Publications
Found 5 results
Filters: Author is Z.H. Chang [Clear All Filters]
“Molecular cloning and characterization of a chlorophyll degradation regulatory gene (ZjSGR) from Zoysia japonica”, vol. 15, p. -, 2016.
, , , “AGPAT6 polymorphism and its association with milk traits of dairy goats”, vol. 10, pp. 2747-2756, 2011.
, Agarwal AK, Barnes RI and Garg A (2006). Functional characterization of human 1-acylglycerol-3-phosphate acyltransferase isoform 8: cloning, tissue distribution, gene structure, and enzymatic activity. Arch. Biochem. Biophys. 449: 64-76.
http://dx.doi.org/10.1016/j.abb.2006.03.014
PMid:16620771
Agarwal AK, Sukumaran S, Bartz R, Barnes RI, et al. (2007). Functional characterization of human 1-acylglycerol- 3-phosphate-O-acyltransferase isoform 9: cloning, tissue distribution, gene structure, and enzymatic activity. J. Endocrinol. 193: 445-457.
http://dx.doi.org/10.1677/JOE-07-0027
PMid:17535882
Aguado B and Campbell RD (1998). Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex. J. Biol. Chem. 273: 4096-4105.
http://dx.doi.org/10.1074/jbc.273.7.4096
PMid:9461603
Beigneux AP, Vergnes L, Qiao X, Quatela S, et al. (2006). Agpat6 - a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. J. Lipid Res. 47: 734-744.
http://dx.doi.org/10.1194/jlr.M500556-JLR200
PMid:16449762 PMCid:3196597
Bionaz M and Loor JJ (2008). ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138: 1019-1024.
PMid:18492828
Chen YQ, Kuo MS, Li S, Bui HH, et al. (2008). AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. J. Biol. Chem. 283: 10048-10057.
http://dx.doi.org/10.1074/jbc.M708151200
PMid:18238778 PMCid:2442282
Coleman RA and Lee DP (2004). Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43: 134-176.
http://dx.doi.org/10.1016/S0163-7827(03)00051-1
Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, et al. (2007). A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528.
http://dx.doi.org/10.1126/science.1135308
PMid:17185560
Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics. 8: 1075-1080.
http://dx.doi.org/10.2217/14622416.8.8.1075
PMid:17716239
Lan XY, Pan CY, Chen H and Zhang CL (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 73: 8-12.
http://dx.doi.org/10.1016/j.smallrumres.2006.10.009
Nagle CA, Vergnes L, Dejong H, Wang S, et al. (2008). Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6-/- mice. J. Lipid Res. 49: 823-831.
http://dx.doi.org/10.1194/jlr.M700592-JLR200
PMid:18192653 PMCid:2819352
Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.
PMid:4822472 PMCid:1213072
Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.
Sham P, Bader JS, Craig I, O’Donovan M, et al. (2002). DNA Pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3: 862-871.
http://dx.doi.org/10.1038/nrg930
PMid:12415316
Sukumaran S, Barnes RI, Garg A and Agarwal AK (2009). Functional characterization of the human 1-acylglycerol- 3-phosphate-O-acyltransferase isoform 10/glycerol-3-phosphate acyltransferase isoform 3. J. Mol. Endocrinol. 42: 469-478.
http://dx.doi.org/10.1677/JME-09-0010
PMid:19318427
Takeuchi K and Reue K (2009). Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296: E1195-E1209.
http://dx.doi.org/10.1152/ajpendo.90958.2008
PMid:19336658 PMCid:2692402
Vergnes L, Beigneux AP, Davis R, Watkins SM, et al. (2006). Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity. J. Lipid Res. 47: 745-754.
http://dx.doi.org/10.1194/jlr.M500553-JLR200
PMid:16436371 PMCid:2901549
Ye GM, Chen C, Huang S, Han DD, et al. (2005). Cloning and characterization a novel human 1-acyl-sn-glycerol-3- phosphate acyltransferase gene AGPAT7. DNA Seq. 16: 386-390.
http://dx.doi.org/10.1080/10425170500213712
PMid:16243729
“A novel polymorphism of the lactoferrin gene and its association with milk composition and body traits in dairy goats”, vol. 9, pp. 2199-2206, 2010.
, Brandl N, Zemann A, Kaupe I, Marlovits S, et al. (2010). Signal transduction and metabolism in chondrocytes is modulated by lactoferrin. Osteoarthritis Cartilage 18: 117-125.
http://dx.doi.org/10.1016/j.joca.2009.08.012
PMid:19747587
Bullen JJ (1972). Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Proc. R. Soc. Med. 65: 1086.
PMid:4568537 PMCid:1644425
Cohen MS, Britigan BE, French M and Bean K (1987). Preliminary observations on lactoferrin secretion in human vaginal mucus: variation during the menstrual cycle, evidence of hormonal regulation, and implications for infection with Neisseria gonorrhoeae. Am. J. Obstet. Gynecol. 157: 1122-1125.
