Found 7 results
Filters: Author is Q. Lu  [Clear All Filters]
Q. Lu, Li, Z. G., Zhou, N., Gong, Z. G., Jiang, J. Q., Chen, Z. N., Jiang, Q. J., Peng, Y., and Ding, S. F., Impact of citrate pretreatment on ventricular arrhythmia and myocardial capase-3 expression in ischemia/reperfusion injury, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Natural Science Fundation of Hubei Province (#2014cfa066). REFERENCESAntzelevitch C, Burashnikov A, Sicouri S, Belardinelli L, et al (2011). Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm 8: 1281-1290. Barrabés JA, Inserte J, Agulló L, Rodríguez-Sinovas A, et al (2015). Effects of the selective stretch-activated channel blocker GsMTx4 on stretch-induced changes in refractoriness in isolated rat hearts and on ventricular premature beats and arrhythmias after coronary occlusion in swine. PLoS One 10: e0125753. Bell JR, Raaijmakers AJ, Curl CL, Reichelt ME, et al (2015). Cardiac CaMKIIδ splice variants exhibit target signaling specificity and confer sex-selective arrhythmogenic actions in the ischemic-reperfused heart. Int. J. Cardiol. 181: 288-296. Diez ER, Prado NJ, Carrión AM, Petrich ER, et al (2013). Electrophysiological effects of tamoxifen: mechanism of protection against reperfusion arrhythmias in isolated rat hearts. J. Cardiovasc. Pharmacol. 62: 184-191. Dow J, Bhandari A, Kloner RA, et al (2009). The mechanism by which ischemic postconditioning reduces reperfusion arrhythmias in rats remains elusive. J. Cardiovasc. Pharmacol. Ther. 14: 99-103. Fanton Y, Robic B, Rummens JL, Daniëls A, et al (2015). Cardiac atrial appendage stem cells engraft and differentiate into cardiomyocytes in vivo: A new tool for cardiac repair after MI. Int. J. Cardiol. 201: 10-19. Gonano LA, Morell M, Burgos JI, Dulce RA, et al (2014). Hypotonic swelling promotes nitric oxide release in cardiac ventricular myocytes: impact on swelling-induced negative inotropic effect. Cardiovasc. Res. 104: 456-466. Gonca E, Kurt Ç, et al (2015). Cardioprotective effect of Thymoquinone: A constituent of Nigella sativa L., against myocardial ischemia/reperfusion injury and ventricular arrhythmias in anaesthetized rats. Pak. J. Pharm. Sci. 28: 1267-1273. Horvat D, Vincelj J, et al (2015). Impact of reperfusion therapy and infarct localization on frequency of premature ventricular beats in acute myocardial infarction. Med Glas (Zenica) 12: 139-143. Huang B, Wang X, Yang Y, Zhu J, et al (2015). Association of admission glycaemia with high grade atrioventricular block in ST-segment elevation myocardial infarction undergoing reperfusion therapy: an observational study. Medicine (Baltimore) 94: e1167. Kloner RA, Dow JS, Bhandari A, et al (2011). The antianginal agent ranolazine is a potent antiarrhythmic agent that reduces ventricular arrhythmias: through a mechanism favoring inhibition of late sodium channel. Cardiovasc. Ther. 29: e36-e41. Liu T, O’Rourke B, et al (2013). Regulation of the Na+/Ca2+ exchanger by pyridine nucleotide redox potential in ventricular myocytes. J. Biol. Chem. 288: 31984-31992. Liu X, Jing G, Bai J, Yuan H, et al (2014). [Effect of sufentanil preconditioning on myocardial P-Akt expression in rats during myocardial ischemia-reperfusion]. Nan Fang Yi Ke Da Xue Xue Bao 34: 335-340. Miskolczi G, Gönczi M, Kovács M, Seprényi G, et al (2015). Further evidence for the role of gap junctions in the delayed antiarrhythmic effect of cardiac pacing. Can. J. Physiol. Pharmacol. 