Publications

Found 15 results
Filters: Author is Z.J. Yang  [Clear All Filters]
2016
L. L. Liu, Yang, Z. J., Peng, Z. S., Liu, L. L., Yang, Z. J., and Peng, Z. S., cDNA cloning, characterization, and pharmacologic evaluation of anticancer activity of a lectin gene in Pinellia integrifolia, vol. 15, p. -, 2016.
L. L. Liu, Yang, Z. J., Peng, Z. S., Liu, L. L., Yang, Z. J., and Peng, Z. S., cDNA cloning, characterization, and pharmacologic evaluation of anticancer activity of a lectin gene in Pinellia integrifolia, vol. 15, p. -, 2016.
Z. J. Yang, Peng, Z. S., Yang, H., Yang, Z. J., Peng, Z. S., and Yang, H., Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat (Triticum aestivum L.), vol. 15, p. -, 2016.
Z. J. Yang, Peng, Z. S., Yang, H., Yang, Z. J., Peng, Z. S., and Yang, H., Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat (Triticum aestivum L.), vol. 15, p. -, 2016.
Z. J. Yang, Tang, X. P., Lai, Q. G., Ci, J. B., Yuan, K. F., Yang, Z. J., Tang, X. P., Lai, Q. G., Ci, J. B., Yuan, K. F., Yang, Z. J., Tang, X. P., Lai, Q. G., Ci, J. B., and Yuan, K. F., Interleukin-8 -251A/T polymorphism and periodontitis susceptibility: a meta-analysis, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a grant from the Second Hospital of Shandong University (#Y2013010062). REFERENCES Andia DC, de Oliveira NF, Letra AM, NocitiFHJret al (2011). Interleukin-8 gene promoter polymorphism (rs4073) may contribute to chronic periodontitis. J. Periodontol. 82: 893-899. http://dx.doi.org/10.1902/jop.2010.100513 Andia DC, Letra A, Casarin RC, Casati MZ, et al (2013). Genetic analysis of the IL8 gene polymorphism (rs4073) in generalized aggressive periodontitis. Arch. Oral Biol. 58: 211-217. http://dx.doi.org/10.1016/j.archoralbio.2012.05.008 Armitage GC, et al (1999). Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 4: 1-6. http://dx.doi.org/10.1902/annals.1999.4.1.1 Borilova Linhartova P, Vokurka J, Poskerova H, Fassmann A, et al (2013). Haplotype analysis of interleukin-8 gene polymorphisms in chronic and aggressive periodontitis. Mediators Inflamm. 2013: 342351. http://dx.doi.org/10.1155/2013/342351 Borrell LN, Papapanou PN, et al (2005). Analytical epidemiology of periodontitis. J. Clin. Periodontol. 32 (Suppl 6): 132-158. http://dx.doi.org/10.1111/j.1600-051X.2005.00799.x Campa D, Hung RJ, Mates D, Zaridze D, et al (2005). Lack of association between -251 T>A polymorphism of IL8 and lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 14: 2457-2458. http://dx.doi.org/10.1158/1055-9965.EPI-05-0446 Deng H, Liu F, Pan Y, Jin X, et al (2011). BsmI, TaqI, ApaI, and FokI polymorphisms in the vitamin D receptor gene and periodontitis: a meta-analysis of 15 studies including 1338 cases and 1302 controls. J. Clin. Periodontol. 38: 199-207. http://dx.doi.org/10.1111/j.1600-051X.2010.01685.x DerSimonian R, Laird N, et al (1986). Meta-analysis in clinical trials. Control. Clin. Trials 7: 177-188. http://dx.doi.org/10.1016/0197-2456(86)90046-2 Dimou NL, Nikolopoulos GK, Hamodrakas SJ, Bagos PG, et al (2010). Fcgamma receptor polymorphisms and their association with periodontal disease: a meta-analysis. J. Clin. Periodontol. 37: 255-265. http://dx.doi.org/10.1111/j.1600-051X.2009.01530.x Dongari-Bagtzoglou AI, Ebersole JL, et al (1998). Increased presence of interleukin-6 (IL-6) and IL-8 secreting fibroblast subpopulations in adult periodontitis. J. Periodontol. 69: 899-910. http://dx.doi.org/10.1902/jop.1998.69.8.899 Dye BA, et al (2012). Global periodontal disease epidemiology. Periodontol. 2000 58: 10-25. http://dx.doi.org/10.1111/j.1600-0757.2011.00413.x Egger M, Davey Smith G, Schneider M, Minder C, et al (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634. http://dx.doi.org/10.1136/bmj.315.7109.629 Garza-Gonzalez E, Bosques-Padilla FJ, Mendoza-Ibarra SI, Flores-Gutierrez JP, et al (2007). Assessment of the toll-like receptor 4 Asp299Gly, Thr399Ile and interleukin-8 -251 polymorphisms in the risk for the development of distal gastric cancer. BMC Cancer 7: 70. http://dx.doi.org/10.1186/1471-2407-7-70 Goverdhan SV, Ennis S, Hannan SR, Madhusudhana KC, et al (2008). Interleukin-8 promoter polymorphism -251A/T is a risk factor for age-related macular degeneration. Br. J. Ophthalmol. 92: 537-540. http://dx.doi.org/10.1136/bjo.2007.123190 Higgins JP, Thompson SG, et al (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 Hull J, Thomson A, Kwiatkowski D, et al (2000). Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. Thorax 55: 1023-1027. http://dx.doi.org/10.1136/thorax.55.12.1023 Ioannidis JP, Cappelleri JC, Lau J, et al (1998). Issues in comparisons between meta-analyses and large trials. JAMA 279: 1089-1093. http://dx.doi.org/10.1001/jama.279.14.1089 Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG, et al (2001). Replication validity of genetic association studies. Nat. Genet. 29: 306-309. http://dx.doi.org/10.1038/ng749 Jing L, Hong-yu Z, Dong-ying X, Juan L, et al (2011). Interleukin-8 -251 gene polymorphism in Chinese patients with aggressive periodontitis. J. Dental Prev. Treat. 