Publications

Found 9 results
Filters: Author is P.R. Da-Silva  [Clear All Filters]
2013
L. K. P. Camargo, Mógor, A. F., Resende, J. T. V., and Da-Silva, P. R., Establishment and molecular characterization of a sweet potato germplasm bank of the highlands of Paraná State, Brazil, vol. 12, pp. 5574-5588, 2013.
R. G. F. Morales, Resende, J. T. V., Resende, F. V., Delatorre, C. A., Figueiredo, A. S. T., and Da-Silva, P. R., Genetic divergence among Brazilian garlic cultivars based on morphological characters and AFLP markers, vol. 12, pp. 270-281, 2013.
ugustin E and Garcia A (1993). Classificação isoenzimática, morfológica e agronômica de genótipos de alho. Hortic. Bras. 11: 10-13.   Baghalian K, Naghavi MR, Ziai SA and Badi HN (2006). Post-planting evaluation of morphological characters and allicin content in Iranian garlic (Allium sativum L.) ecotypes. Sci. Hortic. 107: 405-410. http://dx.doi.org/10.1016/j.scienta.2005.11.008   Bark OH and Havey MJ (1995). Similarities and relationships among populations of the bulb onion as estimated by nuclear RFLPs. Theor. Appl. Genet. 90: 407-414. http://dx.doi.org/10.1007/BF00221983   Buso GS, Paiva MR, Torres AC, Resende FV, et al. (2008). Genetic diversity studies of Brazilian garlic cultivars and quality control of garlic-clover production. Genet. Mol. Res. 7: 534-541. http://dx.doi.org/10.4238/vol7-2gmr451 PMid:18752178   Cruz CD (2006). Programa GENES: Análise Multivariada e Simulação. Imprensa Universitária, Viçosa.   Etoh T, Watanabe H and Iwai S (2001). RAPD variation of garlic clones in the center of origin and the westernmost area of distribution. Mem. Fac. Agric. Kogoshima Univ. 37: 21-27.   Filgueira FAR (2008). Novo Manual de Olericultura. UFV, Viçosa.   Ipek M and Simon PW (2001). Genetic diversity in garlic (Allium sativum L.) as assessed by AFLPs and isozymes. HortScience 36: 454.   Ipek M, Ipek A and Simon PW (2003). Comparison of AFLPs, RAPD markers, and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections. J. Amer. Soc. Hort. Sci. 128: 246-252.   Kumar V, Sharma S, Kero S, Sharma S, et al. (2008). Assessment of genetic diversity in common bean (Phaseolus vulgaris L.) germplasm using amplified fragment length polymorphism (AFLP). Sci. Hortic. 116: 138-143. http://dx.doi.org/10.1016/j.scienta.2007.12.001   Lallemand J, Messian CM, Briand F and Etoh T (1997). Delimitation of varietal groups in garlic (Allium sativum L.) by morphological, physiological and biochemical characters. Acta Hort. 433: 123-132.   Lampasona SG, Martínez L and Burba JL (2003). Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (amplified fragment length polymorphism). Euphytica 132: 115-119. http://dx.doi.org/10.1023/A:1024606004596   Lapointe FJ and Legendre P (1992). Statistical significance of the matrix correlation coefficient for comparing independent phylogenetic trees. Syst. Biol. 41: 378-384.   Li Z, Liu XQ, Gituru RW, Juntawong N, et al. (2010). Genetic diversity and classification of Nelumbo germplasm of different origins by RAPD and ISSR analysis. Sci. Hortic. 