Publications

Found 20 results
Filters: Author is X.Y. Liu  [Clear All Filters]
2016
Q. Xu, Gai, P. Y., Lv, H. L., Li, G. R., Liu, X. Y., Xu, Q., Gai, P. Y., Lv, H. L., Li, G. R., Liu, X. Y., Xu, Q., Gai, P. Y., Lv, H. L., Li, G. R., and Liu, X. Y., Association of MMP3 genotype with susceptibility to frozen shoulder: a case-control study in a Chinese Han population, vol. 15, p. -, 2016.
Q. Xu, Gai, P. Y., Lv, H. L., Li, G. R., Liu, X. Y., Xu, Q., Gai, P. Y., Lv, H. L., Li, G. R., Liu, X. Y., Xu, Q., Gai, P. Y., Lv, H. L., Li, G. R., and Liu, X. Y., Association of MMP3 genotype with susceptibility to frozen shoulder: a case-control study in a Chinese Han population, vol. 15, p. -, 2016.
Q. Xu, Gai, P. Y., Lv, H. L., Li, G. R., Liu, X. Y., Xu, Q., Gai, P. Y., Lv, H. L., Li, G. R., Liu, X. Y., Xu, Q., Gai, P. Y., Lv, H. L., Li, G. R., and Liu, X. Y., Association of MMP3 genotype with susceptibility to frozen shoulder: a case-control study in a Chinese Han population, vol. 15, p. -, 2016.
Y. Guan, Yan, L. H., Liu, X. Y., Zhu, X. Y., Wang, S. Z., Chen, L. M., Guan, Y., Yan, L. H., Liu, X. Y., Zhu, X. Y., Wang, S. Z., and Chen, L. M., Correlation of the TCF7L2 (rs7903146) polymorphism with an enhanced risk of type 2 diabetes mellitus: a meta-analysis, vol. 15, p. -, 2016.
Y. Guan, Yan, L. H., Liu, X. Y., Zhu, X. Y., Wang, S. Z., Chen, L. M., Guan, Y., Yan, L. H., Liu, X. Y., Zhu, X. Y., Wang, S. Z., and Chen, L. M., Correlation of the TCF7L2 (rs7903146) polymorphism with an enhanced risk of type 2 diabetes mellitus: a meta-analysis, vol. 15, p. -, 2016.
2012
J. N. Zhang, Yi, S. H., Zhang, X. H., Liu, X. Y., Mao, Q., Li, S. Q., Xiong, W. H., Qiu, Y. M., Chen, T., and Ge, J. W., Association of p53 Arg72Pro and MDM2 SNP309 polymorphisms with glioma, vol. 11, pp. 3618-3628, 2012.
Bai J, Dai J, Yu H, Shen H, et al. (2009). Cigarette smoking, MDM2 SNP309, gene-environment interactions, and lung cancer risk: a meta-analysis. J. Toxicol. Environ. Health A 72: 677-682. http://dx.doi.org/10.1080/15287390902840930 PMid:19492228   Begg CB and Mazumdar M (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics 50: 1088-1101. http://dx.doi.org/10.2307/2533446 PMid:7786990   Biernat W, Kleihues P, Yonekawa Y and Ohgaki H (1997). Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J. Neuropathol. Exp. Neurol. 56: 180-185. http://dx.doi.org/10.1097/00005072-199702000-00009 PMid:9034372   Bond GL, Hu W, Bond EE, Robins H, et al. (2004). A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119: 591-602. http://dx.doi.org/10.1016/j.cell.2004.11.022 PMid:15550242   Bredel M, Scholtens DM, Yadav AK, Alvarez AA, et al. (2011). NFKBIA deletion in glioblastomas. N. Engl. J. Med. 364: 627-637. http://dx.doi.org/10.1056/NEJMoa1006312 PMid:21175304   Dai S, Mao C, Jiang L, Wang G, et al. (2009). P53 polymorphism and lung cancer susceptibility: a pooled analysis of 32 case-control studies. Hum. Genet. 125: 633-638. http://dx.doi.org/10.1007/s00439-009-0664-3 PMid:19357867   DerSimonian R and Laird N (1986). Meta-analysis in clinical trials. Control Clin. Trials 7: 177-188. http://dx.doi.org/10.1016/0197-2456(86)90046-2   Dumont P, Leu JI, Della Pietra AC, George DL, et al. (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 33: 357-365. http://dx.doi.org/10.1038/ng1093 PMid:12567188   Egger M, Davey SG, Schneider M and Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634. http://dx.doi.org/10.1136/bmj.315.7109.629 PMid:9310563 PMCid:2127453   El Hallani S, Marie Y, Idbaih A, Rodero M, et al. (2007). No association of MDM2 SNP309 with risk of glioblastoma and prognosis. J. Neurooncol. 