Publications

Found 9 results
Filters: Author is T.J. Xu  [Clear All Filters]
2012
J. X. Wang, Xu, T. J., Wei, L., Meng, F. X., and Wang, R. X., Characterization of nine novel microsatellite loci for the Venus clam (Cyclina sinensis), vol. 11. pp. 379-382, 2012.
Bai HM, Gao YM and Yao HW (2008). RAPD analysis of three geographical stocks of clam Cyclina sinensis. Fish. Sci. 27: 487-489. Chen DP, Shen HS and Ding YP (2004). Randomly amplified polymorphic DNA analysis of Meretrix meretrix, Cyclina sinesis and Mactra vecerifermis. Marine Sci. Bull. 23: 84-87. Feng YW, Li Q and Kong LF (2010). Twenty microsatellite DNA markers for the Venus clam (Cyclina sinensis Gmelin). Conserv. Genet. 11: 1189-1192. http://dx.doi.org/10.1007/s10592-009-9914-0 Hua PY, Chen JP, Zhang LB, Liang B, et al. (2007). Isolation and characterization of microsatellite loci in the flat-headed bat (Tylonycteris pachypus). Mol. Ecol. Notes 7: 486-488. http://dx.doi.org/10.1111/j.1471-8286.2006.01629.x Pan BP, Song LS, Bu WJ and Sun JS (2005). Studies on genetic diversity and differentiation between two allopatric populations of Cyclina sinensis. Acta Hydrobiol. Sin. 29: 372-378. Raymond M and Rousset F (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249. Shen BP, Sun YK and Yu YS (2007). Biology of embryonic development of Cyclina sinesis (Gmelin). Mod. Fish. Inform. 22: 28-30. Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4: 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x Wang XQ, Cao M, Yan BL, Ma S, et al. (2006). Biology and reproduction of Clam Cyclina sinensis. Fish. Sci. 25: 312- 316. Xu FS (1997). Bivalve Mollusca of China Seas. Science Press China, Beijing. Yao ZL, Zhou K, Lai QF, Wang H, et al. (2005). Analysis of genetic variations of five geographical populations in Cyclina sinensis (Gmelin) of China by RAPD. Marine Fish. 27: 102-108. Yu YS and Zheng XD (1995). The morphology and structure of Cyclina sinensis. Marine Fish. 59-62. Yuan Y, Gao WW, Wu Q and Pan BP (2008). Genetic variation and structure of Cyclina sinensis populations in the yellow and Bohai sea of China. Oceanol. Limnol. Sin. 39: 665-670. Zhao YM, Li Q, Kong LF, Bao ZM, et al. (2007). Genetic diversity and divergence among clam Cyclina sinensis populations assessed using amplified fragment length polymorphism. Fish. Sci. 73: 1338-1343.
D. Q. Sun, Li, H. Y., Xu, T. J., and Wang, R. X., Development of microsatellite markers for the small yellow croaker Larimichthys polyactis (Sciaenidae) by cross-species amplification, vol. 11, pp. 1469-1474, 2012.
Angers B and Bernatchez L (1997). Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. Mol. Biol. Evol. 14: 230-238. http://dx.doi.org/10.1093/oxfordjournals.molbev.a025759 PMid:9066791   Byrne M, Marquez-Garcia MI, Uren T and Smith DS (1996). Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust. J. Bot. 44: 331-341. http://dx.doi.org/10.1071/BT9960331   Colson I and Goldstein DB (1999). Evidence for complex mutations at microsatellite loci in Drosophila. Genetics 152: 617-627. PMid:10353904 PMCid:1460615   Crow JF and Kimura M (1965). Evolution in sexual and asexual populations. Am. Nat. 99: 439-450. http://dx.doi.org/10.1086/282389   Engel SR, Linn RA, Taylor JF and Davis SK (1996). Conservation of microsatellite loci across species of Artiodactyls: implications for population studies. J. Mammal. 77: 504-518. http://dx.doi.org/10.2307/1382825   Froese R and Pauly D (2011). FishBase. World Wide Web Electronic Publication. Available at [www.fishbase.org].   Grimaldi MC and Crouau-Roy B (1997). Microsatellite allelic homoplasy due to variable flanking sequences. J. Mol. Evol. 44: 336-340. http://dx.doi.org/10.1007/PL00006151 PMid:9060400   Jin X (2004). Long-term changes in fish community structure in the Bohai Sea, China. Estuar. Coast. Shelf Sci. 59: 163-171. http://dx.doi.org/10.1016/j.ecss.2003.08.005   Kuhn R, Anastassiadis C and Pirchner F (1996). Transfer of bovine microsatellites to the cervine (Cervus elaphus). Anim. Genet. 27: 199-201. http://dx.doi.org/10.1111/j.1365-2052.1996.tb00952.x PMid:8759122   Lin LS, Cheng JH and Ren YP (2004). Analysis of population biology of small yellow croaker Pseudosciaena polyactis in the East China Sea region. J. Fish Sci. China 11: 338.   Lin LS, Chen JH and Li HY (2008). The fishery biology of Trichiurus japonicus and Larimichthys polyactis in the East China Sea region. Mar. Fish. 30: 126-134.   Lin LS, Ying YP, Han ZQ and Xiao SY (2009). AFLP analysis on genetic diversity and population structure of small yellow croaker Larimichthys polyactis. Afr. J. Biotechnol. 