93: 545-553. Neckár J, Borchert GH, Hlousková P, Mícová P, et al (2013). Brief daily episode of normoxia inhibits cardioprotection conferred by chronic continuous hypoxia. Role of oxidative stress and BKCa channels. Curr. Pharm. Des. 19: 6880-6889. Patil KD, Halperin HR, Becker LB, et al (2015). Cardiac arrest: resuscitation and reperfusion. Circ. Res. 116: 2041-2049. Shekarforoush S, Fatahi Z, Safari F, et al (2016). The effects of pentobarbital, ketamine-pentobarbital and ketamine-xylazine anesthesia in a rat myocardial ischemic reperfusion injury model. Lab. Anim. 50: 179-184. Sun X, Zhong J, Wang D, Xu J, et al (2014). Increasing glutamate promotes ischemia-reperfusion-induced ventricular arrhythmias in rats in vivo. Pharmacology 93: 4-9. Szepesi J, Acsai K, Sebok Z, Prorok J, et al (2015). Comparison of the efficiency of Na+/Ca2+ exchanger or Na+/H+ exchanger inhibition and their combination in reducing coronary reperfusion-induced arrhythmias. J. Physiol. Pharmacol. 66: 215-226. Talukder MA, Kalyanasundaram A, Zhao X, Zuo L, et al (2007). Expression of SERCA isoform with faster Ca2+ transport properties improves postischemic cardiac function and Ca2+ handling and decreases myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 293: H2418-H2428. Tang X, Liu J, Dong W, Li P, et al (2013). The cardioprotective effects of citric Acid and L-malic Acid on myocardial ischemia/reperfusion injury. Evid. Based Complement. Alternat. Med. 2013: 820695. Wu YN, Yu H, Zhu XH, Yuan HJ, et al (2011). Noninvasive delayed limb ischemic preconditioning attenuates myocardial ischemia-reperfusion injury in rats by a mitochondrial K(ATP) channel-dependent mechanism. Physiol. Res. 60: 271-279. Wu HJ, Yang JY, Jin M, Wang SQ, et al (2015). Glycyrrhetinic Acid protects the heart from ischemia/reperfusion injury by attenuating the susceptibility and incidence of fatal ventricular arrhythmia during the reperfusion period in the rat hearts. Cell. Physiol. Biochem. 36: 741-752.  
S. S. Zhang, Chen, D., and Lu, Q., An improved protocol and a new grinding device for extraction of genomic DNA from microorganisms by a two-step extraction procedure, vol. 11. pp. 1532-1543, 2012.
Al-Samarrai TH and Schmid J (2000). A simple method for extraction of fungal genomic DNA. Lett. Appl. Microbiol. 30: 53-56. PMid:10728561   Astegiano S, Sidoti F, Costa C, Ostorero A, et al. (2010). Human cytomegalovirus load in fresh and glycerolized skin grafts. New Microbiol. 33: 253-256. PMid:20954444   Chi MH, Park SY and Lee YH (2009). A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25: 108-111.   Clark-Curtiss JE, Jacobs WR, Docherty MA, Ritchie LR, et al. (1985). Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. J. Bacteriol. 161: 1093-1102. PMid:3882664 PMCid:215012   Deden H, Deufel A, Eisel D and Grünewald-Janho S (2006). PCR Applications Manual. 3rd edn. Roche Diagnostics GmbH, Mannheim.   Fredricks DN and Relman DA (1998). Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. J. Clin. Microbiol. 36: 2810-2816. PMid:9738025 PMCid:105069   Griffiths LJ, Anyim M, Doffman SR, Wilks M, et al. (2006). Comparison of DNA extraction methods for Aspergillus fumigatus using real-time PCR. J. Med. Microbiol. 55: 1187-1191. PMid:16914647   Harju S, Fedosyuk H and Peterson KR (2004). Rapid isolation of yeast genomic DNA: Bust n' Grab. BMC Biotechnol. 4: 8. PMid:15102338 PMCid:406510   Karakousis A, Tan L, Ellis D, Alexiou H, et al. (2006). An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR. J. Microbiol. Methods 65: 38-48. PMid:16099520   Kuske CR, Banton KL, Adorada DL, Stark PC, et al. (1998). Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl. Environ. Microbiol. 64: 2463-2472. PMid:9647816 PMCid:106412   Liu KH, Yeh YL and Shen WC (2011). Fast preparation of fungal DNA for PCR screening. J. Microbiol. Methods 85: 170-172. PMid:21315113   Maarit NR, Heiskanen I, Wallenius K and Lindstrom K (2001). Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J. Microbiol. Methods 45: 155-165.   Melo SC, Pungartnik C, Cascardo JC and Brendel M (2006). Rapid and efficient protocol for DNA extraction and molecular identification of the basidiomycete Crinipellis perniciosa. Genet. Mol. Res. 5: 851-855. PMid:17183493   Moslem MA, Bahkali AH, Abd-Elsalam KA and Wit PJ (2010). An efficient method for DNA extraction from Cladosporioid fungi. Genet. Mol. Res. 9: 2283-2291. PMid:21128208   Müller FM, Werner KE, Kasai M, Francesconi A, et al. (1998). Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption. J. Clin. Microbiol. 36: 1625-1629. PMid:9620390 PMCid:104890   Niwa T, Kawamura Y, Katagiri Y and Ezaki T (2005). Lytic enzyme, labiase for a broad range of Gram-positive bacteria and its application to analyze functional DNA/RNA. J. Microbiol. Methods 61: 251-260. PMid:15722152   Okada H, Tada K, Sekiya T, Yokoyama K, et al. (1998). Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414. Appl. Environ. Microbiol. 64: 555-563. PMid:9464393 PMCid:106082   Rajagopalan G and Krishnan C (2008). Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresour. Technol. 99: 3044-3050. PMid:17644331   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor, New York.   Tendulkar SR, Gupta A and Chattoo BB (2003). A simple protocol for isolation of fungal DNA. Biotechnol. Lett. 25: 1941-1944. PMid:14719830   Tong AH and Boone C (2006). Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 313: 171-192. PMid:16118434   Waites MJ, Morgan NL, Rockey JS and Higton G (2001). Industrial Microbiology: An Introduction. Blackwell Science, London, 16-34.   Yamamoto Y, Kohno S, Koga H, Kakeya H, et al. (1995). Random amplified polymorphic DNA analysis of clinically and environmentally isolated Cryptococcus neoformans in Nagasaki. J. Clin. Microbiol. 33: 3328-3332. PMid:8586730 PMCid:228701   Zhang YJ, Zhang S, Liu XZ, Wen HA, et al. (2010). A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Lett. Appl. Microbiol. 51: 114-118. PMid:20536704
H. B. Ma, Lu, Q., Liang, J., and Zhang, X. Y., Functional analysis of the cellulose gene of the pine wood nematode, Bursaphelenchus xylophilus, using RNA interference, vol. 10, pp. 1931-1941, 2011.
Bakhetia M, Urwin PE and Atkinson HJ (2007). QPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host. Mol. Plant Microbe Interact. 20: 306-312. PMid:17378433 Chen Q, Rehman S, Smant G and Jones JT (2005). Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi. Mol. Plant Microbe Interact. 18: 621-625. PMid:16042007 Cheng XY, Dai SM, Xiao L and Xie BY (2010). Influence of cellulase gene knochdown by dsRNA interference on the development and reproduction of the pine wood nematode, Bursaphelenchus xylophilus. Nematology 12: 225-233. Fanelli E, Di Vito M, Jones JT and De Giorgi C (2005). Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi. Gene 349: 87-95. PMid:15777697 Fire A, Xu S, Montgomery MK, Kostas SA, et al. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. PMid:9486653 Guo S and Kemphues KJ (1995). Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81: 611-620. Huang G, Allen R, Davis EL, Baum TJ, et al. (2006). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc. Natl. Acad. Sci. U. S. A. 103: 14302-14306. PMid:16985000    PMCid:1570184 Jones JT, Moens M, Mota M, Li H, et al. (2008). Bursaphelenchus xylophilus: opportunities in comparative genomics and molecular host-parasite interactions. Mol. Plant Pathol. 