85: 241-244. http://dx.doi.org/10.1007/s11060-007-9416-1 PMid:17568997   El Hallani S, Ducray F, Idbaih A, Marie Y, et al. (2009). TP53 codon 72 polymorphism is associated with age at onset of glioblastoma. Neurology 72: 332-336. http://dx.doi.org/10.1212/01.wnl.0000341277.74885.ec PMid:19171829   Fang F, Yu XJ, Yu L and Yao L (2011). MDM2 309 T/G polymorphism is associated with colorectal cancer risk especially in Asians: a meta-analysis. Med. Oncol. 28: 981-985. http://dx.doi.org/10.1007/s12032-010-9577-1 PMid:20503107   Gu J, Liu Y, Kyritsis AP and Bondy ML (2009). Molecular epidemiology of primary brain tumors. Neurotherapeutics 6: 427-435. http://dx.doi.org/10.1016/j.nurt.2009.05.001 PMid:19560733   Haupt Y, Maya R, Kazaz A and Oren M (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296-299. http://dx.doi.org/10.1038/387296a0 PMid:9153395   Hunter SB, Abbott K, Varma VA, Olson JJ, et al. (1995). Reliability of differential PCR for the detection of EGFR and MDM2 gene amplification in DNA extracted from FFPE glioma tissue. J. Neuropathol. Exp. Neurol. 54: 57-64. http://dx.doi.org/10.1097/00005072-199501000-00007 PMid:7815080   Idbaih A, Boisselier B, Marie Y, Sanson M, et al. (2008). Influence of MDM2 SNP309 alone or in combination with the TP53 R72P polymorphism in oligodendroglial tumors. Brain Res. 1198: 16-20. http://dx.doi.org/10.1016/j.brainres.2008.01.027 PMid:18262501   Jeong BS, Hu W, Belyi V, Rabadan R, et al. (2010). Differential levels of transcription of p53-regulated genes by the arginine/proline polymorphism: p53 with arginine at codon 72 favors apoptosis. FASEB J. 24: 1347-1353. http://dx.doi.org/10.1096/fj.09-146001 PMid:20019240   Jha P, Jha P, Pathak P, Chosdol K, et al. (2011). TP53 polymorphisms in gliomas from Indian patients: Study of codon 72 genotype, rs1642785, rs1800370 and 16 base pair insertion in intron-3. Exp. Mol. Pathol. 90: 167-172. http://dx.doi.org/10.1016/j.yexmp.2010.11.002 PMid:21115003   Khatri RG, Navaratne K and Weil RJ (2008). The role of a single nucleotide polymorphism of MDM2 in glioblastoma multiforme. J. Neurosurg. 109: 842-848. http://dx.doi.org/10.3171/JNS/2008/109/11/0842 PMid:18976073   Kubbutat MH, Jones SN and Vousden KH (1997). Regulation of p53 stability by Mdm2. Nature 387: 299-303. http://dx.doi.org/10.1038/387299a0 PMid:9153396   Kussie PH, Gorina S, Marechal V, Elenbaas B, et al. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274: 948-953. http://dx.doi.org/10.1126/science.274.5289.948 PMid:8875929   Lima-Ramos V, Pacheco-Figueiredo L, Costa S, Pardal F, et al. (2008). TP53 codon 72 polymorphism in susceptibility, overall survival, and adjuvant therapy response of gliomas. Cancer Genet. Cytogenet. 180: 14-19. http://dx.doi.org/10.1016/j.cancergencyto.2007.08.019 PMid:18068527   Liu L, Wang K, Zhu ZM and Shao JH (2011). Associations between P53 Arg72Pro and development of digestive tract cancers: a meta-analysis. Arch. Med. Res. 42: 60-69. http://dx.doi.org/10.1016/j.arcmed.2011.01.008 PMid:21376265   Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114: 97-109. http://dx.doi.org/10.1007/s00401-007-0243-4 PMid:17618441 PMCid:1929165   Malmer B, Feychting M, Lonn S, Ahlbom A, et al. (2005). p53 Genotypes and risk of glioma and meningioma. Cancer Epidemiol. Biomarkers Prev. 14: 2220-2223. http://dx.doi.org/10.1158/1055-9965.EPI-05-0234 PMid:16172235   Malmer BS, Feychting M, Lonn S, Lindstrom S, et al. (2007). Genetic variation in p53 and ATM haplotypes and risk of glioma and meningioma. J. Neurooncol. 