8: 2700-2706.   Liu YG, Zheng MG, Liu LX and Lin H (2006). Five new microsatellite loci for Oliver flounder (Paralichthys olivaceus) from an expressed sequence tag (EST) library and cross-species amplification. Mol. Ecol. Note 6: 371-373. http://dx.doi.org/10.1111/j.1471-8286.2005.01237.x   Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, et al. (2002). Microsatellites in Zea - variability, patterns of mutations, and use for evolutionary studies. Theor. Appl. Genet. 104: 436-450. http://dx.doi.org/10.1007/s001220100694 PMid:12582717   Meng ZN, Zhuang ZM, Jin XS and Tang QS (2003). Genetic diversity in small yellow croaker (Pseudosciaena polyactis) by RAPD analysis. Biodivers. Sci. 11: 197-203.   Moore SS, Sargeant LL, King TJ and Mattick JS (1991). The consideration of dinucleotide microsatellite among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 10: 654-660. http://dx.doi.org/10.1016/0888-7543(91)90448-N   Morgante M and Olivieri AM (1993). PCR-amplified microsatellites as markers in plant genetics. Plant J. 3: 175-182. http://dx.doi.org/10.1111/j.1365-313X.1993.tb00020.x PMid:8401603   Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, et al. (2006). Origin, evolution and genome distribution of microsatellites. Genet. Mol. Biol. 29: 294-307. http://dx.doi.org/10.1590/S1415-47572006000200018   Peakall R, Gilmore S, Keys W, Morgante M, et al. (1998). Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol. Biol. Evol. 15: 1275-1287. http://dx.doi.org/10.1093/oxfordjournals.molbev.a025856 PMid:9787434   Pepin L, Amigues Y, Lepingle A, Berthier JL, et al. (1995). Sequence conservation of microsatellites between Bos taurus (cattle), Capra hircus (goat) and related species. Examples of use in parentage testing and phylogeny analysis. Heredity 74: 53-61. http://dx.doi.org/10.1038/hdy.1995.7 PMid:7852099   Rice WE (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177   Rico C, Rico I and Hewitt G (1996). 470 million years of conservation of microsatellite loci among fish species. Proc. Biol. Sci. 263: 549-557. http://dx.doi.org/10.1098/rspb.1996.0083 PMid:8677258   Schneider S, Roessli D and Excoffier L (2000). ARLEQUIN: A Software for Population Genetics Data Analysis, Version 2.000. Genetics and Biometry Laboratory, Department of Anthropology. University of Geneva, Geneva.   Seikai National Fisheries Research Institute (2001). Biological and Ecological Characteristics of Valuable Fisheries Resources from the East China Sea and the Yellow Sea, Comparison Between the Chinese and Japanese Knowledges. Seikai National Fisheries Research Institute, Nagasaki.   Slate J, Coltman DW, Goodman SJ, MacLean I, et al. (1998). Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Anim. Genet. 29: 307-315. http://dx.doi.org/10.1046/j.1365-2052.1998.00347.x PMid:9745670   Wan RJ and Sun S (2006). The category composition and abundance of ichthyoplankton in the ecosystem of the Yellow Sea and the East China Sea. Acta Zool. Sin. 52: 28-44.   Wang RX, Xu TJ, Sun YN and He GY (2010). Polymorphic microsatellite loci from two enriched genomic libraries for the genetic analysis of the miiuy croaker, Miichthys miiuy (Sciaenidae). Genet. Mol. Res. 9: 931-934. http://dx.doi.org/10.4238/vol9-2gmr806 PMid:20486088   Wilson ACC, Massonnet B, Simon JC, Leterme NP, et al. (2004). Cross-species amplification of microsatellite loci in aphids: assessment and application. Mol. Ecol. Notes 4: 104-109. http://dx.doi.org/10.1046/j.1471-8286.2004.00584.x   Wilson GA, Strobeck C, Wu L and Coffin JW (1997). Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol. Ecol. 6: 697-699. http://dx.doi.org/10.1046/j.1365-294X.1997.00237.x PMid:9226951   Xiao Y, Zhang Y, Gao T, Takashi Y, et al. (2009). Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ. Biol. Fish. 85: 303-314. http://dx.doi.org/10.1007/s10641-009-9497-0   Xu T, Sun D, Sun Y and Wang R (2011). Development of 30 novel polymorphic expressed eequence tags (EST)-derived microsatellite markers for the Miiuy Croaker, Miichthys miiuy. Int. J. Mol. Sci. 12: 4021-4026. http://dx.doi.org/10.3390/ijms12064021 PMid:21747722 PMCid:3131606   Xue Y, Jin XS, Zhang B and Liang ZL (2004). Diet composition and seasonal variation in feeding habits of small yellow croaker Pseudosciaena polyactis Bleeker in the central Yellow Sea. J. Fish. Sci. China 3: 237-243.   Yan LP, Hu F, Ling JZ and Li SF (2006). Study on age and growth of Larimichthys polyactis in the East China Sea. Period. Ocean Univ. China 36: 95-100.   Yeh FC and Boyle TJB (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J. Bot. 129: 157.
