Publications

Found 7 results
Filters: Author is H.C. Wang  [Clear All Filters]
2011
W. Q. Tian, Wang, H. C., Song, F. B., Zan, L. S., Wang, H., Wang, H. B., Xin, Y. P., and Ujan, J. A., Association between a single nucleotide polymorphism in the bovine chemerin gene and carcass traits in Qinchuan cattle, vol. 10, pp. 2833-2840, 2011.
Bozaoglu K, Bolton K, McMillan J, Zimmet P, et al. (2007). Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148: 4687-4694. http://dx.doi.org/10.1210/en.2007-0175 PMid:17640997 Gantz I, Konda Y, Yang YK, Miller DE, et al. (1996). Molecular cloning of a novel receptor (CMKLR1) with homology to the chemotactic factor receptors. Cytogenet. Cell Genet. 74: 286-290. http://dx.doi.org/10.1159/000134436 Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, et al. (2007). Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282: 28175-28188. http://dx.doi.org/10.1074/jbc.M700793200 PMid:17635925 Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009 Martensson UE, Fenyo EM, Olde B and Owman C (2006). Characterization of the human chemerin receptor - ChemR23/ CMKLR1 - as co-receptor for human and simian immunodeficiency virus infection, and identification of virus-binding receptor domains. Virology 355: 6-17. http://dx.doi.org/10.1016/j.virol.2006.07.010 PMid:16904155 Meder W, Wendland M, Busmann A, Kutzleb C, et al. (2003). Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett. 555: 495-499. http://dx.doi.org/10.1016/S0014-5793(03)01312-7 Methner A, Hermey G, Schinke B and Hermans-Borgmeyer I (1997). A novel G protein-coupled receptor with homology to neuropeptide and chemoattractant receptors expressed during bone development. Biochem. Biophys. Res. Commun. 233: 336-342. http://dx.doi.org/10.1006/bbrc.1997.6455 PMid:9144535 Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762 Mussig K, Staiger H, Machicao F, Thamer C, et al. (2009). RARRES2, encoding the novel adipokine chemerin, is a genetic determinant of disproportionate regional body fat distribution: a comparative magnetic resonance imaging study. Metabolism 58: 519-524. http://dx.doi.org/10.1016/j.metabol.2008.11.011 PMid:19303973 Nagpal S, Patel S, Jacobe H, DiSepio D, et al. (1997). Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J. Invest. Dermatol. 109: 91-95. http://dx.doi.org/10.1111/1523-1747.ep12276660 PMid:9204961 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Owman C, Nilsson C and Lolait SJ (1996). Cloning of cDNA encoding a putative chemoattractant receptor. Genomics 37: 187-194. http://dx.doi.org/10.1006/geno.1996.0541 PMid:8921391 Roh SG, Song SH, Choi KC, Katoh K, et al. (2007). Chemerin - a new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 362: 1013-1018. http://dx.doi.org/10.1016/j.bbrc.2007.08.104 PMid:17767914 Samson M, Edinger AL, Stordeur P, Rucker J, et al. (1998). ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur. J. Immunol. 28: 1689-1700. http://dx.doi.org/10.1002/(SICI)1521-4141(199805)28:05<1689::AID-IMMU1689>3.0.CO;2-I Sell H and Eckel J (2009). Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro evidence for a possible causal correlation? Proc. Nutr. Soc. 68: 378-384. http://dx.doi.org/10.1017/S0029665109990218 PMid:19698204 Song SH, Fukui K, Nakajima K, Kozakai T, et al. (2010). Cloning, expression analysis, and regulatory mechanisms of bovine chemerin and chemerin receptor. Domest. Anim. Endocrinol. 39: 97-105. http://dx.doi.org/10.1016/j.domaniend.2010.02.007 PMid:20399065 Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, et al. (2008). Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582: 573-578. http://dx.doi.org/10.1016/j.febslet.2008.01.023 PMid:18242188 Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, et al. (2003). Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198: 977-985. http://dx.doi.org/10.1084/jem.20030382 PMid:14530373 PMCid:2194212 Wittamer V, Bondue B, Guillabert A, Vassart G, et al. (2005). Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175: 487-493. PMid:15972683 Zabel BA, Allen SJ, Kulig P, Allen JA, et al. (2005). Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280: 34661-34666. http://dx.doi.org/10.1074/jbc.M504868200 PMid:16096270 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006
J. A. Ujan, Zan, L. S., Wang, H. B., Ujan, S. A., Adoligbe, C., Wang, H. C., and Biao, S. F., Lack of an association between a single nucleotide polymorphism in the bovine myogenic determination 1 (MyoD1) gene and meat quality traits in indigenous Chinese cattle breeds, vol. 10, pp. 2213-2222, 2011.
