Publications

Found 3 results
Filters: Author is D. Alptekin  [Clear All Filters]
2012
D. Alptekin, Izmirli, M., Bayazit, Y., Luleyap, H. U., Yilmaz, M. B., Soyupak, B., Erkoc, M. A., and Tansug, Z., Evaluation of the effects of androgen receptor gene trinucleotide repeats and prostate-specific antigen gene polymorphisms on prostate cancer, vol. 11, pp. 1424-1432, 2012.
Binnie MC, Alexander FE, Heald C and Habib FK (2005). Polymorphic forms of prostate specific antigen and their interaction with androgen receptor trinucleotide repeats in prostate cancer. Prostate 63: 309-315. http://dx.doi.org/10.1002/pros.20178 PMid:15599941   Bratt O, Borg A, Kristoffersson U, Lundgren R, et al. (1999). CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk. Br. J. Cancer 81: 672-676. http://dx.doi.org/10.1038/sj.bjc.6690746 PMid:10574254 PMCid:2362888   Cicek MS, Conti DV, Curran A, Neville PJ, et al. (2004). Association of prostate cancer risk and aggressiveness to androgen pathway genes: SRD5A2, CYP17, and the AR. Prostate 59: 69-76. http://dx.doi.org/10.1002/pros.10358 PMid:14991867   Correa-Cerro L, Wohr G, Haussler J, Berthon P, et al. (1999). (CAG)n CAA and GGN repeats in the human androgen receptor gene are not associated with prostate cancer in a French-German population. Eur. J. Hum. Genet. 7: 357-362. http://dx.doi.org/10.1038/sj.ejhg.5200298 PMid:10234512   Evans RM (1988). The steroid and thyroid hormone receptor superfamily. Science 240: 889-895. http://dx.doi.org/10.1126/science.3283939 PMid:3283939   Gao T, Marcelli M and McPhaul MJ (1996). Transcriptional activation and transient expression of the human androgen receptor. J. Steroid Biochem. Mol. Biol. 59: 9-20. http://dx.doi.org/10.1016/S0960-0760(96)00097-0   Giovannucci E, Stampfer MJ, Krithivas K, Brown M, et al. (1997). The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 94: 3320-3323. http://dx.doi.org/10.1073/pnas.94.7.3320 PMid:9096391 PMCid:20367   Giovannucci E, Stampfer MJ, Chan A, Krithivas K, et al. (1999). CAG repeat within the androgen receptor gene and incidence of surgery for benign prostatic hyperplasia in U.S. physicians. Prostate 39: 130-134. http://dx.doi.org/10.1002/(SICI)1097-0045(19990501)39:2<130::AID-PROS8>3.0.CO;2-#   Gsur A, Feik E and Madersbacher S (2004). Genetic polymorphisms and prostate cancer risk. World J. Urol. 21: 414-423. http://dx.doi.org/10.1007/s00345-003-0378-4 PMid:14648103   Gsur A, Preyer M, Haidinger G, Zidek T, et al. (2002). Polymorphic CAG repeats in the androgen receptor gene, prostate-specific antigen polymorphism and prostate cancer risk. Carcinogenesis 23: 1647-1651. http://dx.doi.org/10.1093/carcin/23.10.1647 PMid:12376473   Hakimi JM, Schoenberg MP, Rondinelli RH, Piantadosi S, et al. (1997). Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer. Clin. Cancer Res. 3: 1599-1608. PMid:9815849   Hardy DO, Scher HI, Bogenreider T, Sabbatini P, et al. (1996). Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J. Clin. Endocrinol. Metab. 81: 4400-4405. http://dx.doi.org/10.1210/jc.81.12.4400 PMid:8954049   Irvine RA, Yu MC, Ross RK and Coetzee GA (1995). The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res. 55: 1937-1940. PMid:7728763   Klobeck HG, Combriato G, Schulz P, Arbusow V, et al. (1989). Genomic sequence of human prostate specific antigen (PSA). Nucleic Acids Res. 17: 3981. http://dx.doi.org/10.1093/nar/17.10.3981 PMid:2471958 PMCid:317881   Krishnaswamy V, Kumarasamy T, Venkatesan V, Shroff S, et al. (2006). South Indian men with reduced CAG repeat length in the androgen receptor gene have an increased risk of prostate cancer. J. Hum. Genet. 