19: 471-474. Kamali-Sarvestani E, Aliparasti MR, Atefi S, et al (2007). Association of interleukin-8 (IL-8 or CXCL8) -251T/A and CXCR2 +1208C/T gene polymorphisms with breast cancer. Neoplasma 54: 484-489. Khosropanah H, Sarvestani EK, Mahmoodi A, Golshah M, et al (2013). Association of IL-8 (-251 a/t) gene polymorphism with clinical parameters and chronic periodontitis. J. Dent. (Tehran) 10: 312-318. Kim YJ, Viana AC, Curtis KM, Orrico SR, et al (2009). Lack of association of a functional polymorphism in the interleukin 8 gene with susceptibility to periodontitis. DNA Cell Biol. 28: 185-190. http://dx.doi.org/10.1089/dna.2008.0816 Laine ML, Loos BG, Crielaard W, et al (2010). Gene polymorphisms in chronic periodontitis. Int. J. Dent. 2010: 324719. http://dx.doi.org/10.1155/2010/324719 Li G, Yue Y, Tian Y, Li JL, et al (2012). Association of matrix metalloproteinase (MMP)-1, 3, 9, interleukin (IL)-2, 8 and cyclooxygenase (COX)-2 gene polymorphisms with chronic periodontitis in a Chinese population. Cytokine 60: 552-560. http://dx.doi.org/10.1016/j.cyto.2012.06.239 Loos BG, John RP, Laine ML, et al (2005). Identification of genetic risk factors for periodontitis and possible mechanisms of action. J. Clin. Periodontol. 32 (Suppl 6): 159-179. http://dx.doi.org/10.1111/j.1600-051X.2005.00806.x Michalowicz BS, Aeppli D, Virag JG, Klump DG, et al (1991). Periodontal findings in adult twins. J. Periodontol. 62: 293-299. http://dx.doi.org/10.1902/jop.1991.62.5.293 Michalowicz BS, Diehl SR, Gunsolley JC, Sparks BS, et al (2000). Evidence of a substantial genetic basis for risk of adult periodontitis. J. Periodontol. 71: 1699-1707. http://dx.doi.org/10.1902/jop.2000.71.11.1699 Ramos-Corpas D, Santiago JC, et al (2006). Single large study or meta-analysis parameters: choosing the most appropriate tool for Down syndrome screening in the first trimester. Prenat. Diagn. 26: 1124-1130. http://dx.doi.org/10.1002/pd.1568 Sippert EA, de Oliveira e Silva C, Visentainer JE, Sell AM, et al (2013). Association of duffy blood group gene polymorphisms with IL8 gene in chronic periodontitis. PLoS One 8: e83286. http://dx.doi.org/10.1371/journal.pone.0083286 Tabor HK, Risch NJ, Myers RM, et al (2002). Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat. Rev. Genet. 3: 391-397. http://dx.doi.org/10.1038/nrg796 Takigawa M, Takashiba S, Myokai F, Takahashi K, et al (1994). Cytokine-dependent synergistic regulation of interleukin-8 production from human gingival fibroblasts. J. Periodontol. 65: 1002-1007. http://dx.doi.org/10.1902/jop.1994.65.11.1002 Tamura M, Tokuda M, Nagaoka S, Takada H, et al (1992). Lipopolysaccharides of Bacteroides intermedius (Prevotella intermedia) and Bacteroides (Porphyromonas) gingivalis induce interleukin-8 gene expression in human gingival fibroblast cultures. Infect. Immun. 60: 4932-4937. Tsai CC, Ho YP, Chen CC, et al (1995). Levels of interleukin-1 beta and interleukin-8 in gingival crevicular fluids in adult periodontitis. J. Periodontol. 66: 852-859. http://dx.doi.org/10.1902/jop.1995.66.10.852 Vairaktaris E, Yapijakis C, Serefoglou Z, Derka S, et al (2007). The interleukin-8 (-251A/T) polymorphism is associated with increased risk for oral squamous cell carcinoma. Eur. J. Surg. Oncol. 33: 504-507. http://dx.doi.org/10.1016/j.ejso.2006.11.002 Yoshie H, Kobayashi T, Tai H, Galicia JC, et al (2007). The role of genetic polymorphisms in periodontitis. Periodontol. 2000 43: 102-132. http://dx.doi.org/10.1111/j.1600-0757.2006.00164.x Zhang N, Xu Y, Zhang B, Zhang T, et al (2014). Analysis of interleukin-8 gene variants reveals their relative importance as genetic susceptibility factors for chronic periodontitis in the Han population. PLoS One 9: e104436. http://dx.doi.org/10.1371/journal.pone.0104436
Z. J. Yang, Tang, X. P., Lai, Q. G., Ci, J. B., Yuan, K. F., Yang, Z. J., Tang, X. P., Lai, Q. G., Ci, J. B., Yuan, K. F., Yang, Z. J., Tang, X. P., Lai, Q. G., Ci, J. B., and Yuan, K. F., Interleukin-8 -251A/T polymorphism and periodontitis susceptibility: a meta-analysis, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a grant from the Second Hospital of Shandong University (#Y2013010062). REFERENCES Andia DC, de Oliveira NF, Letra AM, NocitiFHJret al (2011). Interleukin-8 gene promoter polymorphism (rs4073) may contribute to chronic periodontitis. J. Periodontol. 82: 893-899. http://dx.doi.org/10.1902/jop.2010.100513 Andia DC, Letra A, Casarin RC, Casati MZ, et al (2013). Genetic analysis of the IL8 gene polymorphism (rs4073) in generalized aggressive periodontitis. Arch. Oral Biol. 58: 211-217. http://dx.doi.org/10.1016/j.archoralbio.2012.05.008 Armitage GC, et al (1999). Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 4: 1-6. http://dx.doi.org/10.1902/annals.1999.4.1.1 Borilova Linhartova P, Vokurka J, Poskerova H, Fassmann A, et al (2013). Haplotype analysis of interleukin-8 gene polymorphisms in chronic and aggressive periodontitis. Mediators Inflamm. 