82: 229-237. http://dx.doi.org/10.1007/s11060-006-9275-1 PMid:17151932   Marin MC, Jost CA, Brooks LA, Irwin MS, et al. (2000). A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat. Genet. 25: 47-54. http://dx.doi.org/10.1038/75586 PMid:10802655   Minelli C, Thompson JR, Abrams KR, Thakkinstian A, et al. (2008). How should we use information about HWE in the meta-analyses of genetic association studies? Int. J. Epidemiol. 37: 136-146. http://dx.doi.org/10.1093/ije/dym234 PMid:18037675   Ohgaki H, Dessen P, Jourde B, Horstmann S, et al. (2004). Genetic pathways to glioblastoma: a population-based study. Cancer Res. 64: 6892-6899. http://dx.doi.org/10.1158/0008-5472.CAN-04-1337 PMid:15466178   Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, et al. (1993). Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362: 857-860. http://dx.doi.org/10.1038/362857a0 PMid:8479525   Parhar P, Ezer R, Shao Y, Allen JC, et al. (2005). Possible association of p53 codon 72 polymorphism with susceptibility to adult and pediatric high-grade astrocytomas. Brain Res. Mol. Brain Res. 137: 98-103. http://dx.doi.org/10.1016/j.molbrainres.2005.02.016 PMid:15950766   Pinto GR, Yoshioka FK, Silva RL, Clara CA, et al. (2008). Prognostic value of TP53 Pro47Ser and Arg72Pro single nucleotide polymorphisms and the susceptibility to gliomas in individuals from Southeast Brazil. Genet. Mol. Res. 7: 207-216. http://dx.doi.org/10.4238/vol7-1gmr415 PMid:18393224   Rajaraman P, Wang SS, Rothman N, Brown MM, et al. (2007). Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults. Cancer Epidemiol. Biomarkers Prev. 16: 1655-1661. http://dx.doi.org/10.1158/1055-9965.EPI-07-0314 PMid:17684142   Shete S, Hosking FJ, Robertson LB, Dobbins SE, et al. (2009). Genome-wide association study identifies five susceptibility loci for glioma. Nat. Genet. 41: 899-904. http://dx.doi.org/10.1038/ng.407 PMid:19578367   Suzuki SO and Iwaki T (2000). Amplification and overexpression of mdm2 gene in ependymomas. Mod. Pathol. 13: 548-553. http://dx.doi.org/10.1038/modpathol.3880095 PMid:10824927   Tsuiki H, Nishi T, Takeshima H, Yano S, et al. (2007). Single nucleotide polymorphism 309 affects murin-double-minute 2 protein expression but not glioma tumorigenesis. Neurol. Med. Chir. 47: 203-208. http://dx.doi.org/10.2176/nmc.47.203   Wang LE, Bondy ML, Shen H, El-Zein R, et al. (2004). Polymorphisms of DNA repair genes and risk of glioma. Cancer Res. 64: 5560-5563. http://dx.doi.org/10.1158/0008-5472.CAN-03-2181 PMid:15313891   Wrensch M, Fisher JL, Schwartzbaum JA, Bondy M, et al. (2005). The molecular epidemiology of gliomas in adults. Neurosurg. Focus 19: E5. http://dx.doi.org/10.3171/foc.2005.19.5.6 PMid:16398469   Wrensch M, Jenkins RB, Chang JS, Yeh RF, et al. (2009). Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat. Genet. 41: 905-908. http://dx.doi.org/10.1038/ng.408 PMid:19578366 PMCid:2923561   Yang M, Guo Y, Zhang X, Miao X, et al. (2007). Interaction of P53 Arg72Pro and MDM2 T309G polymorphisms and their associations with risk of gastric cardia cancer. Carcinogenesis 28: 1996-2001. http://dx.doi.org/10.1093/carcin/bgm168 PMid:17638920   Zhou Y, Li N, Zhuang W, Liu GJ, et al. (2007). P53 codon 72 polymorphism and gastric cancer: a meta-analysis of the literature. Int. J. Cancer 121: 1481-1486. http://dx.doi.org/10.1002/ijc.22833 PMid:17546594
2011