51: 254-257. http://dx.doi.org/10.1007/s10038-005-0346-5 PMid:16437189   Lange EM, Chen H, Brierley K, Perrone EE, et al. (1999). Linkage analysis of 153 prostate cancer families over a 30-cM region containing the putative susceptibility locus HPCX. Clin. Cancer Res. 5: 4013-4020. PMid:10632333   Lilja H (2003). Biology of prostate-specific antigen. Urology 62: 27-33. http://dx.doi.org/10.1016/S0090-4295(03)00775-1   Liu J, Zhang JS, Young CY and Kao PC (2003). Polymorphisms of prostate-specific antigen gene promoter: determination from cord blood collected on filter paper. Ann. Clin. Lab. Sci. 33: 429-434. PMid:14584757   Lubahn DB, Brown TR, Simental JA, Higgs HN, et al. (1989). Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity. Proc. Natl. Acad. Sci. U. S. A. 86: 9534-9538. http://dx.doi.org/10.1073/pnas.86.23.9534 PMid:2594783 PMCid:298531   Medeiros R, Morais A, Vasconcelos A, Costa S, et al. (2002). Linkage between polymorphisms in the prostate specific antigen ARE1 gene region, prostate cancer risk, and circulating tumor cells. Prostate 53: 88-94. http://dx.doi.org/10.1002/pros.10135 PMid:12210484   Mishra D, Thangaraj K, Mandhani A, Kumar A, et al. (2005). Is reduced CAG repeat length in androgen receptor gene associated with risk of prostate cancer in Indian population? Clin. Genet. 68: 55-60. http://dx.doi.org/10.1111/j.1399-0004.2005.00450.x PMid:15952987   Monroe KR, Yu MC, Kolonel LN, Coetzee GA, et al. (1995). Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat. Med. 1: 827-829. http://dx.doi.org/10.1038/nm0895-827 PMid:7585188   Nenonen H, Björk C, Skjaerpe P-A, Giwercman A, et al. (2010). CAG repeat number is not inversely associated with androgen receptor activity in vitro. Mol. Hum. Reprod. 16: 153-157. http://dx.doi.org/10.1093/molehr/gap097 PMid:19884136   Platz EA, Giovannucci E, Dahl DM, Krithivas K, et al. (1998). The androgen receptor gene GGN microsatellite and prostate cancer risk. Cancer Epidemiol. Biomark. Prev. 7: 379-384. PMid:9610786   Rao A, Chang BL, Hawkins G, Hu JJ, et al. (2003). Analysis of G/A polymorphism in the androgen response element I of the PSA gene and its interactions with the androgen receptor polymorphisms. Urology 61: 864-869. http://dx.doi.org/10.1016/S0090-4295(02)02414-7   Rodríguez-González G, Cabrera S, Ramirez-Moreno R, Bilbao C, et al. (2009). Short alleles of both GGN and CAG repeats at the exon-1 of the androgen receptor gene are associated to increased PSA staining and a higher Gleason score in human prostatic cancer. J. Steroid Biochem. Mol. Biol. 113: 85-91. http://dx.doi.org/10.1016/j.jsbmb.2008.11.010 PMid:19095061   Ross RK, Coetzee GA, Pearce CL, Reichardt JK, et al. (1999). Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Eur. Urol. 35: 355-361. http://dx.doi.org/10.1159/000019909 PMid:10325489   Sambrook J, Fritsch EF and Maniatis T (1989). Analysis and Cloning of Eukaryotik Genomic DNA. In: Molecular Cloning: a Laboratory Manual (Sambrook J, Fritsch EF and Maniatis T, eds.). 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 9.34-9.51.   Sartor O, Zheng Q and Eastham JA (1999). Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer. Urology 53: 378-380. http://dx.doi.org/10.1016/S0090-4295(98)00481-6   Stanford JL, Just JJ, Gibbs M, Wicklund KG, et al. (1997). Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res. 57: 1194-1198. PMid:9067292   Tavtigian SV, Simard J, Teng DH, Abtin V, et al. (2001). A candidate prostate cancer susceptibility gene at chromosome 17p. Nat. Genet. 27: 172-180. http://dx.doi.org/10.1038/84808 PMid:11175785   Tut TG, Ghadessy FJ, Trifiro MA, Pinsky L, et al. (1997). Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J. Clin. Endocrinol. Metab. 