Publications

Found 23 results
Filters: Author is Z. Wang  [Clear All Filters]
2015
Z. Wang, Li, M., Li, L., Sun, H., and Lin, X. Y., Association of single nucleotide polymorphisms in the CYP1B1 gene with the risk of primary open-angle glaucoma: a meta-analysis, vol. 14, pp. 17262-17272, 2015.
H. Y. Zou, Gu, X., Yu, W. Z., Wang, Z., and Jiao, M., Detection of serum antinuclear antibodies in lymphoma patients, vol. 14, pp. 16546-16552, 2015.
D. Yan, Dou, Q. L., Wang, Z., and Wei, Y. Y., Establishment of a hepatocyte steatosis model using Chang liver cells, vol. 14, pp. 15224-15232, 2015.
H. - Y. Zou, Yu, W. - Z., Wang, Z., He, J., and Jiao, M., Human leukocyte antigen-B27 alleles in Xinjiang Uygur patients with ankylosing spondylitis, vol. 14, pp. 5652-5657, 2015.
G. G. Yang, Xu, X. Y., Ding, Y., Cui, Q. Q., Wang, Z., Zhang, Q. Y., Shi, S. H., Lv, Z. Y., Wang, X. Y., Zhang, J. H., Zhang, R. G., and Xu, C. S., Linker length affects expression and bioactivity of the onconase fusion protein in Pichia pastoris, vol. 14, pp. 19360-19370, 2015.
Y. Zhou, Liu, Y., Yang, S. X., and Wang, Z., N-ethylmaleimide-sensitive factor siRNA improves cardiac function following myocardial infarction in rats, vol. 14, pp. 9478-9485, 2015.
C. - G. Sun, Zhuang, J., Teng, W. - J., Wang, Z., and Du, S. - S., PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells, vol. 14, pp. 5742-5749, 2015.
F. X. Yang, Zhu, G. F., Wang, Z., Liu, H. L., and Huang, D., A putative miR172-targeted CeAPETALA2-like gene is involved in floral patterning regulation of the orchid Cymbidium ensifolium, vol. 14, pp. 12049-12061, 2015.
X. L. Zhu, Wang, L., Wang, Z., Chen, S. Z., Zhang, W. Q., and Ma, M. M., Relationship between EPHX2 gene polymorphisms and essential hypertension in Uygur, Kazakh, and Han, vol. 14, pp. 3474-3480, 2015.
C. D. Wang, Wang, D. K., Cao, P. C., Wang, Z. W., Wang, Z., and Wang, Y. T., Study of the relationship between the expression of nerve growth factor and aneurysm formation and prognosis, vol. 14, pp. 4269-4275, 2015.
2012
Y. Wang, Tang, Y., Zhang, M., Cai, F., Qin, J., Wang, Q., Liu, C., Wang, G., Xu, L., Yang, L., Li, J., Wang, Z., and Li, X., Molecular cloning and functional characterization of a glutathione S-transferase involved in both anthocyanin and proanthocyanidin accumulation in Camelina sativa (Brassicaceae), vol. 11, pp. 4711-4719, 2012.