125: 724-732. http://dx.doi.org/10.1016/j.scienta.2010.05.005   Maab HI and Klaas M (1995). Infraespecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. Theor. Appl. Genet. 91: 89-97.   Menezes Sobrinho JA, Charchar JM and Aragão FAS (1999). Caracterização morfológica de germoplasma de alho por análises multivariada componentes principais e variáveis canônicas. Hortic. Bras. 17: 96-101. http://dx.doi.org/10.1590/S0102-05361999000200004   Morales RGF, Resende JTV, Faria MV, Andrade MC, et al. (2011). Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers. Sci. Agric. 68: 665-670. http://dx.doi.org/10.1590/S0103-90162011000600010   Mota JH, Souza RJ, Yuri JE, Rezende GM, et al. (2005). Similaridade morfológica de cultivares de alho (Allium sativum L.). Rev. Cien. Eletr. Agr. IV.   Mota JH, Yuri JE, Resende GM and Souza RJ (2006). Similaridade genética de cultivares de alho pela comparação de caracteres morfológicos, físico-químicos, produtivos e moleculares. Hortic. Bras. 24: 156-160. http://dx.doi.org/10.1590/S0102-05362006000200006   Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241   Ovesná J, Kucera L, Králová J, Leišová L, et al. (2007). Genetic diversity among garlic clones as revealed by AFLP, phenotypic descriptors and S-amino acids level. Vegetable Crop Res. Bull. 66: 105-116.   Pooler MR and Simon PW (1993). Characterization and classification of isozyme and morphological variation in a diverse collection of garlic clones. Euphytica 68: 121-130. http://dx.doi.org/10.1007/BF00024161   Rohlf FJ (2000). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Version 2.1. Applied Biostatistics, New York.   Singh D (1981). The relative importance of characters affecting genetic divergence. Indian J. Genet. Plant Breed. 41: 237-245.   SNPC (2012). Sistema Nacional de Proteção de Cultivares: Alho. Available at [http://www.agricultura.gov.br/arq_editor/file/vegetal/RegistroAutorizacoes/Formularios%20Prote%C3%A7%C3%A3o%20Cultivares/ALHO%20FORMULARIO%2008DEZ2005P%20ATUALIZADO%20EM%2031%2007%202008.doc]. Accessed February 1, 2012.   Sokal RR and Rohlf FJ (1962). The comparison of dendrograms by objective methods. Taxonomy 11: 30-40. http://dx.doi.org/10.2307/1217208   Thomaz EL and Vestena LR (2003). Aspectos Climáticos de Guarapuava, PR. Unicentro, Guarapuava. PMid:12853411 PMCid:164243   Vieira RL and Nodari RO (2007). Diversidade genética de cultivares de alho avaliada por marcadores RAPD. Ciênc. Rural 37: 51-57. http://dx.doi.org/10.1590/S0103-84782007000100009   Volk GM, Henk AD and Richards CM (2004). Genetic diversity among U.S. garlic clones as detected using AFLP methods. Amer. Soc. Hort. Sci. 129: 559-569.   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397
2012
P. R. Da-Silva, Brammer, S. P., Guerra, D., Milach, S. C. K., Barcellos, A. L., and Baggio, M. I., Monosomic and molecular mapping of adult plant leaf rust resistance genes in the Brazilian wheat cultivar Toropi, vol. 11, pp. 2823-2834, 2012.