82: 3777-3782. http://dx.doi.org/10.1210/jc.82.11.3777 PMid:9360540   Wang LZ, Sato K, Tsuchiya N, Yu JG, et al. (2003). Polymorphisms in prostate-specific antigen (PSA) gene, risk of prostate cancer, and serum PSA levels in Japanese population. Cancer Lett. 202: 53-59. http://dx.doi.org/10.1016/j.canlet.2003.08.001 PMid:14643026   Xu J, Meyers D, Freije D, Isaacs S, et al. (1998). Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat. Genet. 20: 175-179. http://dx.doi.org/10.1038/2477 PMid:9771711   Xue W, Irvine RA, Yu MC, Ross RK, et al. (2000). Susceptibility to prostate cancer: interaction between genotypes at the androgen receptor and prostate-specific antigen loci. Cancer Res. 60: 839-841. PMid:10706090   Xue W, Goetze GA, Ross RK, Irvine R, et al. (2001). Genetic determinants of serum prostate-specific antigen levels in healthy men from a multiethnic cohort. Cancer Epidemiol. Biomark. Prev. 10: 575-579. PMid:11401905   Zeegers MP, Kiemeney LA, Nieder AM and Ostrer H (2004). How strong is the association between CAG and GGN repeat length polymorphisms in the androgen receptor gene and prostate cancer risk? Cancer Epidemiol. Biomark. Prev. 13: 1765-1771. PMid:15533905
2011
M. B. Yilmaz, Pazarbasi, A., Guzel, A. I., Kocaturk-Sel, S., Kasap, H., Kasap, M., Urunsak, I. F., Basaran, S., Alptekin, D., and Demirhan, O., Association of serum sex steroid levels and bone mineral density with CYP17 and CYP19 gene polymorphisms in postmenopausal women in Turkey, vol. 10, pp. 1999-2008, 2011.
Berstein LM, Imyanitov EN, Gamajunova VB, Kovalevskij AJ, et al. (2002). CYP17 genetic polymorphism in endometrial cancer: are only steroids involved? Cancer Lett. 180: 47-53. http://dx.doi.org/10.1016/S0304-3835(02)00019-8 Bulun SE, Lin Z, Imir G, Amin S, et al. (2005). Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol. Rev. 57: 359-383. http://dx.doi.org/10.1124/pr.57.3.6 PMid:16109840 Carbonell SS, Masi L, Marini F, Del Monte F, et al. (2005). Genetics and pharmacogenetics of osteoporosis. J. Endocrinol. Invest. 28: 2-7. Compston J (2010). Osteoporosis: social and economic impact. Radiol. Clin. North Am. 48: 477-482. http://dx.doi.org/10.1016/j.rcl.2010.02.010 PMid:20609886 Eriksson AL, Lorentzon M, Vandenput L, Labrie F, et al. (2009). Genetic variations in sex steroid-related genes as predictors of serum estrogen levels in men. J. Clin. Endocrinol. Metab. 94: 1033-1041. http://dx.doi.org/10.1210/jc.2008-1283 Feigelson HS, McKean-Cowdin R and Henderson BE (2002). Concerning the CYP17 MspA1 polymorphism and breast cancer risk: a meta-analysis. Mutagenesis 17: 445-446. http://dx.doi.org/10.1093/mutage/17.5.445 PMid:12202634 Gennari L, Becherini L, Falchetti A, Masi L, et al. (2002). Genetics of osteoporosis: role of steroid hormone receptor gene polymorphisms. J. Steroid Biochem. Mol. Biol. 81: 1-24. http://dx.doi.org/10.1016/S0960-0760(02)00043-2 Kado N, Kitawaki J, Obayashi H, Ishihara H, et al. (2002). Association of the CYP17 gene and CYP19 gene polymorphisms with risk of endometriosis in Japanese women. Hum. Reprod. 17: 897-902. http://dx.doi.org/10.1093/humrep/17.4.897 PMid:11925378 Khosla S (2010). Update on estrogens and the skeleton. J. Clin. Endocrinol. Metab. 95: 3569-3577. http://dx.doi.org/10.1210/jc.2010-0856 Langdahl BL, Lokke E, Carstens M, Stenkjaer LL, et al. (2000). A TA repeat polymorphism in the estrogen receptor gene is associated with osteoporotic fractures but polymorphisms in the first exon and intron are not. J. Bone Miner. Res. 15: 2222-2230. http://dx.doi.org/10.1359/jbmr.2000.15.11.2222 PMid:11092403 Lorentzon M, Swanson C, Eriksson AL, Mellstrom D, et al. (2006). Polymorphisms in the aromatase gene predict areal BMD as a result of affected cortical bone size: the GOOD study. J. Bone Miner. Res. 21: 332-339. http://dx.doi.org/10.1359/JBMR.051026 PMid:16418790 Masi L, Becherini L, Gennari L, Amedei A, et al. (2001). Polymorphism of the aromatase gene in postmenopausal Italian women: distribution and correlation with bone mass and fracture risk. J. Clin. Endocrinol. Metab. 