PMid:3120589
Cornish J (2004). Lactoferrin promotes bone growth. Biometals 17: 331-335.
http://dx.doi.org/10.1023/B:BIOM.0000027713.18694.91
PMid:15222486
Cornish J, Grey AB, Naot D and Palmano KP (2005). Lactoferrin and bone: an overview of recent progress. Aust. J. Dairy Technol. 60: 53-57.
Gutteridge JM, Paterson SK, Segal AW and Halliwell B (1981). Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem. J. 199: 259-261.
PMid:7337708 PMCid:1163360
Jenssen H and Hancock RE (2009). Antimicrobial properties of lactoferrin. Biochimie 91: 19-29.
http://dx.doi.org/10.1016/j.biochi.2008.05.015
PMid:18573312
Jeremy B (1995). Lactoferrin: a multifunctional immunoregulatory protein? Immunol. Today 16: 417-419.
http://dx.doi.org/10.1016/0167-5699(95)80016-6
Kim SJ, Sohn BH, Jeong S, Pak KW, et al. (1999). High-level expression of human lactoferrin in milk of transgenic mice using genomic lactoferrin sequence. J. Biochem. 126: 320-325.
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022452
PMid:10423524
Kinsella JE and Whitehead DM (1989). Proteins in whey: chemical, physical, and functional properties. Adv. Food Nutr. Res. 33: 343-438.
http://dx.doi.org/10.1016/S1043-4526(08)60130-8
Lan XY, Pan CY, Chen H and Zhang CL (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12.
http://dx.doi.org/10.1016/j.smallrumres.2006.10.009
Leon-Sicairos N, Canizalez-Roman A, de la Garza M, Reyes-Lopez M, et al. (2009). Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. Biochimie 91: 133-140.
http://dx.doi.org/10.1016/j.biochi.2008.06.009
PMid:18625283
Li GH, Zhang Y, Sun DX and Li N (2004). Study on the polymorphism of bovine lactoferrin gene and its relationship with mastitis. Anim. Biotechnol. 15: 67-76.
http://dx.doi.org/10.1081/ABIO-120037899
PMid:15248601
Liu LH, Gladwell W and Teng CT (2002). Detection of exon polymorphisms in the human lactoferrin gene. Biochem. Cell Biol. 80: 17-22.
http://dx.doi.org/10.1139/o01-207
PMid:11908638
Livney YD (2010). Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15: 73-83.
http://dx.doi.org/10.1016/j.cocis.2009.11.002
Masson PL, Heremans JF and Dive CH (1966). An iron-binding protein common to many external secretions. Clin. Chim. Acta 14: 735-739.
http://dx.doi.org/10.1016/0009-8981(66)90004-0
Mohamed JA, DuPont HL, Jiang ZD, Belkind-Gerson J, et al. (2007). A novel single-nucleotide polymorphism in the lactoferrin gene is associated with susceptibility to diarrhea in North American travelers to Mexico. Clin. Infect. Dis. 44: 945-952.
http://dx.doi.org/10.1086/512199
PMid:17342646
Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.
PMid:4822472 PMCid:1213072
Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273.
http://dx.doi.org/10.1073/pnas.76.10.5269
PMid:291943 PMCid:413122
Nichols BL, McKee KS, Henry JF and Putman M (1987). Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr. Res. 21: 563-567.
http://dx.doi.org/10.1203/00006450-198706000-00011
PMid:3496579
Park I, Schaeffer E, Sidoli A, Baralle FE, et al. (1985). Organization of the human transferrin gene: direct evidence that it originated by gene duplication. Proc. Natl. Acad. Sci. U. S. A. 82: 3149-3153.
http://dx.doi.org/10.1073/pnas.82.10.3149
PMid:3858812 PMCid:397732
Teng CT, Pentecost BT, Marshall A, Solomon A, et al. (1987). Assignment of the lactotransferrin gene to human chromosome 3 and to mouse chromosome 9. Somat. Cell Mol. Genet. 13: 689-693.
http://dx.doi.org/10.1007/BF01534490
PMid:3478818
Teng CT, Pentecost BT, Chen YH, Newbold RR, et al. (1989). Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology 124: 992-999.
http://dx.doi.org/10.1210/endo-124-2-992
PMid:2463910
Williams J (1982). The evolution of transferrin. Trends Biochem. Sci. 7: 394-397.
http://dx.doi.org/10.1016/0968-0004(82)90183-9
Yamauchi K, Tomita M, Giehl TJ and Ellison RT III (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719-728.
PMid:8423097 PMCid:302785
Yamauchi K, Wakabayashi H, Shin K and Takase M (2006). Bovine lactoferrin: benefits and mechanism of action against infections. Biochem. Cell Biol. 84: 291-296.
http://dx.doi.org/10.1139/o06-054
PMid:16936799