Found 6 results
Filters: Author is S.W. Wang  [Clear All Filters]
X. H. Wang, Du, H. W., Guo, X. H., Wang, S. W., Zhou, R. B., Li, Y., Li, Z. B., Zhao, Y. S., and Zhu, Q. L., Rehmannia glutinosa oligosaccharide induces differentiation of bone marrow mesenchymal stem cells into cardiomyocyte-like cells, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESAntonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Charokopos N, et al (2008). Cardiomyogenic potential of human adult bone marrow mesenchymal stem cells in vitro. Thorac. Cardiovasc. Surg. 56: 77-82. Borodovsky A, Salmasi V, Turcan S, Fabius AW, et al (2013). 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget 4: 1737-1747. Chen XY, Wang RF, Liu B, et al (2015). An update on oligosaccharides and their esters from traditional chinese medicines: chemical structures and biological activities. Evid. Based Complement. Alternat. Med. 2015: 512675. De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, et al (2012). Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr. Mol. Med. 12: 574-591. Deans RJ, Moseley AB, et al (2000). Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28: 875-884. Dey BR, Chung SS, Spitzer TR, Zheng H, et al (2010). Cardiac transplantation followed by dose-intensive melphalan and autologous stem-cell transplantation for light chain amyloidosis and heart failure. Transplantation 90: 905-911. Ge X, Bai C, Yang J, Lou G, et al (2013). Intratracheal transplantation of bone marrow-derived mesenchymal stem cells reduced airway inflammation and up-regulated CD4+CD25+ regulatory T cells in asthmatic mouse. Cell Biol. Int. 37: 675-686. Lai PK, To MH, Lau KM, Liu CL, et al (2012). Stachyose: One of the active fibroblast-proliferating components in the root of Rehmanniae Radix (dì huáng). J. Tradit. Complement. Med. 2: 227-234. Makino S, Fukuda K, Miyoshi S, Konishi F, et al (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103: 697-705. Manferdini C, Maumus M, Gabusi E, Piacentini A, et al (2013). Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 65: 1271-1281. Nagaya N, Kitamura S, et al (2008). [Regenerative medicine for heart failure]. Nihon Rinsho 66: 978-983. Nagaya N, Kangawa K, Itoh T, Iwase T, et al (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112: 1128-1135. Park C, So HS, Kim SJ, Youn MJ, et al (2006). Samul extract protects against the H2O2-induced apoptosis of H9c2 cardiomyoblasts via activation of extracellular regulated kinases (Erk) 1/2. Am. J. Chin. Med. 34: 695-706. Park WH, Hong MY, Chung KH, Kim HM, et al (2005). Effects of traditional herbal medicine, Hwaotang, on atherosclerosis using the spontaneous familial hypercholesterolemia model, Kurosawa and Kusanagi-hypercholesterolemic rabbits and the venous thrombosis rats. Phytother. Res. 19: 846-853. Ramasamy R, Tong CK, Seow HF, Vidyadaran S, et al (2008). The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell. Immunol. 251: 131-136. Richardson JD, Bertaso AG, Psaltis PJ, Frost L, et al (2013). Impact of timing and dose of mesenchymal stromal cell therapy in a preclinical model of acute myocardial infarction. J. Card. Fail. 19: 342-353. Selem SM, Kaushal S, Hare JM, et al (2013). Stem cell therapy for pediatric dilated cardiomyopathy. Curr. Cardiol. Rep. 15: 369. Tomita S, Li RK, Weisel RD, Mickle DA, et al (1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100 (Suppl): II247-II256. Uccelli A, Moretta L, Pistoia V, et al (2006). Immunoregulatory function of mesenchymal stem cells. Eur. J. Immunol. 36: 2566-2573. Yokozawa T, Kim HY, Yamabe N, et al (2004). Amelioration of diabetic nephropathy by dried Rehmanniae Radix (Di Huang) extract. Am. J. Chin. Med. 32: 829-839. Yu HH, Kim YH, Jung SY, Shin MK, et al (2006a). Rehmannia glutinosa activates intracellular antioxidant enzyme systems in mouse auditory cells. Am. J. Chin. Med. 34: 1083-1093. Yu HH, Seo SJ, Kim YH, Lee HY, et al (2006b). Protective effect of Rehmannia glutinosa on the cisplatin-induced damage of HEI-OC1 auditory cells through scavenging free radicals. J. Ethnopharmacol. 107: 383-388. Yue WM, Liu W, Bi YW, He XP, et al (2008). Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem Cells Dev. 17: 785-793. Zhang Y, Wang Y, Wang L, Zhang Y, et al (2012). Effects of Rehmannia glutinosa oligosaccharide on human adipose-derived mesenchymal stem cells in vitro. Life Sci. 91: 1323-1327.  
