Publications

Found 11 results
Filters: Author is Y. Jiao  [Clear All Filters]
2011
Y. Jiao, Zan, L. S., Liu, Y. F., and Wang, H. B., Molecular characterization, polymorphism of the ACOX1 gene and association with ultrasound traits in Bos taurus, vol. 10, pp. 1948-1957, 2011.
Brethour JR (1994). Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures. J. Anim. Sci. 72: 1425-1432. PMid:8071165 Casas-Carrillo E, Prill-Adams A, Price SG, Clutter AC, et al. (1997). Mapping genomic regions associated with growth rate in pigs. J. Anim. Sci. 75: 2047-2053. PMid:9263050 Clop A, Ovilo C, Perez-Enciso M, Cercos A, et al. (2003). Detection of QTL affecting fatty acid composition in the pig. Mamm. Genome 14: 650-656. http://dx.doi.org/10.1007/s00335-002-2210-7 PMid:14629115 Fan CY, Pan J, Chu R, Lee D, et al. (1996). Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J. Biol. Chem. 271: 24698-24710. http://dx.doi.org/10.1074/jbc.271.40.24698 PMid:8798738 Fournier B, Saudubray JM, Benichou B, Lyonnet S, et al. (1994). Large deletion of the peroxisomal acyl-CoA oxidase gene in pseudoneonatal adrenoleukodystrophy. J. Clin. Invest. 94: 526-531. http://dx.doi.org/10.1172/JCI117365 PMid:8040306    PMCid:296126 Hamlin KE, Green RD, Cundiff LV, Wheeler TL, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: II. Relationship between real-time ultrasound measures and carcass retail yield. J. Anim. Sci. 73: 1725-1734. PMid:7673066 Jiao Y, Zan LS, Liu YF, Wang HB, et al. (2010). A novel polymorphism of the MYPN gene and its association with meat quality traits in Bos taurus. Genet. Mol. Res. 9: 1751-1758. http://dx.doi.org/10.4238/vol9-3gmr906 PMid:20812196 Kim S, Sohn I, Ahn JI, Lee KH, et al. (2004). Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 340: 99-109. http://dx.doi.org/10.1016/j.gene.2004.06.015 PMid:15556298 Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An Alul PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009 Li Y, Tharappel JC, Cooper S, Glenn M, et al. (2000). Expression of the hydrogen peroxide-generating enzyme fatty acyl CoA oxidase activates NF-kappaB. DNA Cell Biol. 19: 113-120. http://dx.doi.org/10.1089/104454900314627 PMid:10701777 Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978 Morais S, Knoll-Gellida A, Andre M, Barthe C, et al. (2007). Conserved expression of alternative splicing variants of peroxisomal acyl-CoA oxidase 1 in vertebrates and developmental and nutritional regulation in fish. Physiol. Genomics 28: 239-252. http://dx.doi.org/10.1152/physiolgenomics.00136.2006 PMid:17090698 Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762 Nohammer C, El-Shabrawi Y, Schauer S, Hiden M, et al. (2000). cDNA cloning and analysis of tissue-specific expression of mouse peroxisomal straight-chain acyl-CoA oxidase. Eur. J. Biochem. 267: 1254-1260. http://dx.doi.org/10.1046/j.1432-1327.2000.01128.x Oaxaca-Castillo D, Andreoletti P, Vluggens A, Yu S, et al. (2007). Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene. Biochem. Biophys. Res. Commun. 360: 314-319. http://dx.doi.org/10.1016/j.bbrc.2007.06.059 PMid:17603022    PMCid:2732019 Rosewich H, Waterham HR, Wanders RJ, Ferdinandusse S, et al. (2006). Pitfall in metabolic screening in a patient with fatal peroxisomal beta-oxidation defect. Neuropediatrics 37: 95-98. http://dx.doi.org/10.1055/s-2006-923943 PMid:16773508 Varanasi U, Chu R, Chu S, Espinosa R, et al. (1994). Isolation of the human peroxisomal acyl-CoA oxidase gene: organization, promoter analysis, and chromosomal localization. Proc. Natl. Acad. Sci. U. S. A. 91: 3107-3111. http://dx.doi.org/10.1073/pnas.91.8.3107 Wanders RJ (2004). Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol. Genet. Metab. 83: 16-27. http://dx.doi.org/10.1016/j.ymgme.2004.08.016 PMid:15464416 Yue G, Schröffel JJ, Moser G, Bartenschlager H, et al. (2003). Linkage and QTL mapping for Sus scrofa chromosome 12. J. Anim. Breed. Genet. 120: 95-102. http://dx.doi.org/10.1046/j.0931-2668.2003.00429.x Zuo B, Yang H, Wang J, Lei MG, et al. (2007a). Molecular characterization, sequence variation and association with fat deposition traits of ACOX1 gene in pigs. J. Anim. Feed Sci. 16: 433-444. Zuo B, Yang H, Lei MG, Li FE, et al. (2007b). Association of the polymorphism in GYS1 and ACOX1 genes with meat quality traits in pigs. Animal 1: 1243-1248. http://dx.doi.org/10.1017/S1751731107000523
Y. F. Liu, Zan, L. S., Cui, W. T., Xin, Y. P., Jiao, Y., and Li, K., Molecular cloning, characterization and association analysis of the promoter region of the bovine CDK6 gene, vol. 10, pp. 1777-1786, 2011.