H. Y. Li, Xu, T. J., Cheng, Y. Z., Sun, D. Q., and Wang, R. X., Genetic diversity of Setipinna taty (Engraulidae) populations from the China Sea based on mitochondrial DNA control region sequences, vol. 11, pp. 1230-1237, 2012.
Avise JC (1994). Molecular Markers, Natural History and Evolution. Sinauer Associates, New York. http://dx.doi.org/10.1007/978-1-4615-2381-9   Bremer JRA, Mejuto J, Greig TW and Ely B (1996). Global population structure of the swordfish (Xiphias gladius L.) as revealed by analysis of the mitochondrial DNA control region. J. Exp. Mar. Biol. Ecol. 197: 295-310. http://dx.doi.org/10.1016/0022-0981(95)00164-6   Broughton RE and Dowling TE (1994). Length variation in mitochondrial DNA of the minnow Cyprinella spiloptera. Genetics 138: 179-190. PMid:8001785 PMCid:1206129   Broughton RE and Dowling TE (1997). Evolutionary dynamics of tandem repeats in the mitochondrial DNA control region of the minnow Cyprinella spiloptera. Mol. Biol. Evol. 14: 1187-1196. http://dx.doi.org/10.1093/oxfordjournals.molbev.a025728 PMid:9402730   Brown GG, Gadaleta G, Pepe G, Saccone C, et al. (1986). Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192: 503-511. http://dx.doi.org/10.1016/0022-2836(86)90272-X   Cheng Y, Xu T, Shi G and Wang R (2010). Complete mitochondrial genome of the miiuy croaker Miichthys miiuy (Perciformes, Sciaenidae) with phylogenetic consideration. Mar. Genomics 3: 201-209. http://dx.doi.org/10.1016/j.margen.2010.10.003 PMid:21798214   Clayton DA (1991). Nuclear gadgets in mitochondrial DNA replication and transcription. Trends Biochem. Sci. 16: 107- 111. http://dx.doi.org/10.1016/0968-0004(91)90043-U   Guo B, Zhang B, Dai FQ and Jin XS (2010). Diet composition and ontogenetic variation in feeding habits of juvenile Setipinna taty in the Haizhou bay. J. Fish. China 34: 741-747. http://dx.doi.org/10.3724/SP.J.1231.2010.06798   Guo X, Liu S and Liu Y (2003). Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture 224: 25-38. http://dx.doi.org/10.1016/S0044-8486(03)00168-6   Guo XH, Liu SJ, Liu Q and Liu Y (2004). New progresses on mitochondrial DNA in fish. Yi Chuan Xue Bao 31: 983-1000. PMid:15493150   Huang ZJ, Xu XP, Tang JJ, Zhang JQ, et al. (2009). Application and primer design of mitochondrial DNA D-loop of freshwater fishes. Acta Sci. Nat. Univ. Sunyatseni. DOI [CNKI:SUN:ZSDZ.0.2009-04-017].   Iguchi K, Tanimura Y, Takeshima H and Nishida M (1999). Genetic variation and geographic population structure of amphidromous ayu Plecoglossus altivelis as examined by mitochondrial DNA sequencing. Fish. Sci. 65: 63-67.   Ishikawa S, Aoyama J, Tsukamoto K and Nishida M (2001). Population structure of the Japanese Eel, Anguilla japonica as examined by mitochondrial DNA sequencing. Fish. Sci. 67: 246-253. http://dx.doi.org/10.1046/j.1444-2906.2001.00227.x   Lee WJ, Conroy J, Howell WH and Kocher TD (1995). Structure and evolution of teleost mitochondrial control regions. J. Mol. Evol. 41: 54-66. http://dx.doi.org/10.1007/BF00174041 PMid:7608989   Liu HY, Jing SG, Su TF and Gong SY (2004). Polymorphism study of the mitochondrial DNA D-loop gene sequences from Sparus latus. J. Fish. China 28: 371-374.   Liu HZ (2002). The structure and evolution of the mtDNA control region in fish: taking example for Acheilognathinae. Prog. Nat. Sci. 12: 266-270.   