P. Xuan, Guo, M. Z., Wang, J., Wang, C. Y., Liu, X. Y., and Liu, Y., Genetic algorithm-based efficient feature selection for classification of pre-miRNAs, vol. 10, pp. 588-603, 2011.
Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. doi:10.1016/S0092-8674(04)00045-5 Batuwita R and Palade V (2009). microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25: 989-995. doi:10.1093/bioinformatics/btp107 PMid:19233894 Berezikov E, Guryev V, van de Belt J, Wienholds E, et al. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21-24. doi:10.1016/j.cell.2004.12.031 PMid:15652478 Bushati N and Cohen SM (2007). microRNA functions. Annu. Rev. Cell Dev. Biol. 23: 175-205. doi:10.1146/annurev.cellbio.23.090506.123406 PMid:17506695 Chang DT, Wang CC and Chen JW (2008). Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics 9 (Suppl 12): S2. doi:10.1186/1471-2105-9-S12-S2 PMid:19091019    PMCid:2638167 Chatterjee S and Grosshans H (2009). Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461: 546-549. doi:10.1038/nature08349 PMid:19734881 Fera D, Kim N, Shiffeldrim N, Zorn J, et al. (2004). RAG: RNA-As-Graphs web resource. BMC Bioinformatics 5: 88. doi:10.1186/1471-2105-5-88 PMid:15238163    PMCid:471545 Freyhult E, Gardner PP and Moulton V (2005). A comparison of RNA folding measures. BMC Bioinformatics 6: 241. doi:10.1186/1471-2105-6-241 PMid:16202126    PMCid:1274297 Gan HH, Fera D, Zorn J, Shiffeldrim N, et al. (2004). RAG: RNA-As-Graphs database - concepts, analysis, and features. Bioinformatics 20: 1285-1291. doi:10.1093/bioinformatics/bth084 PMid:14962931 Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154-D158. doi:10.1093/nar/gkm952 PMid:17991681    PMCid:2238936 Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, et al. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte fur Chemie/Chemical Monthly 125: 167-188. Jiang P, Wu H, Wang W, Ma W, et al. (2007). MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 35: W339-W344. doi:10.1093/nar/gkm368 PMid:17553836    PMCid:1933124 Moulton V, Zuker M, Steel M, Pointon R, et al. (2000). Metrics on RNA secondary structures. J. Comput. Biol. 7: 277-292. doi:10.1089/10665270050081522 PMid:10890402 Nam JW, Shin KR, Han J, Lee Y, et al. (2005). Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 33: 3570-3581. doi:10.1093/nar/gki668 PMid:15987789    PMCid:1159118 Ng KL and Mishra SK (2007). De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23: 1321-1330. doi:10.1093/bioinformatics/btm026 PMid:17267435 Quinlan JR (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo. Schultes EA, Hraber PT and LaBean TH (1999). Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol. 49: 76-83. doi:10.1007/PL00006536 PMid:10368436 Seffens W and Digby D (1999). mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27: 1578-1584. doi:10.1093/nar/27.7.1578 PMid:10075987    PMCid:148359 Sewer A, Paul N, Landgraf P, Aravin A, et al. (2005). Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6: 267. doi:10.1186/1471-2105-6-267 PMid:16274478    PMCid:1315341 Xue C, Li F, He T, Liu GP, et al. (2005). Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6: 310. doi:10.1186/1471-2105-6-310 PMid:16381612    PMCid:1360673 Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, et al. (2006). Combining multi-species genomic data for microRNA identification using a naive Bayes classifier. Bioinformatics 22: 1325-1334. doi:10.1093/bioinformatics/btl094 PMid:16543277 Yousef M, Jung S, Showe LC and Showe MK (2008). Learning from positive examples when the negative class is undetermined - microRNA gene identification. Algorithms Mol. Biol. 3: 2. doi:10.1186/1748-7188-3-2 PMid:18226233    PMCid:2248178 Zhang BH, Pan XP, Cox SB, Cobb GP, et al. (2006). Evidence that miRNAs are different from other RNAs. Cell Mol. Life Sci. 63: 246-254. doi:10.1007/s00018-005-5467-7 PMid:16395542