Alvarez-Zamorano R (1995). Patogenesis de Puccinia recondita Rob. Ex Desm. f. sp. tritici y la Resistencia en Trigo. PhD thesis, Colégio Postgraduados, Montecillos.   Anikster Y, Bushnell WR, Eilam T, Manisterski J, et al. (1997). Puccinia recondita causing leaf rust on cultivated wheats, wild wheats, and rye. Can. J. Bot. 75: 2082-2096. http://dx.doi.org/10.1139/b97-919   Bai DP, Knott DR and Zale J (1998). The transfer of leaf rust resistance from Triticum timopheevii to durum and bread wheat and the location of one gene are chromosome 1A. Can. J. Plant Sci. 78: 683-687. http://dx.doi.org/10.4141/P97-136   Barbosa MM, Federizzi LC, Milach SCK, Martinelli JA, et al. (2006). Molecular mapping and identification of QTL's associated to oat crown rust partial resistance. Euphytica 150: 257-269. http://dx.doi.org/10.1007/s10681-006-9117-4   Barcellos AL, Roelfs AP and Moraes-Fernandes MIB (2000). Inheritance of adult plant leaf rust resistance in the Brazilian wheat cultivar Toropi. Plant Dis. 84: 90-93. http://dx.doi.org/10.1094/PDIS.2000.84.1.90   Bariana HS and McIntosh RA (1993). Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36: 476-482. http://dx.doi.org/10.1139/g93-065 PMid:18470001   Bjarko ME and Line RF (1988). Quantitative determination of the gene action of leaf rust resistance in four cultivars of wheat, Triticum aestivum. Phytopathology 78: 451-456. http://dx.doi.org/10.1094/Phyto-78-451   Chen CX, Wang ZL, Yang DE, Ye CJ, et al. (2004). Molecular tagging and genetic mapping of the disease resistance gene RppQ to southern corn rust. Theor. Appl. Genet. 108: 945-950. http://dx.doi.org/10.1007/s00122-003-1506-7 PMid:14624338   De Giovanni C, Dell'Orco P, Bruno A, Ciccarese F, et al. (2004). Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci. 166: 41-48. http://dx.doi.org/10.1016/j.plantsci.2003.07.005   Dieguez MJ, Altieri E, Ingala LR, Perera E, et al. (2006). Physical and genetic mapping of amplified fragment length polymorphisms and the leaf rust resistance Lr3 gene on chromosome 6BL of wheat. Theor. Appl. Genet. 112: 251-257. http://dx.doi.org/10.1007/s00122-005-0122-0 PMid:16215730   Dubcovsky J, Lukaszewski AJ, Echaine M, Antonelli EF, et al. (1998). Molecular characterization of two Triticum speltoides interstitial translocations carryng leaf rust and greenbug resistance genes. Crop Sci. 38: 1655-1660. http://dx.doi.org/10.2135/cropsci1998.0011183X003800060040x   Dussle CM, Quint M, Melchinger AE, Xu ML, et al. (2003). Saturation of two chromosome regions conferring resistance to SCMV with SSR and AFLP markers by targeted BSA. Theor. Appl. Genet. 106: 485-493. PMid:12589549   Goodwin SB, Hu X and Shaner G (1998). An AFLP Marker Linked to a Gene for Resistance to Septoria tritici Blotch in Wheat. Proceedings of the 9th International Wheat Genetics Symposium Saskatoon, Saskatchewan, 108-110.   Guo PG, Bai GH and Shaner GE (2003). AFLP and STS tagging of a major QTL for Fusarium head blight resistance in wheat. Theor. Appl. Genet. 106: 1011-1017. PMid:12671748   Hartl L, Mori S and Schweizer G (1998). Identification of a Diagnostic Molecular Marker for the Powdery Mildew Resistance Gene Pm4b Based on Fluorescently Labelled AFLPs. Proceedings of the 9th International Wheat Genetics Symposium Saskatoon, Saskatchewan, 111-113.   Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, et al. (2011). New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor. Appl. Genet. 122: 239-249. http://dx.doi.org/10.1007/s00122-010-1439-x PMid:20848270   Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, et al. (2012). Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor. Appl. Genet. 124: 1475-1486. http://dx.doi.org/10.1007/s00122-012-1802-1 PMid:22297565   Howes NK (1986). Linkage between the Lr10 gene conditioning resistance to leaf rust, two endosperm proteins and hairy glumes in hexaploid wheat. Can. J. Genet. Cytol. 28: 595-600.   Huerta-Espino J, Singh RP, German S, McCallum SBD, et al. (2011). Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179: 143-160. http://dx.doi.org/10.1007/s10681-011-0361-x   Keller B and Feuillet C (2000). Colinearity and gene density in grass genomes. Trends Plant Sci. 5: 246-251. http://dx.doi.org/10.1016/S1360-1385(00)01629-0   Krattinger SG, Lagudah ES, Spielmeyer WSP, Huerta-Espino J, et al. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323: 1360-1363. http://dx.doi.org/10.1126/science.1166453 PMid:19229000   Lagudah ES (2011). Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179: 81-91. http://dx.doi.org/10.1007/s10681-010-0336-3   Li WL, Faris JD, Chittoor JM, Leach JE, et al. (1999). Genomic mapping of defense response genes in wheat. Theor. Appl. Genet. 98: 226-233. http://dx.doi.org/10.1007/s001220051062   Lin JJ and Kuo J (1995). AFLPTM, a novel PCR-based assay for plant and bacterial DNA fingerprinting. Focus 17: 66-70.   Long DL and Kolmer JA (1989). A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology 79: 525-529. http://dx.doi.org/10.1094/Phyto-79-525   McIntosh RA, Friebe B, Jiang JTD, The D, et al. (1995). Cytogenetical studies in wheat. XVI. Chromosomal location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica 82: 141-147. http://dx.doi.org/10.1007/978-94-011-0083-0   Michelmore RW, Paran I and Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88: 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828 PMid:1682921 PMCid:52814   Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241   Obert DE, Fritz AK, Moran JL, Singh S, et al. (2005). Identification and molecular tagging of a gene from PI 289824 conferring resistance to leaf rust (Puccinia triticina) in wheat. Theor. Appl. Genet. 110: 1439-1444. http://dx.doi.org/10.1007/s00122-005-1974-z PMid:15815925   Pestsova E, Ganal MW and Roder MS (2000). Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43: 689-697. http://dx.doi.org/10.1139/g00-042 PMid:10984182   Raupp WJ, Sukhwinder S, Brown-Guedira GL and Gill BS (2001). Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor. Appl. Genet. 102: 347-352. http://dx.doi.org/10.1007/s001220051652   Roelfs AP (1988). Resistance to Leaf Rust and Stem Rust in Wheat. In: Breeding Strategies for Resistance to the Rusts of Wheat (Simmonds NW and Rajaram S, eds.). CIMMYT, Mexico, 10-22.   Rosewarne GM, Singh RP, Huerta-Espino J, William HM, et al. (2006). Leaf tip necrosis, molecular markers and β1- proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor. Appl. Genet. 112: 500-508. http://dx.doi.org/10.1007/s00122-005-0153-6 PMid:16331478   Röder MS, Korzun V, Wendehake K, Plaschke J, et al. (1998). A microsatellite map of wheat. Genetics 149: 2007-2023. PMid:9691054 PMCid:1460256   Sears ER (1939). Cytogenetic studies with polyploid species of wheat. I. Chromosomal aberrations in the progeny of a haploid of Triticum vulgare. Genetics 24: 509-523. PMid:17246935 PMCid:1209050   Singh RP and Rajaram S (1992). Genetics of adult-plant resistance to leaf rust in Frontana and three CIMMYT wheats. Genome 5: 24-31. http://dx.doi.org/10.1139/g92-004   Singh RP, Huerta-Espino J and William HM (2005). Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk. J. Agric. For. 29: 121-127.   Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel AS, et al. (2011). Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179: 175-186. http://dx.doi.org/10.1007/s10681-010-0322-9   Song QJ, Shi JR, Singh S, Fickus EW, et al. (2005). Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 110: 550-560. http://dx.doi.org/10.1007/s00122-004-1871-x PMid:15655666   Suiter KA, Wendel JF and Case JS (1983). LINKAGE-1: a PASCAL computer program for the detection and analysis of genetic linkage. J. Hered. 74: 203-204. PMid:6863896   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Weng Y and Lazar MD (2002). Amplified fragment length polymorphism and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breed. 121: 218-223. http://dx.doi.org/10.1046/j.1439-0523.2002.00693.x   William HM, Singh RP, Huerta-Espino J, Palacios G, et al. (2006). Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49: 977-990. http://dx.doi.org/10.1139/G06-052 PMid:17036073
2011
P. R. Da-Silva, Milach, S. C. K., and Tisian, L. M., Transferability and utility of white oat (Avena sativa) microsatellite markers for genetic studies in black oat (Avena strigosa), vol. 10, pp. 2916-2923, 2011.
