Publications

Found 3 results
Filters: Author is B.L. Guo  [Clear All Filters]
2011
C. He, Wang, C., Chang, Z. H., Guo, B. L., Li, R., Yue, X. P., Lan, X. Y., Chen, H., and Lei, C. Z., AGPAT6 polymorphism and its association with milk traits of dairy goats, vol. 10, pp. 2747-2756, 2011.
Agarwal AK, Barnes RI and Garg A (2006). Functional characterization of human 1-acylglycerol-3-phosphate acyltransferase isoform 8: cloning, tissue distribution, gene structure, and enzymatic activity. Arch. Biochem. Biophys. 449: 64-76. http://dx.doi.org/10.1016/j.abb.2006.03.014 PMid:16620771 Agarwal AK, Sukumaran S, Bartz R, Barnes RI, et al. (2007). Functional characterization of human 1-acylglycerol- 3-phosphate-O-acyltransferase isoform 9: cloning, tissue distribution, gene structure, and enzymatic activity. J. Endocrinol. 193: 445-457. http://dx.doi.org/10.1677/JOE-07-0027 PMid:17535882 Aguado B and Campbell RD (1998). Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex. J. Biol. Chem. 273: 4096-4105. http://dx.doi.org/10.1074/jbc.273.7.4096 PMid:9461603 Beigneux AP, Vergnes L, Qiao X, Quatela S, et al. (2006). Agpat6 - a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. J. Lipid Res. 47: 734-744. http://dx.doi.org/10.1194/jlr.M500556-JLR200 PMid:16449762    PMCid:3196597 Bionaz M and Loor JJ (2008). ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138: 1019-1024. PMid:18492828 Chen YQ, Kuo MS, Li S, Bui HH, et al. (2008). AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. J. Biol. Chem. 283: 10048-10057. http://dx.doi.org/10.1074/jbc.M708151200 PMid:18238778    PMCid:2442282 Coleman RA and Lee DP (2004). Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43: 134-176. http://dx.doi.org/10.1016/S0163-7827(03)00051-1 Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, et al. (2007). A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528. http://dx.doi.org/10.1126/science.1135308 PMid:17185560 Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics. 8: 1075-1080. http://dx.doi.org/10.2217/14622416.8.8.1075 PMid:17716239 Lan XY, Pan CY, Chen H and Zhang CL (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009 Nagle CA, Vergnes L, Dejong H, Wang S, et al. (2008). Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6-/- mice. J. Lipid Res. 49: 823-831. http://dx.doi.org/10.1194/jlr.M700592-JLR200 PMid:18192653    PMCid:2819352 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York. Sham P, Bader JS, Craig I, O’Donovan M, et al. (2002). DNA Pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3: 862-871. http://dx.doi.org/10.1038/nrg930 PMid:12415316 Sukumaran S, Barnes RI, Garg A and Agarwal AK (2009). Functional characterization of the human 1-acylglycerol- 3-phosphate-O-acyltransferase isoform 10/glycerol-3-phosphate acyltransferase isoform 3. J. Mol. Endocrinol. 42: 469-478. http://dx.doi.org/10.1677/JME-09-0010 PMid:19318427 Takeuchi K and Reue K (2009). Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296: E1195-E1209. http://dx.doi.org/10.1152/ajpendo.90958.2008 PMid:19336658    PMCid:2692402 Vergnes L, Beigneux AP, Davis R, Watkins SM, et al. (2006). Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity. J. Lipid Res. 47: 745-754. http://dx.doi.org/10.1194/jlr.M500553-JLR200 PMid:16436371    PMCid:2901549 Ye GM, Chen C, Huang S, Han DD, et al. (2005). Cloning and characterization a novel human 1-acyl-sn-glycerol-3- phosphate acyltransferase gene AGPAT7. DNA Seq. 16: 386-390. http://dx.doi.org/10.1080/10425170500213712 PMid:16243729
2010
B. L. Guo, Jiao, Y., He, C., Wei, L. X., Chang, Z. H., Yue, X. P., Lan, X. Y., Chen, H., and Lei, C. Z., A novel polymorphism of the lactoferrin gene and its association with milk composition and body traits in dairy goats, vol. 9, pp. 2199-2206, 2010.