Baxter IR, Young JC, Armstrong G, Foster N, et al. (2005). A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 102: 2649-2654. http://dx.doi.org/10.1073/pnas.0406377102 PMid:15695592 PMCid:548969   Clough SJ and Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x PMid:10069079   Davis PB, Menalled FD, Peterson RKD and Maxwell BD (2011). Refinement of weed risk assessments for biofuels using Camelina sativa as a model species. J. Appl. Ecol. 48: 989-997. http://dx.doi.org/10.1111/j.1365-2664.2011.01991.x   Debeaujon I, Peeters AJ, Leon-Kloosterziel KM and Koornneef M (2001). The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853-871. PMid:11283341 PMCid:135529   Fröhlich A and Rice B (2005). Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crops Prod. 21: 25-31. http://dx.doi.org/10.1016/j.indcrop.2003.12.004   Gao MJ, Lydiate DJ, Li X, Lui H, et al. (2009). Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21: 54-71. http://dx.doi.org/10.1105/tpc.108.061309 PMid:19155348 PMCid:2648069   Ghamkhar K, Croser J, Aryamanesh N, Campbell M, et al. (2010). Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53: 558-567. http://dx.doi.org/10.1139/G10-034 PMid:20616877   Imbrea F, Jurcoane S, Hălmăjan HV, Duda M, et al. (2011). Camelina sativa: a new source of vegetal oils. Rom. Biotech. Lett. 16: 6263-6270.   Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, et al. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57: 405-430. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105252 PMid:16669768   Li X, Gao P, Cui D, Wu L, et al. (2011). The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3' amino acid substitution in glutathione S-transferase. Plant Cell Environ. 34: 374-388. http://dx.doi.org/10.1111/j.1365-3040.2010.02249.x PMid:21054438   Marles MA, Ray H and Gruber MY (2003). New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64: 367-383. http://dx.doi.org/10.1016/S0031-9422(03)00377-7   Onyilagha J, Bala A, Hallett R, Gruber M, et al. (2003). Leaf flavonoids of the cruciferous species, Camelina sativa, Crambe spp., Thlaspi arvense and several other genera of the family Brassicaceae. Biochem. Syst. Ecol. 31: 1309-1322. http://dx.doi.org/10.1016/S0305-1978(03)00074-7   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Southern EM (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517. http://dx.doi.org/10.1016/S0022-2836(75)80083-0   Tian L, Pang Y and Dixon RA (2008). Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochem. Rev. 7: 445-465. http://dx.doi.org/10.1007/s11101-007-9076-y   Xie DY, Sharma SB, Paiva NL, Ferreira D, et al. (2003). Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299: 396-399. http://dx.doi.org/10.1126/science.1078540 PMid:12532018
2011
J. Todd, Wu, Y. Q., Wang, Z., and Samuels, T., Genetic diversity in tetraploid switchgrass revealed by AFLP marker polymorphisms, vol. 10, pp. 2976-2986, 2011.
Brown AHD and Weir BS (1983). Measuring Genetic Variability in Plant Populations. In: Isozymes in Plant Genetics and Breeding (Tanskley SD and Orton TJ, eds.). Part A. Elsevier, Amsterdam, 219-229. Brummer EC (1999). Capturing heterosis in forage crop cultivar development. Crop Sci. 39: 943-954. http://dx.doi.org/10.2135/cropsci1999.0011183X003900040001x Casler MD, Stendal CA, Kapich L and Vogel KP (2007). Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci. 47: 2261-2273. http://dx.doi.org/10.2135/cropsci2006.12.0797 Cortese LM, Honig J, Miller C and Bonos SA (2010). Genetic diversity of twelve switchgrass populations using molecular and morphological markers. Bioenerg. Res. 3: 262-271. http://dx.doi.org/10.1007/s12155-010-9078-2 Gunter LE, Tuskan GA and Wullschleger SD (1996). Diversity among populations of switchgrass based on RAPD markers. Crop Sci. 36: 1017-1022. http://dx.doi.org/10.2135/cropsci1996.0011183X003600040034x Hartl DL and Clark AG (1997). Principles of Population Genetics. Sinauer, Sunderland. Hitchcock AS (1935). Manual of the Grasses of the United States. USDA Miscellaneous, U.S. Government Printing Office, Washington. Hopkins AA, Taliaferro CM, Murphy CD and Christian D (1996). Chromosome number and nuclear DNA content of several switchgrass populations. Crop Sci. 36: 1192-1195. http://dx.doi.org/10.2135/cropsci1996.0011183X003600050021x Kumar S, Nei M, Dudley J and Tamura K (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9: 299-306. http://dx.doi.org/10.1093/bib/bbn017 PMid:18417537    PMCid:2562624 Lynch M and Milligan BG (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91-99. http://dx.doi.org/10.1111/j.1365-294X.1994.tb00109.x PMid:8019690 Martinez-Reyna JM and Vogel KP (2008). Heterosis in switchgrass spaced plants. Crop Sci. 48: 1312-1320. http://dx.doi.org/10.2135/cropsci2007.12.0695 Martinez-Reyna JM, Vogel KP, Caha C and Lee DJ (2001). Meiotic stability, chloroplast DNA polymorphisms, and morphological traits of upland x lowland switchgrass reciprocal hybrids. Crop Sci. 41: 1579-1583. http://dx.doi.org/10.2135/cropsci2001.4151579x McLaughlin SB and Kszos LA (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenerg. 