S. W. Wang, Zhang, H. H., Dong, C. Y., Sun, H. H., Wang, S. W., Zhang, H. H., Dong, C. Y., Sun, H. H., Wang, S. W., Zhang, H. H., Dong, C. Y., and Sun, H. H., Meta-analysis of TAFI polymorphisms and risk of cardiovascular and cerebrovascular diseases, vol. 15, p. -, 2016.
S. W. Wang, Zhang, H. H., Dong, C. Y., Sun, H. H., Wang, S. W., Zhang, H. H., Dong, C. Y., Sun, H. H., Wang, S. W., Zhang, H. H., Dong, C. Y., and Sun, H. H., Meta-analysis of TAFI polymorphisms and risk of cardiovascular and cerebrovascular diseases, vol. 15, p. -, 2016.
S. W. Wang, Zhang, H. H., Dong, C. Y., Sun, H. H., Wang, S. W., Zhang, H. H., Dong, C. Y., Sun, H. H., Wang, S. W., Zhang, H. H., Dong, C. Y., and Sun, H. H., Meta-analysis of TAFI polymorphisms and risk of cardiovascular and cerebrovascular diseases, vol. 15, p. -, 2016.
X. Liu, Wang, Y., and Wang, S. W., QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa), vol. 11, pp. 717-724, 2012.
Chen X, Temnykh S, Xu Y, Cho YG, et al. (1997). Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553-567. Del Rosario AR, Briones VP, Vidal AJ and Juliano BO (1968). Composition and endosperm structure of developing and mature rice kernel. Cereal Chem. 45: 225-235. Doyle JJ (1991). DNA Protocols for Plants-CTAB Total DNA Isolation. In: Molecular Techniques in Taxonomy (Hewitt GM, ed.). Springer, Berlin Heidelberg, New York, 283-293. Fujita N, Yoshida M, Kondo T, Saito K, et al. (2007). Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol. 144: 2009-2023. PMid:17586688    PMCid:1949899 He P, Li SG, Qian Q, Ma YQ, et al. (1999). Genetic analysis of rice grain quality. Theor. Appl. Genet. 98: 502-508. Huang JX (2006). Genetic Analysis and QTL Mapping Research of Appearance Quality Traits in Indica Rice. Master’s thesis, Xiamen University, Xiamen. Kang HG, Park S, Matsuoka M and An G (2005). White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J. 42: 901-911. PMid:15941402 Koh HJ, Son YH, Heu MH, Lee HS, et al. (1999). Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice (Oryza sativa L.). Euphytica 106: 57-62. Lander ES, Green P, Abrahamson J, Barlaw A, et al. (1987). Mapmarker: an interactive computer package for maps of experimental and nutural populations. Genomics 1: 174-181. Li J, Xiao J, Grandillo S, Jiang L, et al. (2004). QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47: 697-704. PMid:15284874 Lincoln S, Daly M and Lander ES (1992). Construction Genetic Maps with MAPMARKER/EXP 3.0. Whitehead Institute Technical Report. 2nd edn. Whitehead Institute for Biomedical Research, Cambridge. Lisle AJ, Martin M and Fitzgerald MA (2000). Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem. 77: 627-632. Mo HD (1995). Identification of genetic control for endosperm traits in cereals. Acta Genet. Sin. 22: 126-132. Nagato K and Ebata M (1959). Studies on white-core rice kernel II. On the physical properties of the kernel. Proc. Crop Sci. Soc. Jpn. 28: 46-50. NSPRC (1999). National Standard of People Republic of China High Quality Paddy, GB/T 17891-1999. Standards Press of China, Zhejiang. Pooni HS, Kumar I and Khush GS (1992). A comprehensive model for disomically inherited metrical traits expressed in triploid tissues. Heredity 69: 166-174. Ryoo N, Yu C, Park CS, Baik MY, et al. (2007). Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep. 26: 1083-1095. PMid:17297616 Shi CH, Wu JG, Lou XB, Zhu J, et al. (2002). Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativa L.). Field Crops Res. 76: 1-9. Tan YF, Xing YZ, Li JX, Yu SB, et al. (2000). Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor. Appl. Genet. 101: 823-829. Tashiro T and Wardlaw IF (1991). The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust. J. Agric. Res. 42: 485-496. Wan XY, Wan JM, Weng JF, Jiang L, et al. (2005). Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor. Appl. Genet. 110: 1334-1346. PMid:15809851 Yano M and Sasaki T (1997). Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. 35: 145-153. PMid:9291968 Zeng ZB (1994). Precision mapping of quantitative trait loci. Genetics 136: 1457-1468. PMid:8013918    PMCid:1205924 Zhou L, Chen L, Jiang L, Zhang W, et al. (2009). Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.). Theor. Appl. Genet. 118: 581-590. PMid:19020855 Zhu J and Weir BS (1994). Analysis of cytoplasmic and maternal effects II. Genetic models for triploid endosperm. Theor. Appl. Genet. 89: 160-166.