J. Wang, Liu, X. Y., and Yang, Y. Q., Novel NKX2-5 mutations responsible for congenital heart disease, vol. 10, pp. 2905-2915, 2011.
Akazawa H and Komuro I (2005). Cardiac transcription factor Csx/Nkx2-5: its role in cardiac development and diseases. Pharmacol. Ther. 107: 252-268. http://dx.doi.org/10.1016/j.pharmthera.2005.03.005 Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, et al. (1999). Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104: 1567-1573. http://dx.doi.org/10.1172/JCI8154 PMid:10587520    PMCid:409866 Biben C, Weber R, Kesteven S, Stanley E, et al. (2000). Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ. Res. 87: 888-895. PMid:11073884 Briggs LE, Takeda M, Cuadra AE, Wakimoto H, et al. (2008). Perinatal loss of Nkx2-5 results in rapid conduction and contraction defects. Circ. Res. 103: 580-590. http://dx.doi.org/10.1161/CIRCRESAHA.108.171835 PMid:18689573    PMCid:2590500 Ching YH, Ghosh TK, Cross SJ, Packham EA, et al. (2005). Mutation in myosin heavy chain 6 causes atrial septal defect. Nat. Genet. 37: 423-428. http://dx.doi.org/10.1038/ng1526 PMid:15735645 Elliott DA, Kirk EP, Yeoh T, Chandar S, et al. (2003). Cardiac homeobox gene NKX2-5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J. Am. Coll. Cardiol. 41: 2072-2076. http://dx.doi.org/10.1016/S0735-1097(03)00420-0 Garg V, Kathiriya IS, Barnes R, Schluterman MK, et al. (2003). GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424: 443-447. http://dx.doi.org/10.1038/nature01827 PMid:12845333 Garg V, Muth AN, Ransom JF, Schluterman MK, et al. (2005). Mutations in NOTCH1 cause aortic valve disease. Nature 437: 270-274. http://dx.doi.org/10.1038/nature03940 PMid:16025100 Grow MW and Krieg PA (1998). Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2-3 and XNkx2-5. Dev. Biol. 204: 187-196. http://dx.doi.org/10.1006/dbio.1998.9080 PMid:9851852 Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, et al. (2005). Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am. J. Med. Genet. A 135: 47-52. http://dx.doi.org/10.1002/ajmg.a.30684 PMid:15810002 Hosoda T, Komuro I, Shiojima I, Hiroi Y, et al. (1999). Familial atrial septal defect and atrioventricular conduction disturbance associated with a point mutation in the cardiac homeobox gene CSX/NKX2-5 in a Japanese patient. Jpn. Circ. J. 63: 425-426. http://dx.doi.org/10.1253/jcj.63.425 PMid:10943630 Jenkins KJ, Correa A, Feinstein JA, Botto L, et al. (2007). Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115: 2995-3014. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.183216 PMid:17519397 Kasahara H and Benson DW (2004). Biochemical analyses of eight NKX2.5 homeodomain missense mutations causing atrioventricular block and cardiac anomalies. Cardiovasc. Res. 64: 40-51. http://dx.doi.org/10.1016/j.cardiores.2004.06.004 PMid:15364612 Kasahara H, Lee B, Schott JJ, Benson DW, et al. (2000). Loss of function and inhibitory effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease. J. Clin. Invest. 106: 299-308. http://dx.doi.org/10.1172/JCI9860 PMid:10903346    PMCid:314312 Kasahara H, Wakimoto H, Liu M, Maguire CT, et al. (2001). Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein. J. Clin. Invest. 