28: 515-535. http://dx.doi.org/10.1016/j.biombioe.2004.05.006 McLaughlin SB, Bouton J, Bransby D, Conger B, et al. (1999). Progress in Developing Switchgrass as a Bioenergy Feedstock. In: Perspectives on New Crops and New Uses (Janick J, ed.). ASHS Press, Alexandria, 282-298. Meudt HM and Clarke AC (2006). Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci. 12: 1360-1385. Missaoui AM, Paterson AH and Bouton JH (2006). Molecular markers for the classification of switchgrass (Panicum virgatum L.) germplasm and to assess genetic diversity in three synthetic switchgrass populations. Genet. Res. Crop Evol. 53: 1291-1302. http://dx.doi.org/10.1007/s10722-005-3878-9 Modliszewski JL, Thomas DT, Fan C, Crawford DJ, et al. (2006). Ancestral chloroplast polymorphism and historical secondary contact in a broad hybrid zone of Aesculus (Sapindaceae). Am. J. Bot. 93: 377-388. http://dx.doi.org/10.3732/ajb.93.3.377 PMid:21646198 Mohammadi SA and Prasanna BM (2003). Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Sci. 43: 1235-1248. http://dx.doi.org/10.2135/cropsci2003.1235 Narasimhamoorthy B, Saha M, Swaller T and Bouton J (2008). Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenerg. Res. 1: 136-146. http://dx.doi.org/10.1007/s12155-008-9011-0 Palmer PG (1975). A biosystematic study of the Panicum amarum-P. amarulum complex (Gramineae). Brittonia 27: 142-150. http://dx.doi.org/10.2307/2805475 Peakall R and Smouse PE (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x Pirie MD, Vargas MPB, Botermans M, Bakker FT, et al. (2007). Ancient paralogy in the cpDNA trnL-F region in Annonaceae: implications for plant molecular systematics. Am. J. Bot. 94: 1003-1016. http://dx.doi.org/10.3732/ajb.94.6.1003 PMid:21636470 Rohlf FJ (1993). NTSYS-pc. Numerical Taxonomical and Multivariate Analysis System. Exeter Software, Setauket, New York. Selbo SM and Snow AA (2005). Flowering phenology and genetic similarity among local and recently introduced populations of Andropogon gerardii in Ohio. Restor. Ecol. 13: 441-447. http://dx.doi.org/10.1111/j.1526-100X.2005.00055.x Singh A, Negi MS, Rajagopal J, Bhatia S, et al. (1999). Assessment of genetic diversity in Azadirachta indica using AFLP markers. Theor. Appl. Genet. 99: 272-279. http://dx.doi.org/10.1007/s001220051232 Taberlet P, Gielly L, Pautou G and Bouvet J (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105-1109. http://dx.doi.org/10.1007/BF00037152 PMid:1932684 Vogel KP (2004). Switchgrass. In: Warm-season (C4) grasses (Moser LE, Sollenberger L and Burson B, eds.). Agronomy Monograph, Madison, 561-588. Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463    PMCid:307397 Waller SS and Lewis JK (1979). Occurrence of C3 and C4 photosynthetic pathways of North American grasses. J. Range Manage. 32: 12-28. http://dx.doi.org/10.2307/3897378 Wang Z, Kenworthy KE and Wu Y (2010). Genetic diversity of common carpetgrass revealed by amplified fragment length polymorphism markers. Crop Sci. 50: 1366-1374. http://dx.doi.org/10.2135/cropsci2009.08.0472 Wolfe AD and Elisens WJ (1995). Evidence of chloroplast capture and pollen-mediated gene flow in Penstemon sect. Peltanthera (Scrophulariaceae). Syst. Bot. 20: 395-412. http://dx.doi.org/10.2307/2419800 Wu YQ, Taliaferro CM, Bai GH and Anderson MP (2005). Genetic diversity of Cynodon transvaalensis Burtt-Davy and its relatedness to hexaploid C. dactylon (L.) Pers. as indicated by AFLP markers. Crop Sci. 45: 848-853. http://dx.doi.org/10.2135/cropsci2003.913 Zalapa JE, Price DL, Kaeppler SM, Tobias CM, et al. (2010). Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars. Theor. Appl. Genet. 122: 805-817. http://dx.doi.org/10.1007/s00122-010-1488-1 PMid:21104398
Z. Wang, Yao, H., Cui, B., Ning, G., and Tang, G. Y., Genetic linkage analysis of oral lichen planus in a Chinese family, vol. 10, pp. 1427-1433, 2011.