2013: 342351. http://dx.doi.org/10.1155/2013/342351 Borrell LN, Papapanou PN, et al (2005). Analytical epidemiology of periodontitis. J. Clin. Periodontol. 32 (Suppl 6): 132-158. http://dx.doi.org/10.1111/j.1600-051X.2005.00799.x Campa D, Hung RJ, Mates D, Zaridze D, et al (2005). Lack of association between -251 T>A polymorphism of IL8 and lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 14: 2457-2458. http://dx.doi.org/10.1158/1055-9965.EPI-05-0446 Deng H, Liu F, Pan Y, Jin X, et al (2011). BsmI, TaqI, ApaI, and FokI polymorphisms in the vitamin D receptor gene and periodontitis: a meta-analysis of 15 studies including 1338 cases and 1302 controls. J. Clin. Periodontol. 38: 199-207. http://dx.doi.org/10.1111/j.1600-051X.2010.01685.x DerSimonian R, Laird N, et al (1986). Meta-analysis in clinical trials. Control. Clin. Trials 7: 177-188. http://dx.doi.org/10.1016/0197-2456(86)90046-2 Dimou NL, Nikolopoulos GK, Hamodrakas SJ, Bagos PG, et al (2010). Fcgamma receptor polymorphisms and their association with periodontal disease: a meta-analysis. J. Clin. Periodontol. 37: 255-265. http://dx.doi.org/10.1111/j.1600-051X.2009.01530.x Dongari-Bagtzoglou AI, Ebersole JL, et al (1998). Increased presence of interleukin-6 (IL-6) and IL-8 secreting fibroblast subpopulations in adult periodontitis. J. Periodontol. 69: 899-910. http://dx.doi.org/10.1902/jop.1998.69.8.899 Dye BA, et al (2012). Global periodontal disease epidemiology. Periodontol. 2000 58: 10-25. http://dx.doi.org/10.1111/j.1600-0757.2011.00413.x Egger M, Davey Smith G, Schneider M, Minder C, et al (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634. http://dx.doi.org/10.1136/bmj.315.7109.629 Garza-Gonzalez E, Bosques-Padilla FJ, Mendoza-Ibarra SI, Flores-Gutierrez JP, et al (2007). Assessment of the toll-like receptor 4 Asp299Gly, Thr399Ile and interleukin-8 -251 polymorphisms in the risk for the development of distal gastric cancer. BMC Cancer 7: 70. http://dx.doi.org/10.1186/1471-2407-7-70 Goverdhan SV, Ennis S, Hannan SR, Madhusudhana KC, et al (2008). Interleukin-8 promoter polymorphism -251A/T is a risk factor for age-related macular degeneration. Br. J. Ophthalmol. 92: 537-540. http://dx.doi.org/10.1136/bjo.2007.123190 Higgins JP, Thompson SG, et al (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 Hull J, Thomson A, Kwiatkowski D, et al (2000). Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. Thorax 55: 1023-1027. http://dx.doi.org/10.1136/thorax.55.12.1023 Ioannidis JP, Cappelleri JC, Lau J, et al (1998). Issues in comparisons between meta-analyses and large trials. JAMA 279: 1089-1093. http://dx.doi.org/10.1001/jama.279.14.1089 Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG, et al (2001). Replication validity of genetic association studies. Nat. Genet. 29: 306-309. http://dx.doi.org/10.1038/ng749 Jing L, Hong-yu Z, Dong-ying X, Juan L, et al (2011). Interleukin-8 -251 gene polymorphism in Chinese patients with aggressive periodontitis. J. Dental Prev. Treat. 19: 471-474. Kamali-Sarvestani E, Aliparasti MR, Atefi S, et al (2007). Association of interleukin-8 (IL-8 or CXCL8) -251T/A and CXCR2 +1208C/T gene polymorphisms with breast cancer. Neoplasma 54: 484-489. Khosropanah H, Sarvestani EK, Mahmoodi A, Golshah M, et al (2013). Association of IL-8 (-251 a/t) gene polymorphism with clinical parameters and chronic periodontitis. J. Dent. (Tehran) 10: 312-318. Kim YJ, Viana AC, Curtis KM, Orrico SR, et al (2009). Lack of association of a functional polymorphism in the interleukin 8 gene with susceptibility to periodontitis. DNA Cell Biol. 28: 185-190. http://dx.doi.org/10.1089/dna.2008.0816 Laine ML, Loos BG, Crielaard W, et al (2010). Gene polymorphisms in chronic periodontitis. Int. J. Dent. 2010: 324719. http://dx.doi.org/10.1155/2010/324719 Li G, Yue Y, Tian Y, Li JL, et al (2012). Association of matrix metalloproteinase (MMP)-1, 3, 9, interleukin (IL)-2, 8 and cyclooxygenase (COX)-2 gene polymorphisms with chronic periodontitis in a Chinese population. Cytokine 60: 552-560. http://dx.doi.org/10.1016/j.cyto.2012.06.239 Loos BG, John RP, Laine ML, et al (2005). Identification of genetic risk factors for periodontitis and possible mechanisms of action. J. Clin. Periodontol. 32 (Suppl 6): 159-179. http://dx.doi.org/10.1111/j.1600-051X.2005.00806.x Michalowicz BS, Aeppli D, Virag JG, Klump DG, et al (1991). Periodontal findings in adult twins. J. Periodontol. 62: 293-299. http://dx.doi.org/10.1902/jop.1991.62.5.293 Michalowicz BS, Diehl SR, Gunsolley JC, Sparks BS, et al (2000). Evidence of a substantial genetic basis for risk of adult periodontitis. J. Periodontol. 71: 1699-1707. http://dx.doi.org/10.1902/jop.2000.71.11.1699 Ramos-Corpas D, Santiago JC, et al (2006). Single large study or meta-analysis parameters: choosing the most appropriate tool for Down syndrome screening in the first trimester. Prenat. Diagn. 