Bhuiyan MSA, Kim NK, Cho YM, Yoon D, et al. (2009). Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest. Sci. 126: 292-297. http://dx.doi.org/10.1016/j.livsci.2009.05.019 Carmo FMS, Guimarães SEF, Lopes PS, Pires AV, et al. (2005). Association of MYF5 gene allelic variants with production traits in pigs. Genet. Mol. Biol. 28: 363-369. http://dx.doi.org/10.1590/S1415-47572005000300004 Casas E, Shackelford SD, Keele JW, Koohmaraie M, et al. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci. 81: 2976-2983. PMid:14677852 Cieslak D, Kapelanski W, Blicharski T and Pierzchala M (2000). Restriction fragment length polymorphisms in myogenin and myf3 genes and their influence on lean meat content in pigs. J. Anim. Breed. Genet. 117: 43-55. http://dx.doi.org/10.1046/j.1439-0388.2000.00209.x Cieslak D, Kuryl J, Kapelañski W, Pierzchala M, et al. (2002). A relationship between genotypes at MYOG, MYF3 and MYF5 loci and carcass meat and fat deposition traits in pigs. Anim. Sci. Pap. Rep. 20: 77-92. Estellé J, Gil F, Vázquez JM, Latorre R, et al. (2008). A QTL genome scan for porcine muscle fiber traits reveals over dominance and epistasis. J. Anim. Sci. 86: 3290-3299. http://dx.doi.org/10.2527/jas.2008-1034 PMid:18641172 Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499 Humpolíček P, Urban T and Tvrdoň Z (2007). Relation of porcinemyogenin gene PCR/RFLP MspI and reproduction traits of the Czech Large White sows. Livest. Sci. 110: 288-291. http://dx.doi.org/10.1016/j.livsci.2007.02.015 Kapelanski W, Grajewska S, Kuryl J, Bocian M et al. (2005). Polymorphism in coding and non coding regions of the MYOD gene family and meat quality in pigs. Fol. Biol. 53: 45-49. http://dx.doi.org/10.3409/173491605775789506 Klosowska D and Fiedler I (2003). Muscle fiber types in pigs of different genotypes in relation to meat quality. Anim. Sci. Pap. Rep. 21 (Suppl 1): 49-60. Klosowska D, Kuryl J, Cieoelak D and Elminowska-Wenda G (2001). The relationship between polymorphisms in porcine MYOG, MYF-3 and MYF-5 genes and micro-structural characteristics of longissimus muscle - a preliminary study. In: 47th Intern. Congress of Meat Sci. Technology, Kraków, 142-143. Klosowska D, Kuryl J, Elminowska-Wenda G and Kapelanski W (2004). A relationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrain × (Polish Large White × Polish Landrace) crosses. Czech J. Anim. Sci. 49: 99-107. Knoll A, Nebola M, Dvorak J and Cepica S (1997). Detection of a DdeI PCR RFLP within intron 1 of the porcine MYOD1 (MYF3) locus. Anim. Genet. 28: 321. PMid:9345748 Kuryl J, Kapelañski W, Cieoelak D, Pierzchala M et al. (2002). Are polymorphisms in non-coding regions of porcine MyoD genes suitable for predicting meat and fat deposition in the carcass. Anim. Sci. Pap. Rep. 20: 245-254. Liu M, Peng J, Xu DQ, Zheng R, et al. (2008). Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in Large White x Meishan F2 pig populations. Biochem. Genet. 