Liu Y, Cheng J and Li S (2004). A study on the distribution of Sefipinna taty in the East China Sea. Mar. Fish. 26: 255-260.   Liu Y, Cheng JH and Chen XG (2006). Studies on the seasonal distribution of Setipinna taty in the East China Sea. Mar. Fish. Res. 27: 1-6.   Liu Y and Cui Z (2009). The complete mitochondrial genome sequence of the cutlassfish Trichiurus japonicus (Perciformes: Trichiuridae): Genome characterization and phylogenetic considerations. Mar. Genomics 2: 133-142. http://dx.doi.org/10.1016/j.margen.2009.07.003 PMid:21798182   Peng SM, Shi ZH and Hou J (2010). Comparative analysis on the genetic diversity of cultured and wild silver pomfret populations based on mtD-loop and COI gene. J. Fish. China 34: 19-24. http://dx.doi.org/10.3724/SP.J.1231.2010.06384   Rand E (2000). Mitochondrial DNA. Blackwell, Oxford.   Saccone C, Attimonelli M and Sbisa E (1987). Structural elements highly preserved during the evolution of the D-loop-containing region in vertebrate mitochondrial DNA. J. Mol. Evol. 26: 205-211. http://dx.doi.org/10.1007/BF02099853 PMid:3129568   Sbisa E, Tanzariello F, Reyes A, Pesole G, et al. (1997). Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125-140. http://dx.doi.org/10.1016/S0378-1119(97)00404-6   Shadel GS and Clayton DA (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409-435. http://dx.doi.org/10.1146/annurev.biochem.66.1.409 PMid:9242913   Southern SO, Southern PJ and Dizon AE (1988). Molecular characterization of a cloned dolphin mitochondrial genome. J. Mol. Evol. 28: 32-42. http://dx.doi.org/10.1007/BF02143495 PMid:3148740   Sun SD and Ren YP (2003). Study on the fishery biology of Setipinna taty in the southern yellow sea. Trans. Oceanol. Limnol. 1: 62-65.   Tabata K and Taniguchi N (2000). Differences between Pargus major and Pagrus auratus through mainly mtDNA control region analysis. Fish. Sci. 66: 9-18. http://dx.doi.org/10.1046/j.1444-2906.2000.00032.x   Xiong Y, Tang JH, Liu PT, Zhang XM, et al. (2009). Resource estimate on Setipinna taty in the southern yellow sea. Oceanol. Limnol. 40: 500-505.   Yang B, Chen XY and Yang JX (2008). Structure of the mitochondrial DNA control region and population genetic diversity analysis of Anabarilius grahami (Regan). Zool. Res. 29: 379-385. http://dx.doi.org/10.3724/SP.J.1141.2008.00379   Zeng QL and Liu HZ (2001). Study on mitochondrial DNA control region of the Ictiobus cypriellus. J. Hubei Univ. 23: 261-264.   Zhang C, Chen X, He T, Liu X, et al. (2007). Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. J. Genet. Genomics 34: 947-955 http://dx.doi.org/10.1016/S1673-8527(07)60106-4   Zhang MH, Wang Y and Zhang J (2004). Studies on the growth and death character of Setipinna taty in the South of Bohai Sea. J. Zhejiang Ocean Univ. 23: 31-36.   Zhang Y, Zhang E and He SP (2003). Studies on the structure of the control region of the bagridae in China and its phylogenetic significance. Acta Hydrobiol. Sin. 27: 463-467.   Zhu TJ, Yang JQ and Tang WQ (2008). MtDNA control region sequence structure of the genus Coilia in Yangtze river estuary. J. Shanghai Fish. Univ. 17: 152-157. http://dx.doi.org/10.1007/s11741-008-0213-1
2011
T. J. Xu, Sun, Y. N., and Wang, R. X., Allelic polymorphism, gene duplication and balancing selection of the MHC class II DAB gene of Cynoglossus semilaevis (Cynoglossidae), vol. 10, pp. 53-64, 2011.
