recent studies on Brachionus plicatilis (Rotifera, Brachionidae). Hydrobiologia 313/314: 121-122.
http://dx.doi.org/10.1007/BF00025939
Stemberger RS and Gilbert JJ (1984). Spine development in the rotifer Keratella cochlearis: induction by cyclopoid copepods and Asplanchna. Freshwater Biol. 14: 639-647.
http://dx.doi.org/10.1111/j.1365-2427.1984.tb00183.x
Suatoni E (2003). Patterns of Speciation in the Rotifer Species Complex, Brachionus plicatilis. Yale University, New Haven, 115.
Sultan SE (2000). Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5: 537-542.
http://dx.doi.org/10.1016/S1360-1385(00)01797-0
Swofford DL (2002). Phylogenetic Analysis Using Parsimony and other Methods. Version 4.0. Beta Version. Sinauer Associates, Sunderland.
Tang BP, Zhou KY and Song DX (2002). Application of sequences of nrDNA ITS to molecular systematics of invertebrates. Chin. J. Zool. 37: 67-73.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, et al. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
http://dx.doi.org/10.1093/nar/25.24.4876
PMid:9396791 PMCid:147148
Weiner J (2004). Allocation, plasticity and allometry in plants. Pers. Plant Ecol. Evol. Syst. 6: 207-215.
http://dx.doi.org/10.1078/1433-8319-00083
Xi YL, Chen YQ, Zhu GY and Huang XF (2003). Sequence analysis of rDNA 18S-28S intergenic spacer regions from Brachionus calyciforus, B. bidentata, B. diversicornis and B. angularis in Lake Donghu, China. Acta Hydrobiol. Sin. 27: 427-430.
Xiang XL, Xi YL and Hu HY (2006). Phylogenetic relationships of Brachionus rotifers based on rDNA ITS1 gene sequences. Acta Zool. Sin. 52: 1067-1074.
Zhang JY, Xi YL, Ma Q and Xiang XL (2010). Taxonomical status of two Brachionus calyciforus morphotypes in Lake Liantang based on ITS sequence. Acta Hydrobiol. Sin. 34: 935-942.
http://dx.doi.org/10.3724/SP.J.1035.2010.00935
“Single- and double-SSR primer combined analyses in rice”, vol. 11, pp. 1032-1038, 2012.
, Brown-Guedira GL, Thompson JA, Nelson RL and Warburton ML (2000). Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers. Crop Sci. 40: 815-823.
http://dx.doi.org/10.2135/cropsci2000.403815x
La Rosa R, Angiolillo A, Guerrero C, Pellegrini M, et al. (2003). A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor. Appl. Genet. 106: 1273-1282.
PMid:12748779
Liu Y, Li Y, Zhou G and Uzokwe N (2010). Development of soybean EST-SSR markers and their use to assess genetic diversity in the subgenus Soja. Agr. Sci. China 9: 1423-1429.
http://dx.doi.org/10.1016/S1671-2927(09)60233-9
Ma J, Wang PW, Yao D, Wang YP, et al. (2011). Single-primer PCR correction: a strategy for false-positive exclusion. Genet. Mol. Res. 10: 150-159.
http://dx.doi.org/10.4238/vol10-1gmr988
PMid:21308656
Sayama T, Nakazaki T, Ishikawa G and Hanada T (2009). QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci. 176: 514-521.
http://dx.doi.org/10.1016/j.plantsci.2009.01.007
Wei X, Yang Z, Dong L, Yu H, et al. (2004). SSR evidence for taxonomic position of Weedy Rice‘Ludao’. Sci. Agric. Sin. 37: 937-942.
Welsh J and McClelland M (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213-7218.
http://dx.doi.org/10.1093/nar/18.24.7213
PMid:2259619 PMCid:332855
Wen ZX, Zhao TJ, Zhen YZ and Liu SH (2008). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron. Sin. 34: 1169-1178.
http://dx.doi.org/10.3724/SP.J.1006.2008.01169
Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.
http://dx.doi.org/10.1093/nar/18.22.6531
PMid:1979162 PMCid:332606
“Problems with and a system to eliminate single-primer PCR product contamination in simple sequence repeat molecular marker-assisted selection in soybean”, vol. 10, pp. 1659-1668, 2011.