86: 2263-2269. http://dx.doi.org/10.1210/jc.86.5.2263 Nelson LR and Bulun SE (2001). Estrogen production and action. J. Am. Acad. Dermatol. 45: S116-S124. http://dx.doi.org/10.1067/mjd.2001.117432 PMid:11511861 Rabaglio M, Sun Z, Price KN, Castiglione-Gertsch M, et al. (2009). Bone fractures among postmenopausal patients with endocrine-responsive early breast cancer treated with 5 years of letrozole or tamoxifen in the BIG 1-98 trial. Ann. Oncol. 20: 1489-1498. http://dx.doi.org/10.1093/annonc/mdp033 PMid:19474112    PMCid:2731016 Ralston SH (2003). Genetic determinants of susceptibility to osteoporosis. Curr. Opin. Pharmacol. 3: 286-290. http://dx.doi.org/10.1016/S1471-4892(03)00033-X Riancho JA, Zarrabeitia MT, Valero C, Sanudo C, et al. (2005). Aromatase gene and osteoporosis: relationship of ten polymorphic loci with bone mineral density. Bone 36: 917-925. http://dx.doi.org/10.1016/j.bone.2005.01.004 PMid:15794932 Riggs BL, Khosla S and Melton LJ (2002). Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev. 23: 279-302. http://dx.doi.org/10.1210/er.23.3.279 PMid:12050121 Sharp L, Cardy AH, Cotton SC and Little J (2004). CYP17 gene polymorphisms: prevalence and associations with hormone levels and related factors. a HuGE review. Am. J. Epidemiol. 160: 729-740. http://dx.doi.org/10.1093/aje/kwh287 PMid:15466495 Siegelmann-Danieli N and Buetow KH (1999). Constitutional genetic variation at the human aromatase gene (Cyp19) and breast cancer risk. Br. J. Cancer 79: 456-463. http://dx.doi.org/10.1038/sj.bjc.6690071 PMid:10027313    PMCid:2362434 Simpson ER (2000). Role of aromatase in sex steroid action. J. Mol. Endocrinol. 25: 149-156. http://dx.doi.org/10.1677/jme.0.0250149 PMid:11013343 Sipos W, Pietschmann P, Rauner M, Kerschan-Schindl K, et al. (2009). Pathophysiology of osteoporosis. Wien. Med. Wochenschr. 159: 230-234. http://dx.doi.org/10.1007/s10354-009-0647-y PMid:19484205 Somner J, McLellan S, Cheung J, Mak YT, et al. (2004). Polymorphisms in the P450 c17 (17-hydroxylase/17,20-Lyase) and P450 c19 (aromatase) genes: association with serum sex steroid concentrations and bone mineral density in postmenopausal women. J. Clin. Endocrinol. Metab. 89: 344-351. http://dx.doi.org/10.1210/jc.2003-030164 Tofteng CL, Kindmark A, Brandstrom H, Abrahamsen B, et al. (2004). Polymorphisms in the CYP19 and AR genes - relation to bone mass and longitudinal bone changes in postmenopausal women with or without hormone replacement therapy: the Danish osteoporosis prevention study. Calcif. Tissue Int. 74: 25-34. http://dx.doi.org/10.1007/s00223-002-2158-3 PMid:14517714 Waltman NL, Ott CD, Twiss JJ, Gross GJ, et al. (2008). Bone mineral density and bone turnover in postmenopausal women treated for breast cancer. Cancer Nurs. 31: 182-190. http://dx.doi.org/10.1097/01.NCC.0000305722.75647.26 PMid:18453874 Ye Z and Parry JM (2002). The CYP17 MspA1 polymorphism and breast cancer risk: a meta-analysis. Mutagenesis 17: 119-126. http://dx.doi.org/10.1093/mutage/17.2.119 PMid:11880540 Zmuda JM, Cauley JA, Kuller LH and Ferrell RE (2001). A common promotor variant in the cytochrome P450c17alpha (CYP17) gene is associated with bioavailability testosterone levels and bone size in men. J. Bone Miner. Res. 16: 911-917. http://dx.doi.org/10.1359/jbmr.2001.16.5.911 PMid:11341336