Chang JG, Chiou SS, Perng LI, Chen TC, et al. (1992a). Molecular characterization of glucose-6-phosphate dehydrogenase (G6PD) deficiency by natural and amplification created restriction sites: five mutations account for most G6PD deficiency cases in Taiwan. Blood 80: 1079-1082. PMid:1323345 Chang JG, Chen PH, Chiou SS, Lee LS, et al. (1992b). Rapid diagnosis of P-thalassemia mutations in Chinese by naturally and amplified created restriction sites. Blood 80: 2092-2096. PMid:1391961 Cram EJ, Liu BD, Bjeldanes LF and Firestone GL (2001). Indole-3-carbinol inhibits CDK6 expression in human MCF-7 breast cancer cells by disrupting Sp1 transcription factor interactions with a composite element in the CDK6 gene promoter. J. Biol. Chem. 276: 22332-22340. http://dx.doi.org/10.1074/jbc.M010539200 PMid:11297539 Eiken HG, Odland E, Boman H, Skjelkvale L, et al. (1991). Application of natural and amplification created restriction sites for the diagnosis of PKU mutations. Nucleic Acids Res. 19: 1427-1430. http://dx.doi.org/10.1093/nar/19.7.1427 PMid:1851292    PMCid:333896 Ericson KK, Krull D, Slomiany P and Grossel MJ (2003). Expression of cyclin-dependent kinase 6, but not cyclin-dependent kinase 4, alters morphology of cultured mouse astrocytes. Mol. Cancer Res. 1: 654-664. PMid:12861051 Fujimoto T, Anderson K, Jacobsen SE, Nishikawa SI, et al. (2007). Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBPalpha interaction. EMBO J. 26: 2361-2370. http://dx.doi.org/10.1038/sj.emboj.7601675 PMid:17431401    PMCid:1864973 Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499 Grossel MJ and Hinds PW (2006). Beyond the cell cycle: a new role for Cdk6 in differentiation. J. Cell Biochem. 97: 485-493. http://dx.doi.org/10.1002/jcb.20712 PMid:16294322 Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, et al. (2008). Many sequence variants affecting diversity of adult human height. Nat. Genet. 40: 609-615. http://dx.doi.org/10.1038/ng.122 PMid:18391951 Hu MG, Deshpande A, Enos M, Mao D, et al. (2009). A requirement for cyclin-dependent kinase 6 in thymocyte development and tumorigenesis. Cancer Res. 69: 810-818. http://dx.doi.org/10.1158/0008-5472.CAN-08-2473 PMid:19155308    PMCid:2636510 Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, et al. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67: 7713-7722. http://dx.doi.org/10.1158/0008-5472.CAN-07-1083 PMid:17699775 Kohrt DM, Crary JI, Gocheva V, Hinds PW, et al. (2009). Distinct subcellular distribution of cyclin dependent kinase 6. Cell Cycle 8: 2837-2843. http://dx.doi.org/10.4161/cc.8.17.9521 PMid:19667758    PMCid:2774137 Lettre G, Jackson AU, Gieger C, Schumacher FR, et al. (2008). Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40: 584-591. http://dx.doi.org/10.1038/ng.125 PMid:18391950    PMCid:2687076 Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978 Lujambio A, Ropero S, Ballestar E, Fraga MF, et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67: 1424-1429. http://dx.doi.org/10.1158/0008-5472.CAN-06-4218 PMid:17308079 Mateescu RG, Zhang Z, Tsai K, Phavaphutanon J, et al. (2005). Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for hip dysplasia in a crossbreed pedigree. J. Hered. 96: 847-853. http://dx.doi.org/10.1093/jhered/esi109 PMid:16251522 Matushansky I, Radparvar F and Skoultchi AI (2003). CDK6 blocks differentiation: coupling cell proliferation to the block to differentiation in leukemic cells. Oncogene 22: 4143-4149. http://dx.doi.org/10.1038/sj.onc.1206484 PMid:12833137 Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762 Nafa K, Bessler M, Mason P, Vulliamy T, et al. (1996). Factor V Leiden mutation investigated by amplification created restriction enzyme site (ACRES) in PNH patients with and without thrombosis. Haematologica 81: 540-542. PMid:9009443 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Ogasawara T, Katagiri M, Yamamoto A, Hoshi K, et al. (2004a). Osteoclast differentiation by RANKL requires NF-kappaB-mediated downregulation of cyclin-dependent kinase 6 (Cdk6). J. Bone Miner. Res. 19: 1128-1136. http://dx.doi.org/10.1359/jbmr.2004.19.7.1128 PMid:15176996 Ogasawara T, Kawaguchi H, Jinno S, Hoshi K, et al. (2004b). Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Mol. Cell Biol. 24: 6560-6568. http://dx.doi.org/10.1128/MCB.24.15.6560-6568.2004 PMid:15254224    PMCid:444857 Peng Y, Chen F, Melamed J, Chiriboga L, et al. (2008). Distinct nuclear and cytoplasmic functions of androgen receptor cofactor p44 and association with androgen-independent prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 105: 5236-5241. http://dx.doi.org/10.1073/pnas.0712262105 PMid:18356297    PMCid:2278178 Rowell EA and Wells AD (2006). The role of cyclin-dependent kinases in T-cell development, proliferation, and function. Crit. Rev. Immunol. 26: 189-212. PMid:16928186 Silber J, Lim DA, Petritsch C, Persson AI, et al. (2008). miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 6: 14. http://dx.doi.org/10.1186/1741-7015-6-14 PMid:18577219    PMCid:2443372 Thomas JW, Lee-Lin SQ and Green ED (1999). Human-mouse comparative mapping of the genomic region containing CDK6: localization of an evolutionary breakpoint. Mamm. Genome 10: 764-767. http://dx.doi.org/10.1007/s003359901088 PMid:10384057 Weedon MN, Lango H, Lindgren CM, Wallace C, et al. (2008). Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40: 575-583. http://dx.doi.org/10.1038/ng.121 PMid:18391952    PMCid:2681221 Yang Z, Cao Y, Zhu X, Huang Y, et al. (2009). Znhit1 causes cell cycle arrest and down-regulates CDK6 expression. Biochem. Biophys. Res. Commun. 386: 146-152. http://dx.doi.org/10.1016/j.bbrc.2009.05.139 PMid:19501046 Zhang X, Neganova I, Przyborski S, Yang C, et al. (2009). A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. J. Cell Biol. 184: 67-82. http://dx.doi.org/10.1083/jcb.200801009 PMid:19139263    PMCid:2615089
2010
B. L. Guo, Jiao, Y., He, C., Wei, L. X., Chang, Z. H., Yue, X. P., Lan, X. Y., Chen, H., and Lei, C. Z., A novel polymorphism of the lactoferrin gene and its association with milk composition and body traits in dairy goats, vol. 9, pp. 2199-2206, 2010.