9: 357-368. PMid:18705876 Kikuchi T, Jones JT, Aikawa T, Kosaka H, et al. (2004). A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Lett. 572: 201-205. PMid:15304348 Kikuchi T, Shibuya H and Jones JT (2005). Molecular and biochemical characterization of an endo-β-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. Biochem. J. 389: 117-125. PMid:15727561    PMCid:1184544 Kikuchi T, Shibuya H, Aikawa T and Jones JT (2006). Cloning and characterization of pectate lyases expressed in the esophageal gland of the pine wood nematode Bursaphelenchus xylophilus. Mol. Plant Microbe Interact. 19: 280-287. PMid:16570658 Kikuchi T, Aikawa T, Kosaka H, Pritchard L, et al. (2007). Expressed sequence tag (EST) analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Mol. Biochem. Parasitol. 155: 9-17. PMid:17560668 Kiyohara T and Tokushige Y (1971). Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. J. Jpn. For. Soc. 53: 210-218. Kuroda K (1989). Terpenoids causing tracheid-cavitation in Pinus thunbergii infected by the pine wood nematode (Bursaphelenchus xylophilus). Ann. Phytopath. Soc. Jpn. 55: 170-178. Li YH, Guo R, Yin QY, Ding M, et al. (2005). Purification and characterization of two endo-β-1,4-glucanases from mollusca, Ampullaria crossean. Acta Biochim. Biophys. Sin. 37: 702-708. PMid:16215638 Lilley CJ, Bakhetia M, Charlton WL and Urwin PE (2007). Recent progress in the development of RNA interference for plant parasitic nematodes. Mol. Plant Pathol. 8: 701-711. PMid:20507531 Mamiya Y (1983). Pathology of pine wilt disease caused by Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 21: 201-220. Mamiya Y and Enda N (1972). Transmission of Bursaphelenchus lignicola (Nematoda: Aphelenchoidae) by Monochamus alternatus (Coleopteran: Cerambycidae). Nematologica 18: 159-162. Mamiya Y and Kiyohara T (1972). Description of Bursaphelenchus lignicolus sp (Nematoda: Aphelenchoididae) from pine wood and histopathology of nematode-infested trees. Nematologica 18: 120-124. Matsunaga K and Togashi K (2004). Among-tree difference in the inhibition of systemic dispersal of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) by Pinus densiflora. Appl. Entomol. Zool. 39: 271-277. Odani K, Sasaki S, Nishiyama Y and Yamamoto N (1985). Early symptom developments of the pine wilt disease by hydrolytic enzymes produced by the pine wood nematodes-cellulase as a possible candidate of the pathogen. J. Jpn. For. Soc. 67: 366-372. Park JE, Lee KY, Lee SJ, Oh WS, et al. (2008). The efficiency of RNA interference in Bursaphelenchus xylophilus. Mol. Cells 26: 81-86. PMid:18525237 Rosso MN, Favery B, Piotte C, Arthaud L, et al. (1999). Isolation of a cDNA encoding a β-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol. Plant Microbe Interact. 12: 585-591. PMid:10478479 Rosso MN, Dubrana MP, Cimbolini N, Jaubert S, et al. (2005). Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol. Plant Microbe Interact. 18: 615-620. PMid:16042006 Shingles J, Lilley CJ, Atkinson HJ and Urwin PE (2007). Meloidogyne incognita: molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp. Parasitol. 115: 114-120. PMid:16996059 Togashi K and Matsunaga K (2003). Between isolate difference in dispersal ability of Bursaphelenchus xylophilus and vulnerability to inhibition by Pinus densiflora. Nematology 5: 559-564. Tokushige Y and Kiyohara T (1969). Bursaphelenchus sp. in the wood of dead pine trees. J. Jpn. For. Soc. 51: 193-195. Urwin PE, Lilley CJ and Atkinson HJ (2002). Ingestion of double-stranded RNA by pre parasitic juvenile cyst nematodes leads to RNA interference. Mol. Plant Microbe Interact. 15: 747-752. PMid:12182331 Wang SX, Niu BL, Shen WF and Weng HB (2007). RNA interference of RNA polymerase gene in Bursaphelenchus xylophilus. Zhejiang Agric. Sci. 6: 690-693. Zhang XY and Luo YQ (2006). Major Forest Disease and Insect Pests in China. Chinese Publishing House of Forestry, Beijing.