26: 1124-1130. http://dx.doi.org/10.1002/pd.1568 Sippert EA, de Oliveira e Silva C, Visentainer JE, Sell AM, et al (2013). Association of duffy blood group gene polymorphisms with IL8 gene in chronic periodontitis. PLoS One 8: e83286. http://dx.doi.org/10.1371/journal.pone.0083286 Tabor HK, Risch NJ, Myers RM, et al (2002). Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat. Rev. Genet. 3: 391-397. http://dx.doi.org/10.1038/nrg796 Takigawa M, Takashiba S, Myokai F, Takahashi K, et al (1994). Cytokine-dependent synergistic regulation of interleukin-8 production from human gingival fibroblasts. J. Periodontol. 65: 1002-1007. http://dx.doi.org/10.1902/jop.1994.65.11.1002 Tamura M, Tokuda M, Nagaoka S, Takada H, et al (1992). Lipopolysaccharides of Bacteroides intermedius (Prevotella intermedia) and Bacteroides (Porphyromonas) gingivalis induce interleukin-8 gene expression in human gingival fibroblast cultures. Infect. Immun. 60: 4932-4937. Tsai CC, Ho YP, Chen CC, et al (1995). Levels of interleukin-1 beta and interleukin-8 in gingival crevicular fluids in adult periodontitis. J. Periodontol. 66: 852-859. http://dx.doi.org/10.1902/jop.1995.66.10.852 Vairaktaris E, Yapijakis C, Serefoglou Z, Derka S, et al (2007). The interleukin-8 (-251A/T) polymorphism is associated with increased risk for oral squamous cell carcinoma. Eur. J. Surg. Oncol. 33: 504-507. http://dx.doi.org/10.1016/j.ejso.2006.11.002 Yoshie H, Kobayashi T, Tai H, Galicia JC, et al (2007). The role of genetic polymorphisms in periodontitis. Periodontol. 2000 43: 102-132. http://dx.doi.org/10.1111/j.1600-0757.2006.00164.x Zhang N, Xu Y, Zhang B, Zhang T, et al (2014). Analysis of interleukin-8 gene variants reveals their relative importance as genetic susceptibility factors for chronic periodontitis in the Han population. PLoS One 9: e104436. http://dx.doi.org/10.1371/journal.pone.0104436
Z. J. Yang, Tang, X. P., Lai, Q. G., Ci, J. B., Yuan, K. F., Yang, Z. J., Tang, X. P., Lai, Q. G., Ci, J. B., Yuan, K. F., Yang, Z. J., Tang, X. P., Lai, Q. G., Ci, J. B., and Yuan, K. F., Interleukin-8 -251A/T polymorphism and periodontitis susceptibility: a meta-analysis, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by a grant from the Second Hospital of Shandong University (#Y2013010062). REFERENCES Andia DC, de Oliveira NF, Letra AM, NocitiFHJret al (2011). Interleukin-8 gene promoter polymorphism (rs4073) may contribute to chronic periodontitis. J. Periodontol. 82: 893-899. http://dx.doi.org/10.1902/jop.2010.100513 Andia DC, Letra A, Casarin RC, Casati MZ, et al (2013). Genetic analysis of the IL8 gene polymorphism (rs4073) in generalized aggressive periodontitis. Arch. Oral Biol. 58: 211-217. http://dx.doi.org/10.1016/j.archoralbio.2012.05.008 Armitage GC, et al (1999). Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 4: 1-6. http://dx.doi.org/10.1902/annals.1999.4.1.1 Borilova Linhartova P, Vokurka J, Poskerova H, Fassmann A, et al (2013). Haplotype analysis of interleukin-8 gene polymorphisms in chronic and aggressive periodontitis. Mediators Inflamm. 2013: 342351. http://dx.doi.org/10.1155/2013/342351 Borrell LN, Papapanou PN, et al (2005). Analytical epidemiology of periodontitis. J. Clin. Periodontol. 32 (Suppl 6): 132-158. http://dx.doi.org/10.1111/j.1600-051X.2005.00799.x Campa D, Hung RJ, Mates D, Zaridze D, et al (2005). Lack of association between -251 T>A polymorphism of IL8 and lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 14: 2457-2458. http://dx.doi.org/10.1158/1055-9965.EPI-05-0446 Deng H, Liu F, Pan Y, Jin X, et al (2011). BsmI, TaqI, ApaI, and FokI polymorphisms in the vitamin D receptor gene and periodontitis: a meta-analysis of 15 studies including 1338 cases and 1302 controls. J. Clin. Periodontol. 38: 199-207. http://dx.doi.org/10.1111/j.1600-051X.2010.01685.x DerSimonian R, Laird N, et al (1986). Meta-analysis in clinical trials. Control. Clin. Trials 7: 177-188. http://dx.doi.org/10.1016/0197-2456(86)90046-2 Dimou NL, Nikolopoulos GK, Hamodrakas SJ, Bagos PG, et al (2010). Fcgamma receptor polymorphisms and their association with periodontal disease: a meta-analysis. J. Clin. Periodontol. 37: 255-265. http://dx.doi.org/10.1111/j.1600-051X.2009.01530.x Dongari-Bagtzoglou AI, Ebersole JL, et al (1998). Increased presence of interleukin-6 (IL-6) and IL-8 secreting fibroblast subpopulations in adult periodontitis. J. Periodontol. 69: 899-910. http://dx.doi.org/10.1902/jop.1998.69.8.899 Dye BA, et al (2012). Global periodontal disease epidemiology. Periodontol. 2000 58: 10-25. http://dx.doi.org/10.1111/j.1600-0757.2011.00413.x Egger M, Davey Smith G, Schneider M, Minder C, et al (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634. http://dx.doi.org/10.1136/bmj.315.7109.629 Garza-Gonzalez E, Bosques-Padilla FJ, Mendoza-Ibarra SI, Flores-Gutierrez JP, et al (2007). Assessment of the toll-like receptor 4 Asp299Gly, Thr399Ile and interleukin-8 -251 polymorphisms in the risk for the development of distal gastric cancer. BMC Cancer 7: 70. http://dx.doi.org/10.1186/1471-2407-7-70 Goverdhan SV, Ennis S, Hannan SR, Madhusudhana KC, et al (2008). Interleukin-8 promoter polymorphism -251A/T is a risk factor for age-related macular degeneration. Br. J. Ophthalmol. 