Aguilar A and Garza JC (2007). Patterns of historical balancing selection on the salmonid major histocompatibility complex class II beta gene. J. Mol. Evol. 65: 34-43. http://dx.doi.org/10.1007/s00239-006-0222-8 PMid:17593422   Apanius V, Penn D, Slev PR, Ruff LR, et al. (1997). The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 17: 179-224. http://dx.doi.org/10.1615/CritRevImmunol.v17.i2.40 PMid:9094452   Archie EA, Henry T, Maldonado JE, Moss CJ, et al. (2010). Major histocompatibility complex variation and evolution at a single, expressed DQA locus in two genera of elephants. Immunogenetics 62: 85-100. http://dx.doi.org/10.1007/s00251-009-0413-8 PMid:20058003   Axtner J and Sommer S (2007). Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 59: 417-426. http://dx.doi.org/10.1007/s00251-007-0205-y PMid:17351770   Baker CS, Vant MD, Dalebout ML, Lento GM, et al. (2006). Diversity and duplication of DQB and DRB-like genes of the MHC in baleen whales (suborder: Mysticeti). Immunogenetics 58: 283-296. http://dx.doi.org/10.1007/s00251-006-0080-y PMid:16568262   Brown JH, Jardetzky TS, Gorga JC, Stern LJ, et al. (1993). Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364: 33-39. http://dx.doi.org/10.1038/364033a0 PMid:8316295   Bryja J, Galan M, Charbonnel N and Cosson JF (2006). Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of the DQA MHC class II gene in voles (Arvicolinae). Immunogenetics 58: 191-202. http://dx.doi.org/10.1007/s00251-006-0085-6 PMid:16467985   Davies CJ, Andersson L, Ellis SA and Hensen EJ (1997). Nomenclature for factors of the BoLA system, report of the ISAG BoLA Nomenclature Committee. Anim. Genet. 28: 159-168. http://dx.doi.org/10.1111/j.1365-2052.1997.00106.x   Eimes JA, Bollmer JL, Dunn PO, Whittingham LA, et al. (2010). Mhc class II diversity and balancing selection in greater prairie-chickens. Genetica 138: 265-271. http://dx.doi.org/10.1007/s10709-009-9417-4 PMid:19851875   Ekblom R, Saether SA, Fiske P, Kalas JA, et al. (2010). Balancing selection, sexual selection and geographic structure in MHC genes of Great Snipe. Genetica 138: 453-461. http://dx.doi.org/10.1007/s10709-008-9335-x PMid:19052880   Flores-Ramirez S, Urban-Ramirez J and Miller RD (2000). Major histocompatibility complex class I loci from the gray whale (Eschrichtius robustus). J. Hered. 91: 279-282. http://dx.doi.org/10.1093/jhered/91.4.279 PMid:10912673   Goldman N and Yang Z (1994). A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11: 725-736. PMid:7968486   Goüy de BJ and Leirs H (2010). Polymorphism and signatures of selection in the multimammate rat DQB gene. Immunogenetics 62: 59-64. http://dx.doi.org/10.1007/s00251-009-0411-x PMid:19953242   Graser R, O'huigin C, Vincek V, Meyer A, et al. (1996). Trans-species polymorphism of class II Mhc loci in danio fishes. Immunogenetics 44: 36-48. http://dx.doi.org/10.1007/BF02602655 PMid:8613141   Grimholt U, Larsen S, Nordmo R, Midtlyng P, et al. (2003). MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55: 210-219. http://dx.doi.org/10.1007/s00251-003-0567-8 PMid:12811427   Harf R and Sommer S (2005). Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol. Ecol. 14: 85-91. http://dx.doi.org/10.1111/j.1365-294X.2004.02402.x PMid:15643953   Hedrick PW (1998). Balancing selection and MHC. Genetica 104: 207-214. http://dx.doi.org/10.1023/A:1026494212540 PMid:10386384   Hedrick PW (2002). Pathogen resistance and genetic variation at MHC loci. Evolution 56: 1902-1908. PMid:12449477   Hughes AL (1994). The evolution of functionally novel proteins after gene duplication. Proc. Biol. Sci. 256: 119-124. http://dx.doi.org/10.1098/rspb.1994.0058 PMid:8029240   Hughes AL (1999). Adaptive Evolution of Genes and Genomes. Oxford University Press, New York.   Hughes AL and Nei M (1988). Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167-170. http://dx.doi.org/10.1038/335167a0 PMid:3412472   Hughes AL and Nei M (1989). Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc. Natl. Acad. Sci. U. S. A. 86: 958-962. http://dx.doi.org/10.1073/pnas.86.3.958 PMid:2492668 PMCid:286598   Hughes AL and Nei M (1990). Evolutionary relationships of class II major-histocompatibility-complex genes in mammals. Mol. Biol. Evol. 7: 491-514. PMid:2126590   Hughes AL and Yeager M (1998a). Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32: 415-435. http://dx.doi.org/10.1146/annurev.genet.32.1.415 PMid:9928486   Hughes AL and Yeager M (1998b). Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32: 415-435. http://dx.doi.org/10.1146/annurev.genet.32.1.415 PMid:9928486   Karaiskou N, Moran P, Georgitsakis G and Abatzopoulos TJ (2010). High allelic variation of MHC class II alpha antigen and the role of selection in wild and cultured Sparus aurata populations. Hydrobiologia 638: 11-20. http://dx.doi.org/10.1007/s10750-009-0001-9   Meyer-Lucht Y and Sommer S (2005). MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol. Ecol. 14: 2233-2243. http://dx.doi.org/10.1111/j.1365-294X.2005.02557.x PMid:15910340   Nei M and Gojobori T (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418-426. PMid:3444411   Nei M and Rooney AP (2005). Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 39: 121-152. http://dx.doi.org/10.1146/annurev.genet.39.073003.112240 PMid:16285855 PMCid:1464479   Nei M, Gu X and Sitnikova T (1997). Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc. Natl. Acad. Sci. U. S. A. 94: 7799-7806. http://dx.doi.org/10.1073/pnas.94.15.7799 PMid:9223266 PMCid:33709   Oliver MK and Piertney SB (2006). Isolation and characterization of a MHC class II DRB locus in the European water vole (Arvicola terrestris). Immunogenetics 58: 390-395. http://dx.doi.org/10.1007/s00251-006-0121-6 PMid:16738936   Parham P and Ohta T (1996). Population biology of antigen presentation by MHC class I molecules. Science 272: 67-74. http://dx.doi.org/10.1126/science.272.5258.67 PMid:8600539   Stear MJ, Innocent GT and Buitkamp J (2005). The evolution and maintenance of polymorphism in the major histocompatibility complex. Vet. Immunol. Immunopathol. 108: 53-57. http://dx.doi.org/10.1016/j.vetimm.2005.07.005 PMid:16099055   Stet RJM, Vries B, Mudde K, Hermsem T, et al. (2002). Unique haplotypes of co-segregating major histocompatibility complex class II A and class II B alleles in Atlantic salmon Salmo salar give rise to diverse class II genotypes. Immunogenetics 54: 320-331. http://dx.doi.org/10.1007/s00251-002-0477-1 PMid:12185536   Xu SX, Ren WH, Li SZ, Wei FW, et al. (2009). Sequence polymorphism and evolution of three cetacean MHC genes. J. Mol. Evol. 69: 260-275. http://dx.doi.org/10.1007/s00239-009-9272-z PMid:19693422   Xu TJ, Chen SL, Ji XS and Tian YS (2008). MHC polymorphism and disease resistance to Vibrio anguillarum in 12 selective Japanese flounder (Paralichthys olivaceus) families. Fish Shellfish Immunol. 25: 213-221. http://dx.doi.org/10.1016/j.fsi.2008.05.007 PMid:18603444   Xu TJ, Chen SL, Ji XS and Sha ZX (2009). Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class IIA and IIB genes of half-smooth tongue sole (Cynoglossus semilaevis). Fish Shellfish Immunol. 27: 192-201. http://dx.doi.org/10.1016/j.fsi.2009.04.009 PMid:19442741   Xu TJ, Sha ZX and Chen SL (2010). Unexpected variations of beta2-microglobulin gene in the half-smooth tongue sole. Fish Shellfish Immunol. 28: 212-215. http://dx.doi.org/10.1016/j.fsi.2009.09.015 PMid:19825419   Yang Z, Wong WS and Nielsen R (2005). Bayes empirical Bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 22: 1107-1118. http://dx.doi.org/10.1093/molbev/msi097 PMid:15689528
D. Q. Sun, Li, H. Y., Xu, T. J., and Wang, R. X., Development and characterization of microsatellite markers for the walking goby (Scartelaos viridis; Gobiidae), vol. 10. pp. 203-207, 2011.