Brandl N, Zemann A, Kaupe I, Marlovits S, et al. (2010). Signal transduction and metabolism in chondrocytes is modulated by lactoferrin. Osteoarthritis Cartilage 18: 117-125. http://dx.doi.org/10.1016/j.joca.2009.08.012 PMid:19747587   Bullen JJ (1972). Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Proc. R. Soc. Med. 65: 1086. PMid:4568537 PMCid:1644425   Cohen MS, Britigan BE, French M and Bean K (1987). Preliminary observations on lactoferrin secretion in human vaginal mucus: variation during the menstrual cycle, evidence of hormonal regulation, and implications for infection with Neisseria gonorrhoeae. Am. J. Obstet. Gynecol. 157: 1122-1125. PMid:3120589   Cornish J (2004). Lactoferrin promotes bone growth. Biometals 17: 331-335. http://dx.doi.org/10.1023/B:BIOM.0000027713.18694.91 PMid:15222486   Cornish J, Grey AB, Naot D and Palmano KP (2005). Lactoferrin and bone: an overview of recent progress. Aust. J. Dairy Technol. 60: 53-57.   Gutteridge JM, Paterson SK, Segal AW and Halliwell B (1981). Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem. J. 199: 259-261. PMid:7337708 PMCid:1163360   Jenssen H and Hancock RE (2009). Antimicrobial properties of lactoferrin. Biochimie 91: 19-29. http://dx.doi.org/10.1016/j.biochi.2008.05.015 PMid:18573312   Jeremy B (1995). Lactoferrin: a multifunctional immunoregulatory protein? Immunol. Today 16: 417-419. http://dx.doi.org/10.1016/0167-5699(95)80016-6   Kim SJ, Sohn BH, Jeong S, Pak KW, et al. (1999). High-level expression of human lactoferrin in milk of transgenic mice using genomic lactoferrin sequence. J. Biochem. 126: 320-325. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022452 PMid:10423524   Kinsella JE and Whitehead DM (1989). Proteins in whey: chemical, physical, and functional properties. Adv. Food Nutr. Res. 33: 343-438. http://dx.doi.org/10.1016/S1043-4526(08)60130-8   Lan XY, Pan CY, Chen H and Zhang CL (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009   Leon-Sicairos N, Canizalez-Roman A, de la Garza M, Reyes-Lopez M, et al. (2009). Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. Biochimie 91: 133-140. http://dx.doi.org/10.1016/j.biochi.2008.06.009 PMid:18625283   Li GH, Zhang Y, Sun DX and Li N (2004). Study on the polymorphism of bovine lactoferrin gene and its relationship with mastitis. Anim. Biotechnol. 15: 67-76. http://dx.doi.org/10.1081/ABIO-120037899 PMid:15248601   Liu LH, Gladwell W and Teng CT (2002). Detection of exon polymorphisms in the human lactoferrin gene. Biochem. Cell Biol. 80: 17-22. http://dx.doi.org/10.1139/o01-207 PMid:11908638   Livney YD (2010). Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15: 73-83. http://dx.doi.org/10.1016/j.cocis.2009.11.002   Masson PL, Heremans JF and Dive CH (1966). An iron-binding protein common to many external secretions. Clin. Chim. Acta 14: 735-739. http://dx.doi.org/10.1016/0009-8981(66)90004-0   Mohamed JA, DuPont HL, Jiang ZD, Belkind-Gerson J, et al. (2007). A novel single-nucleotide polymorphism in the lactoferrin gene is associated with susceptibility to diarrhea in North American travelers to Mexico. Clin. Infect. Dis. 44: 945-952. http://dx.doi.org/10.1086/512199 PMid:17342646   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Nichols BL, McKee KS, Henry JF and Putman M (1987). Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr. Res. 21: 563-567. http://dx.doi.org/10.1203/00006450-198706000-00011 PMid:3496579   Park I, Schaeffer E, Sidoli A, Baralle FE, et al. (1985). Organization of the human transferrin gene: direct evidence that it originated by gene duplication. Proc. Natl. Acad. Sci. U. S. A. 82: 3149-3153. http://dx.doi.org/10.1073/pnas.82.10.3149 PMid:3858812 PMCid:397732   Teng CT, Pentecost BT, Marshall A, Solomon A, et al. (1987). Assignment of the lactotransferrin gene to human chromosome 3 and to mouse chromosome 9. Somat. Cell Mol. Genet. 13: 689-693. http://dx.doi.org/10.1007/BF01534490 PMid:3478818   Teng CT, Pentecost BT, Chen YH, Newbold RR, et al. (1989). Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology 124: 992-999. http://dx.doi.org/10.1210/endo-124-2-992 PMid:2463910   Williams J (1982). The evolution of transferrin. Trends Biochem. Sci. 7: 394-397. http://dx.doi.org/10.1016/0968-0004(82)90183-9   Yamauchi K, Tomita M, Giehl TJ and Ellison RT III (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719-728. PMid:8423097 PMCid:302785   Yamauchi K, Wakabayashi H, Shin K and Takase M (2006). Bovine lactoferrin: benefits and mechanism of action against infections. Biochem. Cell Biol. 84: 291-296. http://dx.doi.org/10.1139/o06-054 PMid:16936799
Y. Jiao, Zan, L. S., Liu, Y. F., Wang, H. B., and Guo, B. L., A novel polymorphism of the MYPN gene and its association with meat quality traits in Bos taurus, vol. 9, pp. 1751-1758, 2010.