92: 537-540. http://dx.doi.org/10.1136/bjo.2007.123190 Higgins JP, Thompson SG, et al (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 Hull J, Thomson A, Kwiatkowski D, et al (2000). Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. Thorax 55: 1023-1027. http://dx.doi.org/10.1136/thorax.55.12.1023 Ioannidis JP, Cappelleri JC, Lau J, et al (1998). Issues in comparisons between meta-analyses and large trials. JAMA 279: 1089-1093. http://dx.doi.org/10.1001/jama.279.14.1089 Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG, et al (2001). Replication validity of genetic association studies. Nat. Genet. 29: 306-309. http://dx.doi.org/10.1038/ng749 Jing L, Hong-yu Z, Dong-ying X, Juan L, et al (2011). Interleukin-8 -251 gene polymorphism in Chinese patients with aggressive periodontitis. J. Dental Prev. Treat. 19: 471-474. Kamali-Sarvestani E, Aliparasti MR, Atefi S, et al (2007). Association of interleukin-8 (IL-8 or CXCL8) -251T/A and CXCR2 +1208C/T gene polymorphisms with breast cancer. Neoplasma 54: 484-489. Khosropanah H, Sarvestani EK, Mahmoodi A, Golshah M, et al (2013). Association of IL-8 (-251 a/t) gene polymorphism with clinical parameters and chronic periodontitis. J. Dent. (Tehran) 10: 312-318. Kim YJ, Viana AC, Curtis KM, Orrico SR, et al (2009). Lack of association of a functional polymorphism in the interleukin 8 gene with susceptibility to periodontitis. DNA Cell Biol. 28: 185-190. http://dx.doi.org/10.1089/dna.2008.0816 Laine ML, Loos BG, Crielaard W, et al (2010). Gene polymorphisms in chronic periodontitis. Int. J. Dent. 2010: 324719. http://dx.doi.org/10.1155/2010/324719 Li G, Yue Y, Tian Y, Li JL, et al (2012). Association of matrix metalloproteinase (MMP)-1, 3, 9, interleukin (IL)-2, 8 and cyclooxygenase (COX)-2 gene polymorphisms with chronic periodontitis in a Chinese population. Cytokine 60: 552-560. http://dx.doi.org/10.1016/j.cyto.2012.06.239 Loos BG, John RP, Laine ML, et al (2005). Identification of genetic risk factors for periodontitis and possible mechanisms of action. J. Clin. Periodontol. 32 (Suppl 6): 159-179. http://dx.doi.org/10.1111/j.1600-051X.2005.00806.x Michalowicz BS, Aeppli D, Virag JG, Klump DG, et al (1991). Periodontal findings in adult twins. J. Periodontol. 62: 293-299. http://dx.doi.org/10.1902/jop.1991.62.5.293 Michalowicz BS, Diehl SR, Gunsolley JC, Sparks BS, et al (2000). Evidence of a substantial genetic basis for risk of adult periodontitis. J. Periodontol. 71: 1699-1707. http://dx.doi.org/10.1902/jop.2000.71.11.1699 Ramos-Corpas D, Santiago JC, et al (2006). Single large study or meta-analysis parameters: choosing the most appropriate tool for Down syndrome screening in the first trimester. Prenat. Diagn. 26: 1124-1130. http://dx.doi.org/10.1002/pd.1568 Sippert EA, de Oliveira e Silva C, Visentainer JE, Sell AM, et al (2013). Association of duffy blood group gene polymorphisms with IL8 gene in chronic periodontitis. PLoS One 8: e83286. http://dx.doi.org/10.1371/journal.pone.0083286 Tabor HK, Risch NJ, Myers RM, et al (2002). Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat. Rev. Genet. 3: 391-397. http://dx.doi.org/10.1038/nrg796 Takigawa M, Takashiba S, Myokai F, Takahashi K, et al (1994). Cytokine-dependent synergistic regulation of interleukin-8 production from human gingival fibroblasts. J. Periodontol. 65: 1002-1007. http://dx.doi.org/10.1902/jop.1994.65.11.1002 Tamura M, Tokuda M, Nagaoka S, Takada H, et al (1992). Lipopolysaccharides of Bacteroides intermedius (Prevotella intermedia) and Bacteroides (Porphyromonas) gingivalis induce interleukin-8 gene expression in human gingival fibroblast cultures. Infect. Immun. 60: 4932-4937. Tsai CC, Ho YP, Chen CC, et al (1995). Levels of interleukin-1 beta and interleukin-8 in gingival crevicular fluids in adult periodontitis. J. Periodontol. 66: 852-859. http://dx.doi.org/10.1902/jop.1995.66.10.852 Vairaktaris E, Yapijakis C, Serefoglou Z, Derka S, et al (2007). The interleukin-8 (-251A/T) polymorphism is associated with increased risk for oral squamous cell carcinoma. Eur. J. Surg. Oncol. 33: 504-507. http://dx.doi.org/10.1016/j.ejso.2006.11.002 Yoshie H, Kobayashi T, Tai H, Galicia JC, et al (2007). The role of genetic polymorphisms in periodontitis. Periodontol. 2000 43: 102-132. http://dx.doi.org/10.1111/j.1600-0757.2006.00164.x Zhang N, Xu Y, Zhang B, Zhang T, et al (2014). Analysis of interleukin-8 gene variants reveals their relative importance as genetic susceptibility factors for chronic periodontitis in the Han population. PLoS One 9: e104436. http://dx.doi.org/10.1371/journal.pone.0104436
2013
Z. J. Yang, Peng, Z. S., Wu, K., and Wei, S. H., Cloning and characterization of thioredoxin h in the three-pistil line of common wheat, vol. 12, pp. 2688-2701, 2013.
G. R. Li, Liu, C., Yang, E. N., and Yang, Z. J., Isolation and phylogenetic analysis of novel γ-gliadin genes in genus Dasypyrum, vol. 12, pp. 783-790, 2013.