Brandl N, Zemann A, Kaupe I, Marlovits S, et al. (2010). Signal transduction and metabolism in chondrocytes is modulated by lactoferrin. Osteoarthritis Cartilage 18: 117-125. http://dx.doi.org/10.1016/j.joca.2009.08.012 PMid:19747587   Bullen JJ (1972). Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Proc. R. Soc. Med. 65: 1086. PMid:4568537 PMCid:1644425   Cohen MS, Britigan BE, French M and Bean K (1987). Preliminary observations on lactoferrin secretion in human vaginal mucus: variation during the menstrual cycle, evidence of hormonal regulation, and implications for infection with Neisseria gonorrhoeae. Am. J. Obstet. Gynecol. 157: 1122-1125. PMid:3120589   Cornish J (2004). Lactoferrin promotes bone growth. Biometals 17: 331-335. http://dx.doi.org/10.1023/B:BIOM.0000027713.18694.91 PMid:15222486   Cornish J, Grey AB, Naot D and Palmano KP (2005). Lactoferrin and bone: an overview of recent progress. Aust. J. Dairy Technol. 60: 53-57.   Gutteridge JM, Paterson SK, Segal AW and Halliwell B (1981). Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem. J. 199: 259-261. PMid:7337708 PMCid:1163360   Jenssen H and Hancock RE (2009). Antimicrobial properties of lactoferrin. Biochimie 91: 19-29. http://dx.doi.org/10.1016/j.biochi.2008.05.015 PMid:18573312   Jeremy B (1995). Lactoferrin: a multifunctional immunoregulatory protein? Immunol. Today 16: 417-419. http://dx.doi.org/10.1016/0167-5699(95)80016-6   Kim SJ, Sohn BH, Jeong S, Pak KW, et al. (1999). High-level expression of human lactoferrin in milk of transgenic mice using genomic lactoferrin sequence. J. Biochem. 126: 320-325. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022452 PMid:10423524   Kinsella JE and Whitehead DM (1989). Proteins in whey: chemical, physical, and functional properties. Adv. Food Nutr. Res. 33: 343-438. http://dx.doi.org/10.1016/S1043-4526(08)60130-8   Lan XY, Pan CY, Chen H and Zhang CL (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009   Leon-Sicairos N, Canizalez-Roman A, de la Garza M, Reyes-Lopez M, et al. (2009). Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. Biochimie 91: 133-140. http://dx.doi.org/10.1016/j.biochi.2008.06.009 PMid:18625283   Li GH, Zhang Y, Sun DX and Li N (2004). Study on the polymorphism of bovine lactoferrin gene and its relationship with mastitis. Anim. Biotechnol. 15: 67-76. http://dx.doi.org/10.1081/ABIO-120037899 PMid:15248601   Liu LH, Gladwell W and Teng CT (2002). Detection of exon polymorphisms in the human lactoferrin gene. Biochem. Cell Biol. 80: 17-22. http://dx.doi.org/10.1139/o01-207 PMid:11908638   Livney YD (2010). Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15: 73-83. http://dx.doi.org/10.1016/j.cocis.2009.11.002   Masson PL, Heremans JF and Dive CH (1966). An iron-binding protein common to many external secretions. Clin. Chim. Acta 14: 735-739. http://dx.doi.org/10.1016/0009-8981(66)90004-0   Mohamed JA, DuPont HL, Jiang ZD, Belkind-Gerson J, et al. (2007). A novel single-nucleotide polymorphism in the lactoferrin gene is associated with susceptibility to diarrhea in North American travelers to Mexico. Clin. Infect. Dis. 44: 945-952. http://dx.doi.org/10.1086/512199 PMid:17342646   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Nichols BL, McKee KS, Henry JF and Putman M (1987). Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr. Res. 21: 563-567. http://dx.doi.org/10.1203/00006450-198706000-00011 PMid:3496579   Park I, Schaeffer E, Sidoli A, Baralle FE, et al. (1985). Organization of the human transferrin gene: direct evidence that it originated by gene duplication. Proc. Natl. Acad. Sci. U. S. A. 82: 3149-3153. http://dx.doi.org/10.1073/pnas.82.10.3149 PMid:3858812 PMCid:397732   Teng CT, Pentecost BT, Marshall A, Solomon A, et al. (1987). Assignment of the lactotransferrin gene to human chromosome 3 and to mouse chromosome 9. Somat. Cell Mol. Genet. 13: 689-693. http://dx.doi.org/10.1007/BF01534490 PMid:3478818   Teng CT, Pentecost BT, Chen YH, Newbold RR, et al. (1989). Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology 124: 992-999. http://dx.doi.org/10.1210/endo-124-2-992 PMid:2463910   Williams J (1982). The evolution of transferrin. Trends Biochem. Sci. 7: 394-397. http://dx.doi.org/10.1016/0968-0004(82)90183-9   Yamauchi K, Tomita M, Giehl TJ and Ellison RT III (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719-728. PMid:8423097 PMCid:302785   Yamauchi K, Wakabayashi H, Shin K and Takase M (2006). Bovine lactoferrin: benefits and mechanism of action against infections. Biochem. Cell Biol. 84: 291-296. http://dx.doi.org/10.1139/o06-054 PMid:16936799
Y. Jiao, Zan, L. S., Liu, Y. F., Wang, H. B., and Guo, B. L., A novel polymorphism of the MYPN gene and its association with meat quality traits in Bos taurus, vol. 9, pp. 1751-1758, 2010.