Bang ML, Mudry RE, McElhinny AS, Trombitas K, et al. (2001). Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J. Cell Biol. 153: 413-427. http://dx.doi.org/10.1083/jcb.153.2.413 PMid:11309420 PMCid:2169455   Brethour JR (1994). Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures. J. Anim. Sci. 72: 1425-1432. PMid:8071165   Davoli R, Braglia S, Lama B, Fontanesi L, et al. (2003). Mapping, identification of polymorphisms and analysis of allele frequencies in the porcine skeletal muscle myopalladin and titin genes. Cytogenet. Genome Res. 102: 152-156. http://dx.doi.org/10.1159/000075741 PMid:14970695   Du DS, Zhai LW, Xu DA and Wang CD (2009). SNPs detection of EPOR & MYPN gene and association with meat quality traits in porcine. Acta Vet. Zootech. Sin. 36: 80-83.   Duboscq-Bidot L, Xu P, Charron P, Neyroud N, et al. (2008). Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res. 77: 118-125. http://dx.doi.org/10.1093/cvr/cvm015 PMid:18006477   Gilbert R, Cohen JA, Pardo S, Basu A, et al. (1999). Identification of the A-band localization domain of myosin binding proteins C and H (MyBP-C, MyBP-H) in skeletal muscle. J. Cell. Sci. 112 (Pt 1): 69-79. PMid:9841905   Hamlin KE, Green RD, Cundiff LV, Wheeler TL, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: II. Relationship between real-time ultrasound measures and carcass retail yield. J. Anim. Sci. 73: 1725-1734. PMid:7673066   Knoll R, Hoshijima M and Chien KR (2002). Z-line proteins: implications for additional functions. Eur. Heart J. Suppl. 4: I-13-I-17. http://dx.doi.org/10.1016/S1520-765X(02)90105-7   Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978   Ma K and Wang K (2002). Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin. FEBS Lett. 532: 273-278. http://dx.doi.org/10.1016/S0014-5793(02)03655-4   McElhinny AS, Schwach C, Valichnac M, Mount-Patrick S, et al. (2003). Nebulin: the nebulous, multifunctional giant of striated muscle. Trends Cardiovasc. Med. 13: 195-201. http://dx.doi.org/10.1016/S1050-1738(03)00076-8   Mestroni L (2009). Phenotypic heterogeneity of sarcomeric gene mutations: a matter of gain and loss? J. Am. Coll. Cardiol. 54: 343-345. http://dx.doi.org/10.1016/j.jacc.2009.04.029 PMid:19608032 PMCid:2756576   Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Ohtsuka H, Yajima H, Maruyama K and Kimura S (1997). Binding of the N-terminal 63 kDa portion of connectin/titin to alpha-actinin as revealed by the yeast two-hybrid system. FEBS Lett. 401: 65-67. http://dx.doi.org/10.1016/S0014-5793(96)01432-9   Otey CA, Rachlin A, Moza M, Arneman D, et al. (2005). The palladin/myotilin/myopalladin family of actin-associated scaffolds. Int. Rev. Cytol. 246: 31-58. http://dx.doi.org/10.1016/S0074-7696(05)46002-7   Parast MM and Otey CA (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J. Cell. Biol. 150: 643-656. http://dx.doi.org/10.1083/jcb.150.3.643 PMid:10931874 PMCid:2175193   Salmikangas P, Mykkanen OM, Gronholm M, Heiska L, et al. (1999). Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum. Mol. Genet. 8: 1329-1336. http://dx.doi.org/10.1093/hmg/8.7.1329 PMid:10369880   Silvia MG, Daniel A and Carol AO (2008). The role of palladin in actin organization and cell motility. Cell Biol. 87: 517-525.   Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, et al. (1997). Tissue-specific expression and alpha-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J. Mol. Biol. 270: 688-695. http://dx.doi.org/10.1006/jmbi.1997.1145 PMid:9245597   Vaughan KT, Weber FE and Fischman DA (1992). cDNA cloning and sequence comparisons of human and chicken muscle C-protein and 86 kD protein. Symp. Soc. Exp. Biol. 46: 167-177. PMid:1341033   Wang C, Huang ZH and Zhang XQ (2007). Analysis on associations of myopalladin gene polymorphisms with carcass traits in pigs. Acta Vet. Zootech. Sin. 38: 760-764.   Wimmers K, Murani E, Te Pas MF, Chang KC, et al. (2007). Associations of functional candidate genes derived from gene-expression profiles of prenatal porcine muscle tissue with meat quality and muscle deposition. Anim. Genet. 38: 474-484. http://dx.doi.org/10.1111/j.1365-2052.2007.01639.x PMid:17697135   Young P, Ferguson C, Banuelos S and Gautel M (1998). Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J. 17: 1614-1624. http://dx.doi.org/10.1093/emboj/17.6.1614 PMid:9501083 PMCid:1170509