Altenbach SB, Vensel WH and DuPont FM (2010). Analysis of expressed sequence tags from a single wheat cultivar facilitates interpretation of tandem mass spectrometry data and discrimination of gamma gliadin proteins that may play different functional roles in flour. BMC Plant Biol. 10: 7. http://dx.doi.org/10.1186/1471-2229-10-7 PMid:20064259 PMCid:2827424   Anderson OD, Hsia CC and Torres V (2001). The wheat γ-gliadin genes: characterization of ten new sequences and further understanding of γ-gliadin gene family structure. Theor. Appl. Genet. 103: 323-330. http://dx.doi.org/10.1007/s00122-001-0551-3   Bartels D and Thompson RD (1983). The characterization of cDNA clones coding for wheat storage proteins. Nucleic Acids Res. 11: 2961-2977. http://dx.doi.org/10.1093/nar/11.10.2961 PMid:6190127 PMCid:325941   Blanco A, Simeone R, Resta P, Pace CD, et al. (1996). Genomic relationships between Dasypyrum villosum (L.) Candargy and D. hordeaceum (Cosson et Durieu) Candargy. Genome 39: 83-92. http://dx.doi.org/10.1139/g96-012   Chen FG, Zhao F, Liu SW and Xia GM (2009). The γ-gliadin gene content of a derivative from a somatic hybrid between bread wheat and tall wheatgrass. Mol. Breed. 24: 117-126. http://dx.doi.org/10.1007/s11032-009-9275-x   De Pace C, Vaccino P, Cionini PG, Pasquini M, et al. (2011). Dasypyrum. In: Wild Crop Relatives, Genomic and Breeding Resources, Cereals (Kole C, eds.). Chapter 4. Springer-Verlag, Heidelberg, 185-292. http://dx.doi.org/10.1007/978-3-642-14228-4_4   Dubcovsky J, Echaide M, Giancola S, Rousset M, et al. (1997). Seed-storage-protein loci in RFLP maps of diploid, tetraploid, and hexaploid wheat. Theor. Appl. Genet. 95: 1169-1180. http://dx.doi.org/10.1007/s001220050678   Frederiksen S (1991). Taxonomic studies in Dasypyrum (Poaceae). Nord. J. Bot. 11: 135-142. http://dx.doi.org/10.1111/j.1756-1051.1991.tb01813.x   Galasso I, Blanco A, Katsiotis A, Pignone D, et al. (1997). Genomic organization and phylogenetic relationships in the genus Dasypyrum analysed by southern and in situ hybridization of total genomic and cloned DNA probes. Chromosoma 106: 53-61. http://dx.doi.org/10.1007/s004120050224 PMid:9169587   Gänzle MG, Loponen J and Gobbetti M (2008). Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci. Technol. 19: 513-521. http://dx.doi.org/10.1016/j.tifs.2008.04.002   Gradzielewska A (2006a). The genus Dasypyrum-part 1. The taxonomy and relationships within Dasypyrum and with Triticeae species. Euphytica 152: 429-440. http://dx.doi.org/10.1007/s10681-006-9232-2   Gradzielewska A (2006b). The genus Dasypyrum-part 2. Dasypyrum villosum-a wild species used in wheat improvement. Euphytica 152: 441-454. http://dx.doi.org/10.1007/s10681-006-9245-x   Guo ZF, Zhong M, Wei YM, Zhang L, et al. (2010). Characterization of two novel γ-gliadin genes encoded by K genome of Crithopsis delileana and evolution analysis with those from Triticeae. Genes Genomics 32: 259-265. http://dx.doi.org/10.1007/s13258-010-0005-x   Huang Z, Long H, Wei YM, Qi PF, et al. (2010). Characterization and classification of γ-gliadin multigene sequences from Aegilops section Sitopsis. Cereal Res. Comm. 38: 1-14. http://dx.doi.org/10.1556/CRC.38.2010.1.1   Law CN (1981). Chromosome manipulation in wheat. Chromosomes Today 7: 194-205.   Li GR, Liu C, Zeng ZX, Jia JQ, et al. (2009). Identification of α-gliadin genes in Dasypyrum in relation to evolution and breeding. Euphytica 165: 155-163. http://dx.doi.org/10.1007/s10681-008-9780-8   Liu C, Yang ZJ, Feng J, Zhou JP, et al. (2006). Systematic status of Dasypyrum breviaristatum in Triticeae based on RAPD analyses. Triticeae Crop 26: 11-15.   Liu C, Li GR, Sunish S, Jia JQ, et al. (2010). Genome relationships in the genus Dasypyrum: evidence from molecular phylogenetic analysis and in situ hybridization. Plant Syst. Evol. 288: 149-156. http://dx.doi.org/10.1007/s00606-010-0319-9   Love A (1984). Conspectus of the Triticeae. Feddes Rep. 95: 425-521.   Masoudi-Nejad A, Nasuda S, Kawabe A and Endo TR (2002). Molecular cloning, sequencing, and chromosome mapping of a 1A-encoded ω-type prolamin sequence from wheat. Genome 45: 661-669. http://dx.doi.org/10.1139/g02-030 PMid:12175069   Ohta S and Morishita M (2001). Genome relationships in the genus Dasypyrum (Gramineae). Hereditas 135: 101-110. http://dx.doi.org/10.1111/j.1601-5223.2001.00101.x PMid:12152321   Ohta S, Koto M, Osada T, Matsuyama A, et al. (2002). Rediscovery of a diploid cytotype of Dasypyrum breviaristatum in Morocco. Genet. Resour. Crop Evol. 49: 305-312. http://dx.doi.org/10.1023/A:1015519615404   Payne PI (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Genet. 38: 141-153.   Qi PF, Wei YM, Ouellet T, Chen Q, et al. (2009). The γ-gliadin multigene family in common wheat (Triticum aestivum) and its closely related species. BMC Genomics 10: 168. http://dx.doi.org/10.1186/1471-2164-10-168 PMid:19383144 PMCid:2685405   Singh NK and Shepherd KW (1988). Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group-1 chromosomes. Theor. Appl. Genet. 75: 628-641. http://dx.doi.org/10.1007/BF00289132   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   Uslu E, Reader SM and Miller TE (1999). Characterization of Dasypyrum villosum (L.) Candargy chromosomes by fluorescent in situ hybridization. Hereditas 131: 129-134. http://dx.doi.org/10.1111/j.1601-5223.1999.00129.x   van Herpen TW, Goryunova SV, van der Schoot J, Mitreva M, et al. (2006). Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7: 1. http://dx.doi.org/10.1186/1471-2164-7-1 PMid:16403227 PMCid:1368968   Yan ZH, Wei YM, Wang JR, Liu DC, et al. (2006). Characterization of two HMW glutenin subunit genes from Taenitherum Nevski. Genetica 127: 267-276. http://dx.doi.org/10.1007/s10709-005-4824-7 PMid:16850230   Yang ZJ, Li GR, Feng J, Jiang HR, et al. (2005). Molecular cytogenetic characterization and disease resistance observation of wheat-Dasypyrum breviaristatum partial amphiploid and its derivatives. Hereditas 142: 80-85. http://dx.doi.org/10.1111/j.1601-5223.2005.01918.x PMid:16970616   Yang ZJ, Liu C, Feng J, Li GR, et al. (2006). Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas 143: 47-54. http://dx.doi.org/10.1111/j.2006.0018-0661.01930.x PMid:17362333
2011
E. N. Yang, Yang, Z. J., Zhang, J. F., Zou, Y. C., and Ren, Z. L., Molecular cytogenetic characterization of a new leaf rolling triticale, vol. 10, pp. 2953-2961, 2011.
