Publications

Found 8 results
Filters: Author is D.M. Li  [Clear All Filters]
2012
D. M. Li, Wang, J. H., Peng, S. L., Zhu, G. F., and Lǚ, F. B., Molecular cloning and characterization of two novel NAC genes from Mikania micrantha (Asteraceae), vol. 11, pp. 4383-4401, 2012.
Aida M, Ishida T, Fukaki H, Fujisawa H, et al. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9: 841-857. http://dx.doi.org/10.1105/tpc.9.6.841 PMid:9212461 PMCid:156962   Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694 PMCid:146917   Dawson JH, Musselman LJ, Wolswinkel P and Dörr I (1994). Biology and control of Cuscuta. Rev. Weed Sci. 6: 265-317.   Delessert C, Kazan K, Wilson IW, Van Der Straeten D, et al. (2005). The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 43: 745-757. http://dx.doi.org/10.1111/j.1365-313X.2005.02488.x PMid:16115070   Ding LW, Sun QY, Wang ZY, Sun YB, et al. (2008). Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate. Anal. Biochem. 374: 426-428. http://dx.doi.org/10.1016/j.ab.2007.11.030 PMid:18166144   Duval M, Hsieh TF, Kim SY and Thomas TL (2002). Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50: 237-248. http://dx.doi.org/10.1023/A:1016028530943 PMid:12175016   Fujita M, Fujita Y, Maruyama K, Seki M, et al. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39: 863-876. http://dx.doi.org/10.1111/j.1365-313X.2004.02171.x PMid:15341629   Guo Y and Gan S (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46: 601-612. http://dx.doi.org/10.1111/j.1365-313X.2006.02723.x PMid:16640597   He XJ, Mu RL, Cao WH, Zhang ZG, et al. (2005). AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44: 903-916. http://dx.doi.org/10.1111/j.1365-313X.2005.02575.x PMid:16359384   Hegedus D, Yu M, Baldwin D, Gruber M, et al. (2003). Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol. Biol. 53: 383-397. http://dx.doi.org/10.1023/B:PLAN.0000006944.61384.11 PMid:14750526   Holm LG, Plucknett DL, Pancho JV and Herberger JP (1977). The World's Worst Weeds: Distribution and Biology. University Press of Hawaii, Honolulu.   Jensen MK, Rung JH, Gregersen PL, Gjetting T, et al. (2007). The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol. Biol. 65: 137-150. http://dx.doi.org/10.1007/s11103-007-9204-5 PMid:17619150   Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, et al. (2008). Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J. 56: 867-880. http://dx.doi.org/10.1111/j.1365-313X.2008.03646.x PMid:18694460   Kim SG, Kim SY and Park CM (2007). A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226: 647-654. http://dx.doi.org/10.1007/s00425-007-0513-3 PMid:17410378   Kim YS, Kim SG, Park JE, Park HY, et al. (2006). A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18: 3132-3144. http://dx.doi.org/10.1105/tpc.106.043018 PMid:17098812 PMCid:1693948   Kumar S, Tamura K and Nei M (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5: 150-163. http://dx.doi.org/10.1093/bib/5.2.150 PMid:15260895   Li DM, Ye QS and Zhu GF (2007). Analysis on the germplasm resources and genetic relationships among hybrid Cymbidium cultivars and native species with RAPD markers. Agric. Sci. China 6: 922-929. http://dx.doi.org/10.1016/S1671-2927(07)60130-8   Li DM, Staehelin C, Zhang YS and Peng SL (2009). Identification of genes differentially expressed in Mikania micrantha during Cuscuta campestris infection by suppression subtractive hybridization. J. Plant Physiol. 166: 1423-1435. http://dx.doi.org/10.1016/j.jplph.2009.02.002 PMid:19328592   Lian JY, Ye WH, Cao HL, Lai ZM, et al. (2006). Influence of obligate parasite Cuscuta campestris on the community of its host Mikania micrantha. Weed Res. 46: 441-443. http://dx.doi.org/10.1111/j.1365-3180.2006.00538.x   Lin R, Zhao W, Meng X, Wang M, et al. (2007). Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. Plant Sci. 172: 120-130. http://dx.doi.org/10.1016/j.plantsci.2006.07.019   Liu YZ, Baig MNR, Fan R, Ye JL, et al. (2009). Identification and expression pattern of a novel NAM, ATAF, and CUC-like gene from Citrus sinensis Osbeck. Plant Mol. Biol. Rep. 27: 292-297. http://dx.doi.org/10.1007/s11105-008-0082-z   Lowe S, Browne M, Boudjelas S and De-Poorter M (2001). 100 of the World's Worst Invasive Alien Species. A Selection from the Global Invasive Species Database. IUCN/SSC Invasive Species Specialist Group (ISSG), Auckland.   Lu PL, Chen NZ, An R, Su Z, et al. (2007). A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol. Biol. 63: 289-305. http://dx.doi.org/10.1007/s11103-006-9089-8 PMid:17031511   Meng Q, Zhang C, Gai J and Yu D (2007). Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J. Plant Physiol. 164: 1002-1012. http://dx.doi.org/10.1016/j.jplph.2006.05.019 PMid:16919368   Mitsuda N and Ohme-Takagi M (2008). NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J. 56: 768-778. http://dx.doi.org/10.1111/j.1365-313X.2008.03633.x PMid:18657234   Mitsuda N, Iwase A, Yamamoto H, Yoshida M, et al. (2007). NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19: 270-280. http://dx.doi.org/10.1105/tpc.106.047043 PMid:17237351 PMCid:1820955   Nakashima K, Tran LS, Van Nguyen D, Fujita M, et al. (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51: 617-630. http://dx.doi.org/10.1111/j.1365-313X.2007.03168.x PMid:17587305   Ohnishi T, Sugahara S, Yamada T, Kikuchi K, et al. (2005). OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet. Syst. 80: 135-139. http://dx.doi.org/10.1266/ggs.80.135 PMid:16172526   Ooka H, Satoh K, Doi K, Nagata T, et al. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10: 239-247. http://dx.doi.org/10.1093/dnares/10.6.239 PMid:15029955   Parker C (1972). The Mikania problem. PANS 18: 312-315.   Sablowski RW and Meyerowitz EM (1998). A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92: 93-103. http://dx.doi.org/10.1016/S0092-8674(00)80902-2   Shen H, Ye W, Hong L, Cao H, et al. (2005). Influence of the obligate parasite Cuscuta campestris on growth and biomass allocation of its host Mikania micrantha. J. Exp. Bot. 56: 1277-1284. http://dx.doi.org/10.1093/jxb/eri128 PMid:15767325   Shen H, Hong L, Ye W, Cao H, et al. (2007). The influence of the holoparasitic plant Cuscuta campestris on the growth and photosynthesis of its host Mikania micrantha. J. Exp. Bot. 58: 2929-2937. http://dx.doi.org/10.1093/jxb/erm168 PMid:17656466   Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, et al. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. http://dx.doi.org/10.1093/nar/25.24.4876 PMid:9396791 PMCid:147148   Tran LS, Nakashima K, Sakuma Y, Simpson SD, et al. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: 2481-2498. http://dx.doi.org/10.1105/tpc.104.022699 PMid:15319476 PMCid:520947   Uauy C, Distelfeld A, Fahima T, Blechl A, et al. (2006). A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298-1301. http://dx.doi.org/10.1126/science.1133649 PMid:17124321   Wirjahar S (1976). Autecological Study of Mikania spp. In: Proceedings of fifth Asian-Pacific Weed Science Society conference. Asian Weed Science Society, Tokyo, 70-73.   Zhang LY, Ye WH, Cao HL and Feng HL (2004). Mikania micrantha H. B. K. in China - an overview. Weed Res. 44: 42-49. http://dx.doi.org/10.1111/j.1365-3180.2003.00371.x
2011
D. M. Li, Liu, Q. Y., Zhao, F., Hu, Y., Xiao, D., Gu, Y. X., Song, X. P., and Zhang, J. Z., Proteomic and bioinformatic analysis of outer membrane proteins of the protobacterium Bartonella henselae (Bartonellaceae), vol. 10, pp. 1789-1818, 2011.