Bang ML, Mudry RE, McElhinny AS, Trombitas K, et al. (2001). Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J. Cell Biol. 153: 413-427. http://dx.doi.org/10.1083/jcb.153.2.413 PMid:11309420 PMCid:2169455   Brethour JR (1994). Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures. J. Anim. Sci. 72: 1425-1432. PMid:8071165   Davoli R, Braglia S, Lama B, Fontanesi L, et al. (2003). Mapping, identification of polymorphisms and analysis of allele frequencies in the porcine skeletal muscle myopalladin and titin genes. Cytogenet. Genome Res. 102: 152-156. http://dx.doi.org/10.1159/000075741 PMid:14970695   Du DS, Zhai LW, Xu DA and Wang CD (2009). SNPs detection of EPOR & MYPN gene and association with meat quality traits in porcine. Acta Vet. Zootech. Sin. 36: 80-83.   Duboscq-Bidot L, Xu P, Charron P, Neyroud N, et al. (2008). Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res. 77: 118-125. http://dx.doi.org/10.1093/cvr/cvm015 PMid:18006477   Gilbert R, Cohen JA, Pardo S, Basu A, et al. (1999). Identification of the A-band localization domain of myosin binding proteins C and H (MyBP-C, MyBP-H) in skeletal muscle. J. Cell. Sci. 112 (Pt 1): 69-79. PMid:9841905   Hamlin KE, Green RD, Cundiff LV, Wheeler TL, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: II. Relationship between real-time ultrasound measures and carcass retail yield. J. Anim. Sci. 73: 1725-1734. PMid:7673066   Knoll R, Hoshijima M and Chien KR (2002). Z-line proteins: implications for additional functions. Eur. Heart J. Suppl. 4: I-13-I-17. http://dx.doi.org/10.1016/S1520-765X(02)90105-7   Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978   Ma K and Wang K (2002). Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin. FEBS Lett. 532: 273-278. http://dx.doi.org/10.1016/S0014-5793(02)03655-4   McElhinny AS, Schwach C, Valichnac M, Mount-Patrick S, et al. (2003). Nebulin: the nebulous, multifunctional giant of striated muscle. Trends Cardiovasc. Med. 13: 195-201. http://dx.doi.org/10.1016/S1050-1738(03)00076-8   Mestroni L (2009). Phenotypic heterogeneity of sarcomeric gene mutations: a matter of gain and loss? J. Am. Coll. Cardiol. 54: 343-345. http://dx.doi.org/10.1016/j.jacc.2009.04.029 PMid:19608032 PMCid:2756576   Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Ohtsuka H, Yajima H, Maruyama K and Kimura S (1997). Binding of the N-terminal 63 kDa portion of connectin/titin to alpha-actinin as revealed by the yeast two-hybrid system. FEBS Lett. 401: 65-67. http://dx.doi.org/10.1016/S0014-5793(96)01432-9   Otey CA, Rachlin A, Moza M, Arneman D, et al. (2005). The palladin/myotilin/myopalladin family of actin-associated scaffolds. Int. Rev. Cytol. 246: 31-58. http://dx.doi.org/10.1016/S0074-7696(05)46002-7   Parast MM and Otey CA (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J. Cell. Biol. 150: 643-656. http://dx.doi.org/10.1083/jcb.150.3.643 PMid:10931874 PMCid:2175193   Salmikangas P, Mykkanen OM, Gronholm M, Heiska L, et al. (1999). Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum. Mol. Genet. 8: 1329-1336. http://dx.doi.org/10.1093/hmg/8.7.1329 PMid:10369880   Silvia MG, Daniel A and Carol AO (2008). The role of palladin in actin organization and cell motility. Cell Biol. 87: 517-525.   Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, et al. (1997). Tissue-specific expression and alpha-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J. Mol. Biol. 270: 688-695. http://dx.doi.org/10.1006/jmbi.1997.1145 PMid:9245597   Vaughan KT, Weber FE and Fischman DA (1992). cDNA cloning and sequence comparisons of human and chicken muscle C-protein and 86 kD protein. Symp. Soc. Exp. Biol. 46: 167-177. PMid:1341033   Wang C, Huang ZH and Zhang XQ (2007). Analysis on associations of myopalladin gene polymorphisms with carcass traits in pigs. Acta Vet. Zootech. Sin. 38: 760-764.   Wimmers K, Murani E, Te Pas MF, Chang KC, et al. (2007). Associations of functional candidate genes derived from gene-expression profiles of prenatal porcine muscle tissue with meat quality and muscle deposition. Anim. Genet. 38: 474-484. http://dx.doi.org/10.1111/j.1365-2052.2007.01639.x PMid:17697135   Young P, Ferguson C, Banuelos S and Gautel M (1998). Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J. 17: 1614-1624. http://dx.doi.org/10.1093/emboj/17.6.1614 PMid:9501083 PMCid:1170509