Amiour N, Dardevet M, Khelifi D, Bouguennec A, et al. (2002a). Allelic variation of HMW and LMW glutenin subunits, HMW secalin subunits and 75K gamma-secalins of hexaploid triticale. Euphytica 123: 179-186. http://dx.doi.org/10.1023/A:1014992525992 Amiour N, Bouguennec A, Marcoz C, Sourdille P, et al. (2002b). Diversity of seven glutenin and secalin loci within triticale cultivars grown in Europe. Euphytica 123: 295-305. http://dx.doi.org/10.1023/A:1015092613786 Barary M (2005). An Investigation of Drought Tolerance Mechanisms in Triticale (X Triticosecale Wittmack) With Particular Reference to Osmotic Adjustment. PhD thesis, University of New England, Armidale. Chen G, Sagi M, Weining S, Krugman T, et al. (2004). Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta 219: 684-693. http://dx.doi.org/10.1007/s00425-004-1277-7 Chen G, Komatsuda T, Pourkheirandish M, Sameri M, et al. (2009). Mapping of the eibi1 gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum spontaneum). Breed. Sci. 59: 21-26. http://dx.doi.org/10.1270/jsbbs.59.21 Dou QW, Tanaka H, Nakata N and Tsujimoto H (2006). Molecular cytogenetic analyses of hexaploid lines spontaneously appearing in octoploid Triticale. Theor. Appl. Genet. 114: 41-47. http://dx.doi.org/10.1007/s00122-006-0408-x PMid:17016687 Gill BS, Friebe B and Endo TR (1991). Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34: 830-839. http://dx.doi.org/10.1139/g91-128 Kadioglu A and Terzi RA (2007). Dehydration avoidance mechanism: leaf rolling. Bot. Rev. 73: 290-302. http://dx.doi.org/10.1663/0006-8101(2007)73[290:ADAMLR]2.0.CO;2 Kumar A and Sharma SC (2007). Genetics of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum L.). Cereal Res. Commun. 35: 43-52. http://dx.doi.org/10.1556/CRC.35.2007.1.6 Lukaszewski AJ and Gustafson JP (1987). Cytogenetics of triticale. In: Plant Breeding Reviews (Janick J, ed.). Vol. 5. AVI Publishing, Nova York, 41-93. McCaig TN and Romagosa I (1991). Water status measurements of excised wheat leaves: position and age effects. Crop Sci. 31: 1583-1588. http://dx.doi.org/10.2135/cropsci1991.0011183X003100060041x Mukai Y, Friebe B, Hatchett JH, Yamamoto M, et al. (1993). Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102: 88-95. http://dx.doi.org/10.1007/BF00356025 Price AH, Townend J, Jones MP, Audebert A, et al. (2002). Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol. Biol. 48: 683-695. http://dx.doi.org/10.1023/A:1014805625790 PMid:11999843 Rampino P, Pataleo S, Gerardi C, Mita G, et al. (2006). Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ. 29: 2143-2152. http://dx.doi.org/10.1111/j.1365-3040.2006.01588.x PMid:17081248 Rebetzke GJ, Morrison AD, Richards RA and Bonnett DG (2001). Genotypic Variation for Leaf Rolling in Wheat. Proceedings of the 10th Assembly Wheat Breeding Society of Australia, Mildura. Richards RA, Rebetzke GJ, Watt M, Condon AG, et al. (2010). Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct. Plant Biol. 37: 85-97. http://dx.doi.org/10.1071/FP09219 Sirault XRR (2007). Leaf rolling in wheat. PhD thesis, ANU, Canberra. Teulat B, Zoumarou-Wallis N, Rotter B, Ben SM, et al. (2003). QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor. Appl. Genet. 108: 181-188. http://dx.doi.org/10.1007/s00122-003-1417-7 PMid:13679983 Turner NC (1981). Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58: 339-366. http://dx.doi.org/10.1007/BF02180062 Wilson AS (1876). Wheat and rye hybrids. Edinburgh Bat. Sac. Trans. 12: 286-288. http://dx.doi.org/10.1080/03746607309469536 Yang ZJ, Li GR, Jiang HR and Ren ZL (2001). Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale silvestre. Euphytica 119: 317-321. http://dx.doi.org/10.1023/A:1017591519520 Zhou JP, Yang ZJ, Li GR, Liu C, et al. (2008). Discrimination of repetitive sequences polymorphism in Secale cereale by genomic in situ hybridization-banding. J. Integr. Plant Biol. 50: 452-456. http://dx.doi.org/10.1111/j.1744-7909.2008.00644.x PMid:18713379 Zhou Y, Fang YX, Zhu JY, Li SQ, et al. (2010). Genetic analysis and gene fine mapping of a rolling leaf mutant (rl11(t)) in rice (Oryza sativa L.). Chin. Sci. Bull. 55: 1763-1769. http://dx.doi.org/10.1007/s11434-010-3137-0
Z. S. Peng, Li, X., Yang, Z. J., and Liao, M. L., A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai, vol. 10, pp. 2349-2357, 2011.