Brandström M and Ellegren H (2008). Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Gen. Res. 18: 881-887.   Brown J, Hardwick LJ and Wright AF (1995). A simple method for rapid isolation of microsatellites from yeast artificial chromosomes. Mol. Cell Probes 9: 53-57. http://dx.doi.org/10.1016/S0890-8508(95)91022-0   Brown SM, Hopkins MS, Mitchell SE, Senior ML, et al. (1996). Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 93: 190-198. http://dx.doi.org/10.1007/BF00225745   Chen X, Temnykh S, Xu Y, Cho YG, et al. (1997). Development of a microsatellite framework map providing genome wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553-567. http://dx.doi.org/10.1007/s001220050596   Kandpal RP, Kandpal G and Weissman SM (1994). Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers. Proc. Natl. Acad. Sci. U. S. A. 91: 88-92. http://dx.doi.org/10.1073/pnas.91.1.88 PMid:8278412 PMCid:42891   Kohlmann K, Kersten P and FlajÍhans M (2005). Microsatellite based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture 247: 253-266. http://dx.doi.org/10.1016/j.aquaculture.2005.02.024   Li CD, Rossnagel BG and Scoles GJ (2000). The development of oat microsatellite markers and their use in identifying Avena species and oat cultivars. Theor. Appl. Genet. 101: 1259-1268. http://dx.doi.org/10.1007/s001220051605   Liu JY, Lun ZR, Zhang JB and Yang TB (2009). Population genetic structure of striped mullet, Mugil cephalus, along the coast of China, inferred by AFLP finger printing. Biochem. Syst. Ecol. 37: 266-274. http://dx.doi.org/10.1016/j.bse.2009.04.010   Mia MY, Taggart JB, Gilmour AE, Gheyas AA, et al. (2005). Detection of hybridization between Chinese carp species (Hypophthalmichthys molitrix and Aristichthys nobilis) in hatchery broodstock in Bangladesh, using DNA microsatellite loci. Aquaculture 247: 267-273. http://dx.doi.org/10.1016/j.aquaculture.2005.02.018   Rice WE (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177   Schneider S, Roessli D and Excoffier L (2000). ARLEQUIN: a software for population genetics data analysis. Version 2.0. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Switzerland.   Sekino M and Hara M (2001). Application of microsatellite markers to population genetics studies of Japanese flounder Paralichthys olivaceus. Mar. Biotechnol. 3: 572-589. http://dx.doi.org/10.1007/s10126-001-0064-8 PMid:14961330   Selkoe KA and Toonen RJ (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9: 615-629. http://dx.doi.org/10.1111/j.1461-0248.2006.00889.x PMid:16643306   Senior ML, Murphy JP, Goodman MM and Stuber CW (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose system. Crop Sci. 38: 1088-1098. http://dx.doi.org/10.2135/cropsci1998.0011183X003800040034x   Weber JL (1990). Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7: 524-530. http://dx.doi.org/10.1016/0888-7543(90)90195-Z   Weising K, Winter P, Huttel B and Kahl G (1997). Microsatellite markers for molecular breeding. J. Crop Prod. 1: 113-143. http://dx.doi.org/10.1300/J144v01n01_06   Xu TJ, Shao CW, Liao XL and Chen SL (2009). Isolation and characterization of polymorphic microsatellite DNA markers in the rock bream (Oplegnathus fasciatus). Conserv. Genet. 10: 527-529. http://dx.doi.org/10.1007/s10592-008-9557-6   Yeh FC and Boyle TJB (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg. J. Bot. 129: 157.   Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16. http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x PMid:11903900
T. J. Xu, Sun, D. Q., Li, H. Y., and Wang, R. X., Development and characterization of microsatellite markers for the lizardfish known as the Bombay duck, Harpadon nehereus (Synodontidae), vol. 10, pp. 1701-1706, 2011.