Adhikari KN, McIntosh RA and Oates JD (1999). Distribution and temperature sensitivities of genes for stem rust resistance in Australian oat cultivars and selected Germplasm. Aust. J. Agr. Res. 51: 75-83. http://dx.doi.org/10.1071/AR99039 Akkaya MS, Bhagwat AA and Cregan PB (1992). Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131-1139. PMid:1459432    PMCid:1205234 Billotte N, Risterucci AM, Barcelos E, Noyer JL, et al. (2001). Development, characterisation, and across-taxa utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers. Genome 44: 413-425. PMid:11444700 Brown SM, Hopkins MS, Mitchell SE, Senior ML, et al. (1996). Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 93: 190-198. http://dx.doi.org/10.1007/BF00225745 Bryan GJ, Collins AJ, Stephenson P, Orry A, et al. (1997). Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor. Appl. Genet. 94: 557-563. http://dx.doi.org/10.1007/s001220050451 Cipriani G, Lot G, Huang WG, Marrazzo MT, et al. (1999). AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterization and cross-species application in Prunus. Theor. Appl. Genet. 99: 65-72. http://dx.doi.org/10.1007/s001220051209 Cordeiro GM, Casu R, McIntyre CL, Manners JM, et al. (2001). Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and Sorghum. Plant Sci. 160: 1115-1123. http://dx.doi.org/10.1016/S0168-9452(01)00365-X Decroocq V, Fave MG, Hagen L, Bordenave L, et al. (2003). Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor. Appl. Genet. 106: 912-922. PMid:12647067 Devos KM, Bryan GJ, Collins AJ, Stephenson P, et al. (1995). Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor. Appl. Genet. 90: 247-252. http://dx.doi.org/10.1007/BF00222209 Dirlewanger E, Cosson P, Tavaud M, Aranzana J, et al. (2002). Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 105: 127-138. http://dx.doi.org/10.1007/s00122-002-0867-7 PMid:12582570 Downey SL and Iezzoni AF (2000). Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J. Am. Soc. Hortic. Sci. 125: 76-80. Dyck P (1966). Inheritance of stem rust resistance and other characteristics in diploid oats Avena strigosa. Can. J. Genet. Cytol. 8: 444-446. Gregory JW and Wise RP (1994). Linkage of genes conferring specific resistance to oat crown rust in diploid Avena. Genome 37: 92-96. http://dx.doi.org/10.1139/g94-011 PMid:18470063 Gupta PK, Rustgi S, Sharma S, Singh R, et al. (2003). Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genomics 270: 315-323. http://dx.doi.org/10.1007/s00438-003-0921-4 PMid:14508680 Hernández P, Dorado G, Laurie DA, Martín A, et al. (2001). Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor. Appl. Genet. 102: 616-622. http://dx.doi.org/10.1007/s001220051688 Herrmann M and Roderick HW (1996). Characterisation of new oat germplasm for resistance to powdery mildew. Euphytica 89: 405-410. Heslop-Harrison J, Leitch AR, Schwarzacher J and Anamthawat-Jonsson K (1990). Detection and characterization of 1B/1R translocations in hexaploid wheat. Heredity 65: 385-392. http://dx.doi.org/10.1038/hdy.1990.108 Hodgetts RB, Aleksiuk MA, Brown A, Clarke C, et al. (2001). Development of microsatellite markers for white spruce (Picea glauca) and related species. Theor. Appl. Genet. 102: 1252-1258. http://dx.doi.org/10.1007/s00122-001-0546-0 Kantety RV, La Rota M, Matthews DE and Sorrells ME (2002). Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48: 501-510. http://dx.doi.org/10.1023/A:1014875206165 PMid:11999831 Kijas JM, Fowler JC and Thomas MR (1995). An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species. Genome 38: 349-355. http://dx.doi.org/10.1139/g95-045 PMid:7774802 Kuleung C, Baenziger PS and Dweikat I (2004). Transferability of SSR markers among wheat, rye, and triticale. Theor. Appl. Genet. 