Allan RE (1989). Agromonic comparison between Rht1 and Rht2 semi-dwarf gene in winter wheat. Crop Sci. 29: 1103- 1108. http://dx.doi.org/10.2135/cropsci1989.0011183X002900050001x Bassam BJ, Caetano-Anolles G and Gresshoff PM (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I Borlaug NE (1968). Wheat Breeding and its Impact on World Food Supply. In: Proceedings of the 3rd International Wheat Genetics Symposium (Finlay KW and Shephard KW, eds.). Australian Academy of Sciences, Canberra, 1-36. Borner A and Worland AJ (2002). Does the Chinese dwarf wheat variety ‘XN0004’ carry Rht21? Cereal Res. Inst. 30: 25-29. Botwright TL, Rebetzke GJ, Condon AG and Richards RA (2001). The effect of rht genotype and temperature on coleoptile growth and dry matter partitioning in young wheat seedlings. Aust. J. Plant Physiol. 28: 417-423. Botwright TL, Rebetzke GJ, Condon AG and Richards RA (2005). Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann. Bot. 95: 631-639. http://dx.doi.org/10.1093/aob/mci069 PMid:15655105 Byerlee D and Moya P (1993). Impacts of International Wheat Breeding Research in Developing World. CIMMYT, Mexico. Calderini DF, Dreccer MF and Slafer GA (1995). Genetic improvement in wheat yield and associated traits. A re-examination of previous results and the latest trends. Plant Breed. 114: 108-112. http://dx.doi.org/10.1111/j.1439-0523.1995.tb00772.x Clark MS (1997). Plant Molecular Biology: A Laboratory Manual. Springer, Berlin. D’Ambrogio de Argueso (1986). Manual de Técnicas en Histología Vegetal (Handbook of Plant Histological Techniques). Editorial Hemisferio Sur SA, Buenos Aires. Ellis MH, Rebetzke GJ, Azanza F, Richards RA, et al. (2005). Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor. Appl. Genet. 111: 423-430. http://dx.doi.org/10.1007/s00122-005-2008-6 PMid:15968526 Evans LT (1993). Crop Evolution, Adaptation, and Yield. Cambridge University Press, Cambridge. Gale MD and Youssefian S (1985). Dwarfing Genes in Wheat. In: Plant Breeding Progress Reviews. Butterworths and Co., London, 1-35. Gupta PK, Langridge P and Mir RR (2010). Marker-assisted wheat breeding: present status and future possibilities. Mol. Breed. 26: 145-161. http://dx.doi.org/10.1007/s11032-009-9359-7 Hedden P (2003). The genes of the Green Revolution. Trends Genet. 19: 5-9. http://dx.doi.org/10.1016/S0168-9525(02)00009-4 Hoogendoorn J, Rickson JM and Gale MD (1990). Differences in leaf and stem anatomy related to plant height of tall and dwarf wheat (Triticum aestivum L.). J. Plant Physiol. 136: 72-77. http://dx.doi.org/10.1016/S0176-1617(11)81618-4 Keyes GJ, Paolillo DJ and Sorrells ME (1989). The effects of dwarfing genes Rht1 and Rht2 on cellular dimensions and rate of leaf elongation in wheat. Ann. Bot. 64: 683-690. Konzak CF (1987). Mutations and Mutation Breeding. In: Wheat and Wheat Improvement. 2nd edn. (Heyne EG, ed.). American Society of Agronomy, Madison, 428-443. Konzak CF (1988). Genetic Analysis, Genetic Improvement and Evaluation of Induced Semi-Dwarf Mutants in Wheat. Semidwarf Cereal Mutants and Their Use in Cross-Breeding III Research Coordination Meeting, December, 16-20, 1985. International Atomic Energy Agency, Vienna. Korzun V, Röder M, Worland AJ and Börner A (1997). Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers. Plant Breed. 116: 227-232. http://dx.doi.org/10.1111/j.1439-0523.1997.tb00987.x Korzun V, Röder MS, Ganal MW, Worland AJ, et al. (1998). Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L). Theor. Appl. Genet. 96: 1104-1109. http://dx.doi.org/10.1007/s001220050845 Kosambi DD (1944). The estimation of map distances from recombination values. Ann. Eugen. 12: 172-175. http://dx.doi.org/10.1111/j.1469-1809.1943.tb02321.x Law CN, Snape JW and Worland AJ (1978). The genetical relationship between height and yield in wheat. Heredity 40: 133-151. http://dx.doi.org/10.1038/hdy.1978.13 Lincoln SE, Daly MJ and Lander ES (1993). Constructing linkage maps with MAPMAKER / Exp version 3.0: A Tutorial Reference Manual. 3rd edn. Whitehead Institute for Medical Res, Cambridge. McIntosh RA, Yamazaki Y, Devos KM and Dubcovsky J (2003). Catalogue of Gene Symbols for Wheat. In: Proceedings of 10th International Wheat Genetic Symposium, Paestum, 4: 1-6. Michelmore RW, Paran I and Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88: 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828 Miralles DJ, Calderini DF, Pomar KP and D’Ambrogio A (1998). Dwarfing genes and cell dimensions in different organs of wheat. J. Exp. Bot. 49: 1119-1127. http://dx.doi.org/10.1093/jexbot/49.324.1119 Mitchell DO, Onco MD and Duncan RD (1997). The World Food Outlook. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511582363 Peng ZS (1998). C-band analysis on the dwarf landrace of tetraploid wheat. Seed 1: 9-12. Peng ZS, Liu DC, Yen C and Yang JL (1998). Crossability of tetraploid wheat landraces native to Sichuan, Shaanxi, Gansu and Xinjiang provinces, China with rye. Genet. Res. Crop Evol. 45: 57-62. http://dx.doi.org/10.1023/A:1008669429068 Peng ZS, Su ZX and Cheng KC (1999). Characterization of dwarf trait in the tetraptoid wheat landrace, Aiganfanmai. Wheat Inf. Serv. 89: 7-12. Rajaram S (2002). Prospects and Promise of Wheat Breeding in the 21st Century. In: Advance of Wheat Breeding in China (He ZH and Zhang AM, eds.). China Science and Technology Press, Beijing, 38-53. Rajaram S, Singh RP, Van M and Ginkel M (1997). Breeding Wheat for Wide Adaptation, Rust Resistance and Drought Tolerance. In: Crop Improvement for the 21st Century (Kang MS, ed.). Research Signpost, Kerala, 139-163. Reitz LP and Salmon SC (1968). Origin, history and use of Norin 10 wheat. Crop Sci. 8: 686-689. http://dx.doi.org/10.2135/cropsci1968.0011183X000800060014x Röder MS, Korzun V, Wendehake K, Plaschke J, et al. (1998). A microsatellite map of wheat. Genetics 149: 2007-2023. PMid:9691054    PMCid:1460256 Ruttan VW (1993). Research to Meet Crop Production Needs Into the 21st Century. In: International Crop Science Congress I (Buxton DR, ed.). Chinese Students and Scholars Association, Madision, 3-10. Singh RP, Huerta-Espino J, Rajaram S and Crossa J (2001). Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats. Euphytica 119: 241-244. http://dx.doi.org/10.1023/A:1017541805454 Somers DJ, Isaac P and Edwards K (2004). A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109: 1105-1114. http://dx.doi.org/10.1007/s00122-004-1740-7 PMid:15490101 Watanabe N (2004). Triticum polonicum IC12196: a possible alternative source of GA~3-insensitive semi-dwarfism. Cereal Res. Commun. 32: 429-434. Wenzel CL, Chandler PM, Cunningham RB and Passioura JB (1997). Characterization of the leaf epidermis of barley (Hordeum vulgare L. ‘Himalaya’). Ann. Bot. 79: 41-46. http://dx.doi.org/10.1006/anbo.1996.0300 Yang TZ, Zhang XK, Liu HW and Wang ZH (1993). Chromosomal arm location of a dominant dwarfing gene Rht21 in common wheat variety-XN0004. Acta Univ. Agr. Boreali-Occidentalis Sin. 21: 13-17.