Brandström M and Ellegren H (2008). Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Res. 18: 881-887. http://dx.doi.org/10.1101/gr.075242.107 PMid:18356314    PMCid:2413155 Brown SM, Hopkins MS, Mitchell SE, Senior ML, et al. (1996). Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 93: 190-198. http://dx.doi.org/10.1007/BF00225745 Chen X, Temnykh S, Xu Y, Cho YG, et al. (1997). Development of a microsatellite framework map providing genome wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553-567. http://dx.doi.org/10.1007/s001220050596 Degnan PH and Arévalo E (2004). Isolation of microsatellite loci in Sceloporus grammicus (Squamata, Phrynosomatidae). Am. J. Undergrad. Res. 2: 113-120. Kohlmann K, Kersten P and FlajÅ¡hans M (2005). Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture 247: 253-266. http://dx.doi.org/10.1016/j.aquaculture.2005.02.024 Li CD, Rossnagel BG and Scoles GJ (2000). The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor. Appl. Genet. 101: 1259-1268. http://dx.doi.org/10.1007/s001220051605 Liu JY, Lun ZR, Zhang JB and Yang TB (2009). Population genetic structure of striped mullet, Mugil cephalus, along the coast of China, inferred by AFLP fingerprinting. Bioch. Syst. Ecol. 37: 266-274. http://dx.doi.org/10.1016/j.bse.2009.04.010 Mia MY, Taggart JB, Gilmour AE, Gheyas AA, et al. (2005). Detection of hybridization between Chinese carp species (Hypophthalmichthys molitrix and Aristichthys nobilis) in hatchery broodstock in Bangladesh, using DNA microsatellite loci. Aquaculture 247: 267-273. http://dx.doi.org/10.1016/j.aquaculture.2005.02.018 Rice WE (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177 Schneider S, Roessli D and Excoffier L (2000). ARLEQUIN: A Software for Population Genetics Data Analysis, Version 2.000. Genetics and Biometry Laboratory, Department of Anthropology. University of Geneva, Switzerland. Sekino M and Hara M (2001). Application of microsatellite markers to population genetics studies of Japanese flounder Paralichthys olivaceus. Mar. Biotechnol. 3: 572-589. http://dx.doi.org/10.1007/s10126-001-0064-8 PMid:14961330 Selkoe KA and Toonen RJ (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9: 615-629. http://dx.doi.org/10.1111/j.1461-0248.2006.00889.x PMid:16643306 Senior ML, Murphy JP, Goodman MM and Stuber CW (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose system. Crop Sci. 38: 1088-1098. http://dx.doi.org/10.2135/cropsci1998.0011183X003800040034x Weber JL (1990). Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7: 524-530. http://dx.doi.org/10.1016/0888-7543(90)90195-Z Weising K, Winter P, Huttel B and Kahl G (1998). Microsatellite markers for molecular breeding. J. Crop Prod. 1: 113- 143. http://dx.doi.org/10.1300/J144v01n01_06 Xu TJ, Shao CW, Liao XL, Ji XS, et al. (2009). Isolation and characterization of polymorphic microsatellite DNA markers in the rock bream (Oplegnathus fasciatus). Conserv. Genet. 10: 527-529. http://dx.doi.org/10.1007/s10592-008-9557-6 Yeh FC and Boyle TJB (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J. Bot. 129: 157. Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16. http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x PMid:11903900
2010
R. X. Wang, Xu, T. J., Sun, Y. N., and He, G. Y., Polymorphic microsatellite loci from two enriched genomic libraries for the genetic analysis of the miiuy croaker, Miichthys miiuy (Sciaenidae), vol. 9. pp. 931-934, 2010.
Liu YG, Liu CY, Li FZ, Li ZX, et al. (2009). Development of microsatellite markers in sea perch, Lateolabrax japonicus, from codominant amplified fragment length polymorphism bands. J. World Aquacult. Soc. 40: 522-530. http://dx.doi.org/10.1111/j.1749-7345.2009.00277.x   Rice WE (1989). Analyzing tables of statistical tests. Evolution 43: 223-225. http://dx.doi.org/10.2307/2409177   Schneider S, Roessli D and Excoffier L (2000). ARLEQUIN: a software for population genetics data analysis, version 2.000. University of Geneva, Geneva.   Shan XJ, Cao L, Huang W and Dou SZ (2008a). Feeding, morphological changes and allometric growth during starvation in miiuy croaker larvae. Environ. Biol. Fishes 86: 121-130. http://dx.doi.org/10.1007/s10641-008-9412-0   Shan XJ, Xiao ZZ, Huang W and Dou SZ (2008b). Effects of photoperiod on growth, mortality and digestive enzymes in miiuy croaker larvae and juveniles. Aquaculture 281: 70-76. http://dx.doi.org/10.1016/j.aquaculture.2008.05.034   Shan XJ, Huang W, Cao L, Xiao ZZ, et al. (2009). Ontogenetic development of digestive enzymes and effect of starvation in miiuy croaker Miichthys miiuy larvae. Fish Physiol. Biochem. 35: 385-398. http://dx.doi.org/10.1007/s10695-008-9263-9 PMid:18821026   Van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x   Xu TJ, Liao XL, Shao CW, Ji XS, et al. (2009). Isolation and characterization of polymorphic microsatellite DNA markers in the rock bream (Oplegnathus fasciatus). Conserv. Genet. 10: 527-529. http://dx.doi.org/10.1007/s10592-008-9557-6   Yeh FC and Boyle TJB (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg. J. Bot. 129-157.   Zane L, Bargelloni L and Patarnello T (2002). Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16. http://dx.doi.org/10.1046/j.0962-1083.2001.01418.x PMid:11903900   Zhang QY and Hong WS (2000). Status and prospects of artificial propagation and breeding technique of marine fish in China in the 1990s (in Chinese). Mod. Fish. Info. 15:3-6.