Alsmark CM, Frank AC, Karlberg EO, Legault BA, et al. (2004). The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proc. Natl. Acad. Sci. U. S. A. 101: 9716-9721. http://dx.doi.org/10.1073/pnas.0305659101 PMid:15210978    PMCid:470741 Arnold K, Bordoli L, Kopp J and Schwede T (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. http://dx.doi.org/10.1093/bioinformatics/bti770 PMid:16301204 Babujee L, Venkatesh B, Yamazaki A and Tsuyumu S (2007). Proteomic analysis of the carbonate insoluble outer membrane fraction of the soft-rot pathogen Dickeya dadantii (syn. Erwinia chrysanthemi) strain 3937. J. Proteome Res. 6: 62-69. http://dx.doi.org/10.1021/pr060423l PMid:17203949 Biswas S, Raoult D and Rolain JM (2008). A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int. J. Antimicrob. Agents 32: 207-220. http://dx.doi.org/10.1016/j.ijantimicag.2008.03.017 PMid:18619818 Boonjakuakul JK, Gerns HL, Chen YT, Hicks LD, et al. (2007). Proteomic and immunoblot analyses of Bartonella quintana total membrane proteins identify antigens recognized by sera from infected patients. Infect. Immun. 75: 2548-2561. http://dx.doi.org/10.1128/IAI.01974-06 PMid:17307937    PMCid:1865797 Burgess AW, Paquet JY, Letesson JJ and Anderson BE (2000). Isolation, sequencing and expression of Bartonella henselae omp43 and predicted membrane topology of the deduced protein. Microb. Pathog. 29: 73-80. http://dx.doi.org/10.1006/mpat.2000.0366 PMid:10906262 Carroll JA, Coleman SA, Smitherman LS and Minnick MF (2000). Hemin-binding surface protein from Bartonella quintana. Infect. Immun. 68: 6750-6757. http://dx.doi.org/10.1128/IAI.68.12.6750-6757.2000 PMid:11083791    PMCid:97776 Cash P (2006). Analyzing bacterial pathogenesis at level of proteome. Methods Biochem. Anal. 49: 211-235. PMid:16929681 Chenoweth MR, Greene CE, Krause DC and Gherardini FC (2004). Predominant outer membrane antigens of Bartonella henselae. Infect. Immun. 72: 3097-3105. http://dx.doi.org/10.1128/IAI.72.6.3097-3105.2004 PMid:15155610    PMCid:415646 Dabo SM, Confer AW, Saliki JT and Anderson BE (2006). Binding of Bartonella henselae to extracellular molecules: identification of potential adhesins. Microb. Pathog. 41: 10-20. http://dx.doi.org/10.1016/j.micpath.2006.04.003 PMid:16725305 Dehio C (2004). Molecular and cellular basis of Bartonella pathogenesis. Annu. Rev. Microbiol. 58: 365-390. http://dx.doi.org/10.1146/annurev.micro.58.030603.123700 PMid:15487942 Ebanks RO, Goguen M, McKinnon S, Pinto DM, et al. (2005). Identification of the major outer membrane proteins of Aeromonas salmonicida. Dis. Aquat. Organ. 68: 29-38. http://dx.doi.org/10.3354/dao068029 PMid:16465831 Gasteiger E, Hoogland C, Gattiker A, Duvaud S, et al. (2005). Protein Identification and Analysis Tools on the ExPASy Server. In: The Proteomics Protocols Handbook (Walker JW, ed). Humana Press, Clifton, 571-607. http://dx.doi.org/10.1385/1-59259-890-0:571 Geourjon C and Deleage G (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11: 681-684. PMid:8808585 Hernandez-Mendoza A, Quinto C, Segovia L and Perez-Rueda E (2007). Ligand-binding prediction in the resistance-nodulation-cell division (RND) proteins. Comput. Biol. Chem. 31: 115-123. http://dx.doi.org/10.1016/j.compbiolchem.2007.02.003 PMid:17416336 Higgins MK, Eswaran J, Edwards P, Schertler GF, et al. (2004). Structure of the ligand-blocked periplasmic entrance of the bacterial multidrug efflux protein TolC. J. Mol. Biol. 342: 697-702. http://dx.doi.org/10.1016/j.jmb.2004.07.088 PMid:15342230 Jungblut PR, Schiele F, Zimny-Arndt U, Ackermann R, et al. (2010). Helicobacter pylori proteomics by 2-DE/MS, 1-DE-LC/MS and functional data mining. Proteomics 10: 182-193. http://dx.doi.org/10.1002/pmic.200900361 PMid:19941309 Lu Z, Szafron D, Greiner R, Lu P, et al. (2004). Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics 20: 547-556. http://dx.doi.org/10.1093/bioinformatics/btg447 PMid:14990451 Maurin M, Gasquet S, Ducco C and Raoult D (1995). MICs of 28 antibiotic compounds for 14 Bartonella (formerly Rochalimaea) isolates. Antimicrob. Agents Chemother. 39: 2387-2391. PMid:8585713    PMCid:162952 Minnick MF, Sappington KN, Smitherman LS, Andersson SG, et al. (2003). Five-member gene family of Bartonella quintana. Infect. Immun. 71: 814-821. http://dx.doi.org/10.1128/IAI.71.2.814-821.2003 PMid:12540561    PMCid:145397 Molloy MP, Herbert BR, Slade MB, Rabilloud T, et al. (2000). Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem. 267: 2871-2881. http://dx.doi.org/10.1046/j.1432-1327.2000.01296.x PMid:10806384 Neuhoff V, Stamm R and Eibl H (1985). Clear background and highly sensitive protein staining with Coomassie blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6: 427-448. http://dx.doi.org/10.1002/elps.1150060905 Ochsner UA, Vasil AI, Johnson Z and Vasil ML (1999). Pseudomonas aeruginosa fur overlaps with a gene encoding a novel outer membrane lipoprotein, OmlA. J. Bacteriol. 181: 1099-1109. Okusu H, Ma D and Nikaido H (1996). AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178: 306-308. PMid:8550435    PMCid:177656 Pieper U, Eswar N, Webb BM, Eramian D, et al. (2009). MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 37: D347-D354. http://dx.doi.org/10.1093/nar/gkn791 PMid:18948282    PMCid:2686492 Rey S, Acab M, Gardy JL, Laird MR, et al. (2005). PSORTdb: a protein subcellular localization database for bacteria. Nucleic Acids Res. 33: D164-D168. http://dx.doi.org/10.1093/nar/gki027 PMid:15608169    PMCid:539981 Rhomberg TA, Karlberg O, Mini T, Zimny-Arndt U, et al. (2004). Proteomic analysis of the sarcosine-insoluble outer membrane fraction of the bacterial pathogen Bartonella henselae. Proteomics 4: 3021-3033. http://dx.doi.org/10.1002/pmic.200400933 PMid:15378747 Riess T, Raddatz G, Linke D, Schafer A, et al. (2007). Analysis of Bartonella adhesin A expression reveals differences between various B. henselae strains. Infect. Immun. 75: 35-43. http://dx.doi.org/10.1128/IAI.00963-06 PMid:17060468    PMCid:1828432 Schulein R, Guye P, Rhomberg TA, Schmid MC, et al. (2005). A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc. Natl. Acad. Sci. U. S. A. 102: 856-861. http://dx.doi.org/10.1073/pnas.0406796102 PMid:15642951    PMCid:545523 Szafron D, Lu P, Greiner R, Wishart DS, et al. (2004). Proteome analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations. Nucleic Acids Res. 2: W365-W371. http://dx.doi.org/10.1093/nar/gkh485 PMid:15215412    PMCid:441623 Tan S, Tan HT and Chung MC (2008). Membrane proteins and membrane proteomics. Proteomics 8: 3924-3932. http://dx.doi.org/10.1002/pmic.200800597 PMid:18763712 Tusnády GE and Simon I (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics 17: 849-850. http://dx.doi.org/10.1093/bioinformatics/17.9.849 PMid:11590105 Yang S, Clayton SR and Zechiedrich EL (2003). Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. J. Antimicrob. Chemother. 51: 545-556. http://dx.doi.org/10.1093/jac/dkg126 PMid:12615854 Zgurskaya HI and Nikaido H (1999). Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 96: 7190-7195. http://dx.doi.org/10.1073/pnas.96.13.7190 Zimmermann R, Kempf VA, Schiltz E, Oberle K, et al. (2003). Hemin binding, functional expression, and complementation analysis of Pap 31 from Bartonella henselae. J. Bacteriol. 185: 1739-1744. http://dx.doi.org/10.1128/JB.185.5.1739-1744.2003 PMid:12591895    PMCid:148071 Zou Q, Yan X, Li B, Zeng X, et al. (2006). Proteome analysis of sorbitol fermentation specific protein in Vibrio cholerae by 2-DE and MS. Proteomics 6: 1848-1855. http://dx.doi.org/10.1002/pmic.200401352 PMid:16525996