108: 189-201. PMid:11457872    PMCid:203028 Kodo K, Nishizawa T, Furutani M, Arai S, et al. (2009). GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl. Acad. Sci U. S. A. 106: 13933-13938. http://dx.doi.org/10.1073/pnas.0904744106 PMid:19666519    PMCid:2728998 Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, et al. (1997). Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat. Genet. 15: 21-29. http://dx.doi.org/10.1038/ng0197-21 PMid:8988164 Lloyd-Jones D, Adams R, Carnethon M, De Simone G, et al. (2009). Heart disease and stroke statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119: e21-181. http://dx.doi.org/10.1161/CIRCULATIONAHA.108.191261 PMid:19075105 Lyons I, Parsons LM, Hartley L, Li R, et al. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9: 1654-1666. http://dx.doi.org/10.1101/gad.9.13.1654 Matsson H, Eason J, Bookwalter CS, Klar J, et al. (2008). Alpha-cardiac actin mutations produce atrial septal defects. Hum. Mol. Genet. 17: 256-265. http://dx.doi.org/10.1093/hmg/ddm302 PMid:17947298 Nora JJ and Nora AH (1976). Recurrence risks in children having one parent with a congenital heart disease. Circulation 53: 701-702. PMid:1253394 Pashmforoush M, Lu JT, Chen H, Amand TS, et al. (2004). Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117: 373-386. http://dx.doi.org/10.1016/S0092-8674(04)00405-2 Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, et al. (2007). Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115: 3015-3038. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.183056 PMid:17519398 Prall OW, Menon MK, Solloway MJ, Watanabe Y, et al. (2007). An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128: 947-959. http://dx.doi.org/10.1016/j.cell.2007.01.042 PMid:17350578    PMCid:2092439 Razzaque MA, Nishizawa T, Komoike Y, Yagi H, et al. (2007). Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat. Genet. 39: 1013-1017. http://dx.doi.org/10.1038/ng2078 PMid:17603482 Reamon-Buettner SM and Borlak J (2004). Somatic NKX2-5 mutations as a novel mechanism of disease in complex congenital heart disease. J. Med. Genet. 41: 684-690. http://dx.doi.org/10.1136/jmg.2003.017483 PMid:15342699    PMCid:1735891 Roberts AE, Araki T, Swanson KD, Montgomery KT, et al. (2007). Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat. Genet. 39: 70-74. http://dx.doi.org/10.1038/ng1926 PMid:17143285 Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, et al. (2006). Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311: 1287-1290. http://dx.doi.org/10.1126/science.1124642 PMid:16439621 Sarkozy A, Conti E, Neri C, D’Agostino R, et al. (2005). Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors. J. Med. Genet. 42: e16. http://dx.doi.org/10.1136/jmg.2004.026740 PMid:15689439    PMCid:1735979 Schott JJ, Benson DW, Basson CT, Pease W, et al. (1998). Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281: 108-111. http://dx.doi.org/10.1126/science.281.5373.108 PMid:9651244 Shiojima I, Komuro I, Inazawa J, Nakahori Y, et al. (1995). Assignment of cardiac homeobox gene CSX to human chromosome 5q34. Genomics 27: 204-206. http://dx.doi.org/10.1006/geno.1995.1027 PMid:7665173 Stallmeyer B, Fenge H, Nowak-Gottl U and Schulze-Bahr E (2010). Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin. Genet. 78: 533-540. http://dx.doi.org/10.1111/j.1399-0004.2010.01422.x PMid:20456451 Tanaka M, Chen Z, Bartunkova S, Yamasaki N, et al. (1999). The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126: 1269-1280. PMid:10021345