108: 1147-1150. http://dx.doi.org/10.1007/s00122-003-1532-5 PMid:15067402 Li CD, Rossnagel BG and Scoles GJ (2000). The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor. Appl. Genet. 10: 1259-1268. http://dx.doi.org/10.1007/s001220051605 Litt M and Luty JA (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44: 397-401. PMid:2563634    PMCid:1715430 Miller TE, Reader SM, Purdie KA, Abbo S, et al. (1995). Fluorescent in situ hybridization as an aid to introducing alien genetic variation into wheat. Euphytica 85: 275-279. http://dx.doi.org/10.1007/BF00023956 Mukai Y and Gill BS (1991). Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome 34: 448-452. http://dx.doi.org/10.1139/g91-067 Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111    PMCid:324241 Pal N, Sandhu JS, Domier LL and Kolb FL (2002). Development and characterization of microsatellite and RFLP-derived PCR markers in oat. Crop Sci. 42: 912-918. http://dx.doi.org/10.2135/cropsci2002.0912 Peakall R, Gilmore S, Keys W, Morgante M, et al. (1998). Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in Plants. Mol. Biol. Evol. 15: 1275-1287. PMid:9787434 Pestsova E, Ganal MW and Roder MS (2000). Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43: 689-697. http://dx.doi.org/10.1139/g00-042 PMid:10984182 Rallo P, Tenzer I, Gessler C, Baldoni L, et al. (2003). Transferability of olive microsatellite loci across the genus Olea. Theor. Appl. Genet. 107: 940-946. http://dx.doi.org/10.1007/s00122-003-1332-y PMid:12827252 Röder MS, Korzun V, Wendehake K, Plaschke J, et al. (1998). A microsatellite map of wheat. Genetics 149: 2007-2023. PMid:9691054    PMCid:1460256 Rossetto M, McNally J and Henry RJ (2002). Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theor. Appl. Genet. 104: 61-66. http://dx.doi.org/10.1007/s001220200007 PMid:12579429 Sefc KM, Regner F, Turetschek E, Glossl J, et al. (1999). Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42: 367-373. PMid:10382286 Shepherd M, Cross M, Maguire L, Dieters J, et al. (2002). Transpecific microsatellites for hard pines. Theor. Appl. Genet. 104: 819-827. http://dx.doi.org/10.1007/s00122-001-0794-z PMid:12582642 Stephenson P, Bryan G, Kirby J, Collins A, et al. (1998). Fifty new microsatellite loci for the wheat genetic map. Theor. Appl. Genet. 97: 946-949. http://dx.doi.org/10.1007/s001220050975 Thomas MR and Scott NS (1993). Microsatellite repeats in grapevine reveal DNA polymorphism when analysed as sequence-tagged sites (STSs). Theor. Appl. Genet. 86: 173-180. http://dx.doi.org/10.1007/BF00211051 Wight CP, Kibite S, Tinker NA and Molnar SJ (2006). Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis. Theor. Appl. Genet. 112: 222-231. http://dx.doi.org/10.1007/s00122-005-0114-0 PMid:16323000 Wise RP, Lee M and Rayapati PJ (1996). Recombination within a 5-centimorgan region in diploid Avena reveals multiple specificities conferring resistance to Puccinia coronata. Phytopathology 86: 340-346. http://dx.doi.org/10.1094/Phyto-86-340 Wunsch A and Hormaza JI (2002). Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89: 56-63. PMid:12080370 Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, et al. (2001). SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor. Appl. Genet. 102: 865-870. http://dx.doi.org/10.1007/s001220000524 Zeller FJ (1998). Improving cultivated oat (Avena sativa L.) by making use of the genetic potential of wild Avena species. J. Appl. Bot-Angew Bot. 72: 180-185.