D. Chen, Liu, J. L., Liu, Y., Zhu, J., and Wang, S. W., Lack of an association between -308G>A polymorphism of the TNF-α gene and liver cirrhosis risk based on a meta-analysis, vol. 10, pp. 2765-2774, 2011.
Bahr MJ, el Menuawy M, Boeker KH, Musholt PB, et al. (2003). Cytokine gene polymorphisms and the susceptibility to liver cirrhosis in patients with chronic hepatitis C. Liver Int. 23: 420-425. PMid:14986816 Bataller R, North KE and Brenner DA (2003). Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 37: 493-503. PMid:12601343 Cha C and Dematteo RP (2005). Molecular mechanisms in hepatocellular carcinoma development. Best Pract. Res. Clin. Gastroenterol. 19: 25-37. Chan HL, Tse AM, Chim AM, Wong VW, et al. (2008). Association of cytokine gene polymorphisms and liver fibrosis in chronic hepatitis B. J. Gastroenterol. Hepatol. 23: 783-789. PMid:17645476 Chen YQ, Lin JS, Tian DY and Liang KH (2003). Study on the association between the promoter polymorphism of TNF gene and cirrhosis. World J. Infect. 3: 186-190. Choi J and Ou JH (2006). Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G847-G851. PMid:16603728 Chuang E, Del Vecchio A, Smolinski S, Song XY, et al. (2004). Biomedicines to reduce inflammation but not viral load in chronic HCV-what’s the sense? Trends Biotechnol. 22: 517-523. PMid:15450745 Commins SP, Borish L and Steinke JW (2010). Immunologic messenger molecules: cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 125: S53-S72. PMid:19932918 Constantini PK, Wawrzynowicz-Syczewska M, Clare M, Boron-Kaczmarska A, et al. (2002). Interleukin-1, interleukin-10 and tumour necrosis factor-alpha gene polymorphisms in hepatitis C virus infection: an investigation of the relationships with spontaneous viral clearance and response to alpha-interferon therapy. Liver 22: 404-412. Cua IH, Hui JM, Bandara P, Kench JG, et al. (2007). Insulin resistance and liver injury in hepatitis C is not associated with virus-specific changes in adipocytokines. Hepatology 46: 66-73. PMid:17596870 Cuenca J, Perez CA, Aguirre AJ, Schiattino I, et al. (2001). Genetic polymorphism at position-308 in the promoter region of the tumor necrosis factor (TNF): implications of its allelic distribution on susceptibility or resistance to diseases in the Chilean population. Biol. Res. 34: 237-241. PMid:11715861 Elsammak M, Refai W, Elsawaf A, Abdel-Fattah I, et al. (2005). Elevated serum tumor necrosis factor alpha and ferritin may contribute to the insulin resistance found in HCV positive Egyptian patients. Curr. Med. Res. Opin. 21: 527-534. PMid:15899101 Falasca K, Ucciferri C, Dalessandro M, Zingariello P, et al. (2006). Cytokine patterns correlate with liver damage in patients with chronic hepatitis B and C. Ann. Clin. Lab. Sci. 36: 144-150. PMid:16682509 Fan LY, Zhong RQ, Tu XQ, Pfeiffer T, et al. (2004). Genetic association of tumor necrosis factor (TNF)-alpha polymorphisms with primary biliary cirrhosis and autoimmune liver diseases in a Chinese population. Zhonghua Gan Zang Bing Za Zhi 12: 160-162. PMid:15059302 Friedman SL (2010). Evolving challenges in hepatic fibrosis. Nat. Rev. Gastroenterol. Hepatol. 7: 425-436. Gordon MA, Oppenheim E, Camp NJ, di Giovine FS, et al. (1999). Primary biliary cirrhosis shows association with genetic polymorphism of tumour necrosis factor alpha promoter region. J. Hepatol. 31: 242-247. Hajeer AH and Hutchinson IV (2000). TNF-alpha gene polymorphism: clinical and biological implications. Microsc. Res. Tech. 50: 216-228.<216::AID-JEMT5>3.0.CO;2-Q Hajeer AH and Hutchinson IV (2001). Influence of TNFalpha gene polymorphisms on TNFalpha production and disease. Hum. Immunol. 62: 1191-1199. Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. PMid:12111919 Jeng JE, Tsai JF, Chuang LY, Ho MS, et al. (2007). Tumor necrosis factor-alpha 308.2 polymorphism is associated with advanced hepatic fibrosis and higher risk for hepatocellular carcinoma. Neoplasia 9: 987-992. PMid:18030367 Jiang ZL, Zhang W, Zhang H and Liu YB (2009). Relationship between TNF-alpha, TGF-beta1 and IL-10 genetic polymorphisms and post- hepatitis B cirrhosis. Shi Jie Hua Ren Xiao Hua 17: 3263-3268. Jones DE, Watt FE, Grove J, Newton JL, et al. (1999). Tumour necrosis factor-alpha promoter polymorphisms in primary biliary cirrhosis. J. Hepatol. 30: 232-236. Juran BD, Atkinson EJ, Larson JJ, Schlicht EM, et al. (2010). Carriage of a tumor necrosis factor polymorphism amplifies the cytotoxic T-lymphocyte antigen 4 attributed risk of primary biliary cirrhosis: evidence for a gene-gene interaction. Hepatology 52: 223-229. PMid:20578265    PMCid:2922843 Kamal SM, Turner B, He Q, Rasenack J, et al. (2006). Progression of fibrosis in hepatitis C with and without schistosomiasis: correlation with serum markers of fibrosis. Hepatology 43: 771-779. PMid:16557547 Li Y, Chang M, Abar O, Garcia V, et al. (2009). Multiple variants in toll-like receptor 4 gene modulate risk of liver fibrosis in Caucasians with chronic hepatitis C infection. J. Hepatol. 51: 750-757. PMid:19586676    PMCid:2883297 Lim YS and Kim WR (2008). The global impact of hepatic fibrosis and end-stage liver disease. Clin. Liver Dis. 12: 733- 46, vii. PMid:18984463 Mallat A, Hezode C and Lotersztajn S (2008). Environmental factors as disease accelerators during chronic hepatitis C. J. Hepatol. 48: 657-665. PMid:18279998 Nguyen-Khac E, Houchi H, Daoust M, Dupas JL, et al. (2008). The -308 TNFalpha gene polymorphism in severe acute alcoholic hepatitis: identification of a new susceptibility marker. Alcohol. Clin. Exp. Res. 32: 822-828. PMid:18336639 Niro GA, Poli F, Andriulli A, Bianchi I, et al. (2009). TNF-alpha polymorphisms in primary biliary cirrhosis: a northern and southern Italian experience. Ann. N. Y. Acad. Sci. 1173: 557-563. PMid:19758199 Oo YH, Hubscher SG and Adams DH (2010). Autoimmune hepatitis: new paradigms in the pathogenesis, diagnosis, and management. Hepatol. Int. 4: 475-493. PMid:20827405    PMCid:2900560 Pastor IJ, Laso FJ, Romero A and Gonzalez-Sarmiento R (2005). -238 G>A polymorphism of tumor necrosis factor alpha gene (TNFA) is associated with alcoholic liver cirrhosis in alcoholic Spanish men. Alcohol. Clin. Exp. Res. 29: 1928-1931. Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. PMid:16467236 Poynard T, Mathurin P, Lai CL, Guyader D, et al. (2003). A comparison of fibrosis progression in chronic liver diseases. J. Hepatol. 38: 257-265. Schwabe RF and Brenner DA (2006). Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G583-G589. PMid:16537970 Tahara T, Shibata T, Nakamura M, Yamashita H, et al. (2009). Effect of polymorphisms in the 3’ untranslated region (3’- UTR) of vascular endothelial growth factor gene on gastric cancer and peptic ulcer diseases in Japan. Mol. Carcinog. 48: 1030-1037. PMid:19496079 Tanaka A, Quaranta S, Mattalia A, Coppel R, et al. (1999). The tumor necrosis factor-alpha promoter correlates with progression of primary biliary cirrhosis. J. Hepatol. 30: 826-829. Thimme R, Wieland S, Steiger C, Ghrayeb J, et al. (2003). CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77: 68-76. PMid:12477811    PMCid:140637 Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, et al. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. PMid:18049195 Wilson AG, di Giovine FS, Blakemore AI and Duff GW (1992). Single base polymorphism in the human tumour necrosis factor alpha (TNF-alpha) gene detectable by NcoI restriction of PCR product. Hum. Mol. Genet. 1: 353. PMid:1363876 Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. PMid:15593093