, Amar MH, Biswas MK, Zhang Z and Guo WW (2011). Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of Citrus germplasm collection. Sci. Hortic. 128: 220-227.
http://dx.doi.org/10.1016/j.scienta.2011.01.021
Du W, Yu DY and Fu SX (2009a). Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [Glycine max (L.) Merr.]. Agric. Sci. China 8: 529-537.
http://dx.doi.org/10.1016/S1671-2927(08)60243-6
Du W, Wang M, Fu S and Yu D (2009b). Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J. Genet. Genomics 36: 721-731.
http://dx.doi.org/10.1016/S1673-8527(08)60165-4
Ferreira AM, Vitor RW, Carneiro AC, Brandao GP, et al. (2004). Genetic variability of Brazilian Toxoplasma gondii strains detected by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and simple sequence repeat anchored-PCR (SSR-PCR). Infect. Genet. Evol. 4: 131-142.
http://dx.doi.org/10.1016/j.meegid.2004.03.002
PMid:15157631
Liang HZ, Yu YL, Wang SF, Lian Y, et al. (2010). QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agric. Sci. China 9: 1108-1116.
http://dx.doi.org/10.1016/S1671-2927(09)60197-8
Liu YL, Li YH, Zhou GA, Uzokwe N, et al. (2010). Development of soybean EST-SSR markers and their use to assess genetic diversity in the subgenus soja. Agric. Sci. China 9: 1423-1429.
http://dx.doi.org/10.1016/S1671-2927(09)60233-9
Ma J, Wang PW, Yao D, Wang YP, et al. (2011). Single-primer PCR correction: a strategy for false-positive exclusion. Genet. Mol. Res. 10: 150-159.
http://dx.doi.org/10.4238/vol10-1gmr988
PMid:21308656
Ning SP, Xu LB, Lu Y, Huang BZ, et al. (2007). Genome composition and genetic diversity of Musa germplasm from China revealed by PCR-RFLP and SSR markers. Sci. Hortic. 114: 281-288.
http://dx.doi.org/10.1016/j.scienta.2007.07.002
Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, et al. (2009). QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci. 176: 514-521.
http://dx.doi.org/10.1016/j.plantsci.2009.01.007
Wen ZX, Zhao TJ, Zheng YZ, Liu SH, et al. (2008). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. population structure and associated markers. Acta Agron. Sin. 34: 1169-1178.
“Single-primer PCR correction: a strategy for false-positive exclusion”, vol. 10, pp. 150-159, 2011.
,
Bozkurt O, Unver T and Akkaya MS (2007). Genes associated with resistance to wheat yellow rust disease identified by differential display analysis. Physiol. Mol. Plant Pathol. 71: 251-259.
http://dx.doi.org/10.1016/j.pmpp.2008.03.002
Colonna-Romano S, Porta A, Franco A, Kobayashi GS, et al. (1998). Identification and isolation by DDRT-PCR of genes differentially expressed by Histoplasma capsulatum during macrophages infection. Microb. Pathog. 25: 55-66.
http://dx.doi.org/10.1006/mpat.1998.0209
PMid:9712685
Fabi JP, Lajolo FM and Nascimento JRO (2009). Cloning and characterization of transcripts differentially expressed in the pulp of ripening papaya. Sci. Hortic. 121: 159-165.
http://dx.doi.org/10.1016/j.scienta.2009.01.036
Ghannam A, Jacques A, De Ruffray P, Baillieul F, et al. (2005). Identification of tobacco ESTs with a hypersensitive response (HR)-specific pattern of expression and likely involved in the induction of the HR and/or localized acquired resistance (LAR). Plant Physiol. Biochem. 43: 249-259.
http://dx.doi.org/10.1016/j.plaphy.2005.02.001
PMid:15854833
Löfström C, Axelsson CE and Rådström P (2008). Validation of a diagnostic PCR method for routine analysis of Salmonella spp. in animal feed samples. Food Anal. Method. 1: 23-27.
http://dx.doi.org/10.1007/s12161-007-9003-2
Ma J, Zhang J, Qu J, Wang YP, et al. (2009). Development of novel soybean germplasms with low activity of lipoxygenases by RNAi method. Sci. Agric. Sin. 42: 3804-3811.
Ono K, Satoh M, Yoshida T, Ozawa Y, et al. (2007). Species identification of animal cells by nested PCR targeted to mitochondrial DNA. In Vitro Cell Dev. Biol. Anim. 43: 168-175.
http://dx.doi.org/10.1007/s11626-007-9033-5
PMid:17516125
Sahdev S, Saini S, Tiwari P, Saxena S, et al. (2007). Amplification of GC-rich genes by following a combination strategy of primer design, enhancers and modified PCR cycle conditions. Mol. Cell Probes 21: 303-307.
http://dx.doi.org/10.1016/j.mcp.2007.03.004
PMid:17490855
Vallette F, Mege E, Reiss A and Adesnik M (1989). Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 17: 723-733.
http://dx.doi.org/10.1093/nar/17.2.723
PMid:2915928 PMCid:331615
Wen ZX, Zhao TJ, Zhen YZ, Liu SH, et al. (2008). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron. Sin. 34: 1169-1178.
http://dx.doi.org/10.3724/SP.J.1006.2008.01169