46: 720-732. http://dx.doi.org/10.1007/s10528-008-9187-1 PMid:18777094 MacNeil MD and Newman S (1994). Selection indices for Canadian beef production using specialized sire and dam lines. Can. J. Animal Sci. 74: 419-424. http://dx.doi.org/10.4141/cjas94-060 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Noguera JL, Varona L, Gómez-Raya L, Sánchez A, et al. (2003). Estrogen receptor polymorphism in Landrace pigs and its association with litter size performance. Livest. Prod. Sci. 82: 53-59. http://dx.doi.org/10.1016/S0301-6226(03)00004-6 O’vilo C, Fernandez A, Rodriguez MC, Nieto M, et al. (2006). Association of MC4R gene variants with growth, fatness, carcass composition and meat and fat quality traits in heavy pigs. Meat Sci. 73: 42-47. http://dx.doi.org/10.1016/j.meatsci.2005.10.016 PMid:22062052 Pette D and Staron RS (1997). Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol. 170: 143-223. http://dx.doi.org/10.1016/S0074-7696(08)61622-8 Rexroad CE III, Bennett GL, Stone RT, Keele JW, et al. (2001). Comparative mapping of BTA15 and HSA11 including a region containing a QTL for meat tenderness. Mamm. Genome 12: 561-565. http://dx.doi.org/10.1007/s0033500-20028 Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, et al. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75: 1351-1359. http://dx.doi.org/10.1016/0092-8674(93)90621-V Sambrook J and Russell DW (2002). Translated by Huang, P. T. Molecular Cloning a Laboratory Manual. 3rd. edn. Science Press, Beijing. te Pas MF (2004). Candidate genes for meat production and meat quality: the MRF genes. Anim. Sci. Pap. Rep. 22: 115-118. te Pas MF and Visscher AH (1994). Genetic regulation of meat production by embryonic muscle formation - a review. J. Anim. Breed. Genet. 111: 404-412. http://dx.doi.org/10.1111/j.1439-0388.1994.tb00477.x PMid:21395789 te Pas MF, Devries AG and Visscher AH (1994). The MyoD gene Family and Meat Production - A Review. In: Proc. 40th Inter. Congress of Meat Sci. Technology, Hague, S-VII-08.1-6. te Pas MF, Harders FL, Soumillion A, Born L, et al. (1999a). Genetic variation at the porcine MYF-5 gene locus. Lack Of association with meat production traits. Mamm. Genome 10: 123-127. http://dx.doi.org/10.1007/s003359900956 te Pas MF, Soumillion A, Harders FL and Verburg FJ (1999b). Influences of Myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J. Anim. Sci. 77: 2352-2356. PMid:10492439 te Pas MF, Verburg FJ, Gerritsen CL and de Greef KH (2000). Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. J. Anim. Sci. 78: 69-77. PMid:10682804 Van Wijk HJ, Arts DJ, Matthews JO, Webster M, et al. (2005). Genetic parameters for carcass composition and pork quality estimated in a commercial production chain 1. J. Anim. Sci. 83: 324-333. PMid:15644503 Verner J, Humpolicek P and Knoll A (2007). Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J. Anim. Breed. Genet. 124: 81-85. http://dx.doi.org/10.1111/j.1439-0388.2007.00639.x PMid:17488358 Wojciech K, Salomea G, Jolanta K and Maria B (2005). Polymorphism in coding and non-coding regions of the MyoD gene family and meat quality in pigs. Fol. Biol. 53: 45-49. http://dx.doi.org/10.3409/173491605775789506 Wyszynska-Koko J, Pierzchala M, Flisikowski K, Kamyczek M, et al. (2006). Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in longissimus dorsi versus production traits in pigs. J. Appl.Genet. 47: 131-138. http://dx.doi.org/10.1007/BF03194612 PMid:16682754 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006