Publications

Found 9 results
Filters: Author is H.M. Liu  [Clear All Filters]
2011
W. Zeng, Liu, L., Tong, Y., Liu, H. M., Dai, L., and Mao, M., A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the Chinese Han population, vol. 10, pp. 2597-2605, 2011.
Berry RJ, Li Z, Erickson JD, Li S, et al. (1999). Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N. Engl. J. Med. 341: 1485-1490. http://dx.doi.org/10.1056/NEJM199911113412001 PMid:10559448 Botto LD and Correa A (2003). Decreasing the burden of congenital heart anomalies: an epidemiologic evaluation of risk factors and survival. Prog. Pediatr. Cardiol. 18: 111-121. http://dx.doi.org/10.1016/S1058-9813(03)00084-5 Botto LD, Khoury MJ, Mulinare J and Erickson JD (1996). Periconceptional multivitamin use and the occurrence of conotruncal heart defects: results from a population-based, case-control study. Pediatrics 98: 911-917. PMid:8909485 Botto LD, Mulinare J and Erickson JD (2000). Occurrence of congenital heart defects in relation to maternal mulitivitamin use. Am. J. Epidemiol. 151: 878-884. PMid:10791560 Botto LD, Mulinare J and Erickson JD (2003). Do multivitamin or folic acid supplements reduce the risk for congenital heart defects? Evidence and gaps. Am. J. Med. Genet. A 121A: 95-101. http://dx.doi.org/10.1002/ajmg.a.20132 PMid:12910485 Botto LD, Olney RS and Erickson JD (2004). Vitamin supplements and the risk for congenital anomalies other than neural tube defects. Am. J. Med. Genet. C. Semin. Med. Genet. 125C: 12-21. http://dx.doi.org/10.1002/ajmg.c.30004 PMid:14755429 Brookes AJ (1999). The essence of SNPs. Gene 234: 177-186. http://dx.doi.org/10.1016/S0378-1119(99)00219-X Czeizel AE (1998). Periconceptional folic acid containing multivitamin supplementation. Eur. J. Obstet. Gynecol. Reprod. Biol. 78: 151-161. http://dx.doi.org/10.1016/S0301-2115(98)00061-X Czeizel AE and Dudás I (1992). Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 327: 1832-1835. http://dx.doi.org/10.1056/NEJM199212243272602 PMid:1307234 Czeizel AE, Dobo M and Vargha P (2004). Hungarian cohort-controlled trial of periconceptional multivitamin supplementation shows a reduction in certain congenital abnormalities. Birth Defects Res. A Clin. Mol. Teratol. 70: 853-861. http://dx.doi.org/10.1002/bdra.20086 PMid:15523663 Deng L, Elmore CL, Lawrance AK, Matthews RG, et al. (2008). Methionine synthase reductase deficiency results in adverse reproductive outcomes and congenital heart defects in mice. Mol. Genet. Metab. 94: 336-342. http://dx.doi.org/10.1016/j.ymgme.2008.03.004 PMid:18413293    PMCid:3110750 Elmore CL, Wu X, Leclerc D, Watson ED, et al. (2007). Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase. Mol. Genet. Metab. 91: 85-97. http://dx.doi.org/10.1016/j.ymgme.2007.02.001 PMid:17369066    PMCid:1973089 Fredriksen A, Meyer K, Ueland PM, Vollset SE, et al. (2007). Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Hum. Mutat. 28: 856-865. http://dx.doi.org/10.1002/humu.20522 PMid:17436311 Gellekink H, den Heijer M, Heil SG and Blom HJ (2005). Genetic determinants of plasma total homocysteine. Semin. Vasc. Med. 5: 98-109. http://dx.doi.org/10.1055/s-2005-872396 PMid:16047263 Hoffman JI and Kaplan S (2002). The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39: 1890-1900. http://dx.doi.org/10.1016/S0735-1097(02)01886-7 Huhta JC, Linask K and Bailey L (2006). Recent advances in the prevention of congenital heart disease. Curr. Opin. Pediatr. 18: 484-489. http://dx.doi.org/10.1097/01.mop.0000245347.45336.d7 PMid:16969161 Itikala PR, Watkins ML, Mulinare J, Moore CA, et al. (2001). Maternal multivitamin use and orofacial clefts in offspring. Teratology 63: 79-86. http://dx.doi.org/10.1002/1096-9926(200102)63:2<79::AID-TERA1013>3.0.CO;2-3 Kapusta L, Haagmans ML, Steegers EA, Cuypers MH, et al. (1999). Congenital heart defects and maternal derangement of homocysteine metabolism. J. Pediatr. 135: 773-774. http://dx.doi.org/10.1016/S0022-3476(99)70102-2 Lai E (2001). Application of SNP technologies in medicine: lessons learned and future challenges. Genome Res. 11: 927- 929. http://dx.doi.org/10.1101/gr.192301 PMid:11381021 Leclerc D, Odievre M, Wu Q, Wilson A, et al. (1999). Molecular cloning, expression and physical mapping of the human methionine synthase reductase gene. Gene 240: 75-88. http://dx.doi.org/10.1016/S0378-1119(99)00431-X Olteanu H and Banerjee R (2001). Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation. J. Biol. Chem. 276: 35558-35563. http://dx.doi.org/10.1074/jbc.M103707200 PMid:11466310 Rosenquist TH, Ratashak SA and Selhub J (1996). Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid. Proc. Natl. Acad. Sci. U. S. A. 93: 15227-15232. http://dx.doi.org/10.1073/pnas.93.26.15227 Shaw GM, Lu W, Zhu H, Yang W, et al. (2009). 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med. Genet. 10: 49. http://dx.doi.org/10.1186/1471-2350-10-49 PMid:19493349    PMCid:2700092 Silaste ML, Rantala M, Sampi M, Alfthan G, et al. (2001). Polymorphisms of key enzymes in homocysteine metabolism affect diet responsiveness of plasma homocysteine in healthy women. J. Nutr. 131: 2643-2647. PMid:11584084 Swanson DA, Liu ML, Baker PJ, Garrett L, et al. (2001). Targeted disruption of the methionine synthase gene in mice. Mol. Cell. Biol. 21: 1058-1065. http://dx.doi.org/10.1128/MCB.21.4.1058-1065.2001 PMid:11158293    PMCid:99560 Tennstedt C, Chaoui R, Korner H and Dietel M (1999). Spectrum of congenital heart defects and extracardiac malformations associated with chromosomal abnormalities: results of a seven year necropsy study. Heart 82: 34-39. PMid:10377306    PMCid:1729082 Tierney BJ, Ho T, Reedy MV and Brauer PR (2004). Homocysteine inhibits cardiac neural crest cell formation and morphogenesis in vivo. Dev. Dyn. 229: 63-73. http://dx.doi.org/10.1002/dvdy.10469 PMid:14699578 van Beynum IM, Kouwenberg M, Kapusta L, den Heijer M, et al. (2006). MTRR 66A>G polymorphism in relation to congenital heart defects. Clin. Chem. Lab. Med. 44: 1317-1323. http://dx.doi.org/10.1515/CCLM.2006.254 PMid:17087642 Verkleij-Hagoort AC, Verlinde M, Ursem NT, Lindemans J, et al. (2006). Maternal hyperhomocysteinaemia is a risk factor for congenital heart disease. BJOG 113: 1412-1418. http://dx.doi.org/10.1111/j.1471-0528.2006.01109.x Verkleij-Hagoort AC, van Driel LM, Lindemans J, Isaacs A, et al. (2008). Genetic and lifestyle factors related to the periconception vitamin B12 status and congenital heart defects: a dutch case-control study. Mol. Genet. Metab. 94: 112-119. http://dx.doi.org/10.1016/j.ymgme.2007.12.002 PMid:18226574
2010
J. J. Zhang, Zhang, X. Q., Liu, Y. H., Liu, H. M., Wang, Y. B., Tian, M. L., and Huang, Y. B., Variation characteristics of the nitrate reductase gene of key inbred maize lines and derived lines in China, vol. 9, pp. 1824-1835, 2010.
Ali ML, Taylor JH, Jie L, Sun G, et al. (2005). Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48: 521-533. http://dx.doi.org/10.1139/g05-014 PMid:16121248   Appenroth K, Meco R, Jourdan VV and Lillo C (2000). Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci. 159: 51-56. http://dx.doi.org/10.1016/S0168-9452(00)00323-X   Campbell WH (1999). Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Ver. Plant Physiol. Plant. Mol. Biol. 50: 277-303. http://dx.doi.org/10.1146/annurev.arplant.50.1.277 PMid:15012211   Chen Y, Chao Q, Tan G, Zhao J, et al. (2008). Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor. Appl. Genet. 117: 1241-1252. http://dx.doi.org/10.1007/s00122-008-0858-4 PMid:18762906   Chuanchai P, Tan XI, Silapapun A and Suthipong P (2010). Early hybrid testing in tropical maize: are molecular markers useful for selecting the parental component? Kasetsart J. Nat. Sci. 44: 70-78.   Desikan R, Griffiths R, Hancock J and Neill S (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 99: 16314-16318. http://dx.doi.org/10.1073/pnas.252461999 PMid:12446847 PMCid:138608   Foyer CH, Valadier MH, Migge A and Becker TW (1998). Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol. 117: 283-292. http://dx.doi.org/10.1104/pp.117.1.283 PMid:9576798 PMCid:35013   Fulton TM, Chunwongse J and Tanksley SD (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. http://dx.doi.org/10.1007/BF02670897   Huber JL, Redinbaugh MG, Huber SC and Campbell WH (1994). Regulation of maize leaf nitrate reductase activity involves both gene expression and protein phosphorylation. Plant Physiol. 106: 1667-1674. PMid:12232440 PMCid:159711   Kolbert Z and Erdei L (2008). Involvement of nitrate reductase in auxin-induced NO synthesis. Plant Signal Behav. 3: 972-973. PMid:19704423 PMCid:2633746   Krakowsky MD, Lee M, Garay L, Woodman-Clikeman W, et al. (2006). Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theor. Appl. Genet. 113: 821-830. http://dx.doi.org/10.1007/s00122-006-0334-y PMid:16896717   Legesse BW, Myburg AA, Pixley KV and Botha AM (2007). Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 144: 10-17. http://dx.doi.org/10.1111/j.2006.0018-0661.01921.x PMid:17567435   Li SS (1997). Selection and application of maize inbred line huangzaosi. Beijing Agric. Sci. 15: 19-21.   Li DH, Mao LH, Yang JS and Liu JG (2005). Breeding process and utilization of excellent maize inbred line 478. J. Laiyang Agric. Coll. 22: 159-164. http://dx.doi.org/10.1007/s10595-005-0075-7   Li XH, Yuan LX, Li XH and Zhang SH (2003). Heterotic grouping of 70 maize inbred lines by SSR markers. Sci. Agric. Sinica 36: 622-627.   Li Y, Wang Y, Wei M and Li X (2009). QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). J. Genet. 88: 61-66. http://dx.doi.org/10.1007/s12041-009-0008-z PMid:19417545   Lu BL, Zhao WY and Liu RZ (2004). The influence and contribution of the hybrids crossed by Mo17 deriving self inbred lines to the production of China. J. Maize Sci. 12: 127-128.   Lu Y, Yan J, Guimaraes CT, Taba S, et al. (2009). Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor. Appl. Genet. 120: 93-115. http://dx.doi.org/10.1007/s00122-009-1162-7 PMid:19823800   Menkir A, Kling JG, Badu-Apraku B and Ingelbrecht I (2005). Molecular marker-based genetic diversity assessment of striga-resistant maize inbred lines. Theor. Appl. Genet. 110: 1145-1153. http://dx.doi.org/10.1007/s00122-005-1946-3 PMid:15750826   Ning JL, Gao HM, Qu G and Yu B (2002). Utilization of inbred lines of Ludahonggu group in corn breeding and production in China. Rain Fed. Crops 22: 63-65.   Qu G, Xu WW, Chen DY and Li FZ (2002). Selection and application of superior maize inbred line Dan340. J. Maize Sci. 10: 30-33.   Schrag TA, Mohring J, Melchinger AE, Kusterer B, et al. (2010). Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor. Appl. Genet. 120: 451-461. http://dx.doi.org/10.1007/s00122-009-1208-x PMid:19916002   Sivasankar S and Oaks A (1995). Regulation of nitrate reductase during early seedling growth (a role for asparagine and glutamine). Plant Physiol. 107: 1225-1231. PMid:12228428 PMCid:157256   Stevens R (2008). Prospects for using marker-assisted breeding to improve maize production in Africa. J. Sci. Food Agric. 88: 745-755. http://dx.doi.org/10.1002/jsfa.3154   Stöhr C and Ullrich WR (1997). A succinate-oxidising nitrate reductase is located at the plasma membrane of plant roots. Planta 203: 129-132. http://dx.doi.org/10.1007/s00050173   Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, et al. (2007). QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 114: 1211-1228. http://dx.doi.org/10.1007/s00122-007-0512-6 PMid:17308934   Taramino G and Tingey S (1996). Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277-287. http://dx.doi.org/10.1139/g96-038 PMid:8984002   Wang CL, Cheng FF, Sun ZH, Tang JH, et al. (2008). Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor. Appl. Genet. 117: 1129-1139. http://dx.doi.org/10.1007/s00122-008-0851-y PMid:18677461   Wang YB, Wang ZH, Wang YP and Zhang X (1997). The analysis of heterotic group and improve of Chinese maize germplasm. Acta Agric. Boreali-Sinica 13: 74-80.   Xu SX, Liu J and Liu GS (2004). The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. Hereditas 141: 207-215. http://dx.doi.org/10.1111/j.1601-5223.2004.01865.x PMid:15703037   Xu YR, Liu XE, Sun FM and Jiao RH (2006). The application of Mo17 and derived in Chinese. J. Jilin Agric. Sci. 31: 26-28.   Yan JB, Tang H, Huang YQ, Shi YG, et al. (2003). Genomic analysis of plant height in maize through molecular marker. Sci. Agric. Sinica 10: 1069-1075.   Zeng SX, Ren R and Liu XZ (1996). The important position of huangzaosi in maize breeding and production in China. J. Maize Sci. 4: 1-6.   Zhang SH (2005). Maize Production and Research in China: Advancement and Challenges, p. 3. In: Proceedings of the Ninth Asia Regional Maize Workshop, September 5-9, Beijing.   Zhang JH, Zhang JY, Yang XH, Jin H, et al. (2007). A study on genetic relationship of main maize inbred lines in Yunnan by SSR markers. J. Maize Sci. 15: 30-35.   Zhuang QS (2003). Chinese Wheat Improvement and Pedigree Analysis. Agricultural Publishing House, Beijing.