Axéll T and Rundquist L (1987). Oral lichen planus - a demographic study. Community Dent. Oral Epidemiol. 15: 52-56. doi:10.1111/j.1600-0528.1987.tb00480.x PMid:3467894 Bai J, Jiang L, Lin M, Zeng X, et al. (2009). Association of polymorphisms in the tumor necrosis factor-alpha and interleukin-10 genes with oral lichen planus: a study in a Chinese cohort with Han ethnicity. J. Interferon Cytokine Res. 29: 381-388. doi:10.1089/jir.2008.0089 Bermejo-Fenoll A and Lopez-Jornet P (2006). Familial oral lichen planus: presentation of six families. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 102: e12-e15. doi:10.1016/j.tripleo.2006.03.016 PMid:16876038 Camisa C and Popovsky JL (2000). Effective treatment of oral erosive lichen planus with thalidomide. Arch. Dermatol. 136: 1442-1443. doi:10.1001/archderm.136.12.1442 PMid:11115153 Chaiyarit P, Kafrawy AH, Miles DA, Zunt SL, et al. (1999). Oral lichen planus: an immunohistochemical study of heat shock proteins (HSPs) and cytokeratins (CKs) and a unifying hypothesis of pathogenesis. J. Oral Pathol. Med. 28: 210-215. doi:10.1111/j.1600-0714.1999.tb02026.x Dan H, Liu W, Zhou Y, Wang J, et al. (2010). Association of interleukin-8 gene polymorphisms and haplotypes with oral lichen planus in a Chinese population. Inflammation 33: 76-81. doi:10.1007/s10753-009-9160-0 PMid:19842025 Fujita H, Kobayashi T, Tai H, Nagata M, et al. (2009). Assessment of 14 functional gene polymorphisms in Japanese patients with oral lichen planus: a pilot case-control study. Int. J. Oral Maxillofac. Surg. 38: 978-983. doi:10.1016/j.ijom.2009.05.001 PMid:19497711 Jungell P (1991). Oral lichen planus. A review. Int. J. Oral Maxillofac. Surg. 20: 129-135. doi:10.1016/S0901-5027(05)80001-3 Liu W, Dan H, Wang Z, Jiang L, et al. (2009). IFN-gamma and IL-4 in saliva of patients with oral lichen planus: a study in an ethnic Chinese population. Inflammation 32: 176-181. doi:10.1007/s10753-009-9118-2 PMid:19370405 Lozada-Nur F and Miranda C (1997). Oral lichen planus: epidemiology, clinical characteristics, and associated diseases. Semin. Cutan. Med. Surg. 16: 273-277. doi:10.1016/S1085-5629(97)80016-8 Petropoulou H, Kontochristopoulos G, Kalogirou O, Panteri I, et al. (2006). Effective treatment of erosive lichen planus with thalidomide and topical tacrolimus. Int. J. Dermatol. 45: 1244-1245. doi:10.1111/j.1365-4632.2006.02949.x PMid:17040454 Scardina GA, Ruggieri A, Messina P and Maresi E (2009). Angiogenesis of oral lichen planus: a possible pathogenetic mechanism. Med. Oral Patol. Oral Cir. Bucal. 14: e558-e562. doi:10.4317/medoral.14.e558 Silverman S Jr and Bahl S (1997). Oral lichen planus update: clinical characteristics, treatment responses, and malignant transformation. Am. J. Dent. 10: 259-263. PMid:9590911 Sklavounou-Andrikopoulou A, Chrysomali E, Iakovou M, Garinis GA, et al. (2004). Elevated serum levels of the apoptosis related molecules TNF-alpha, Fas/Apo-1 and Bcl-2 in oral lichen planus. J. Oral Pathol. Med. 33: 386-390. doi:10.1111/j.1600-0714.2004.00221.x PMid:15250829 Sugerman PB, Satterwhite K and Bigby M (2000). Autocytotoxic T-cell clones in lichen planus. Br. J. Dermatol. 142: 449-456. doi:10.1046/j.1365-2133.2000.03355.x PMid:10735949 Sugerman PB, Savage NW, Walsh LJ, Zhao ZZ, et al. (2002). The pathogenesis of oral lichen planus. Crit. Rev. Oral Biol. Med. 13: 350-365. doi:10.1177/154411130201300405 van der Meij EH, Mast H and van der Waal I (2007). The possible premalignant character of oral lichen planus and oral lichenoid lesions: a prospective five-year follow-up study of 192 patients. Oral Oncol. 43: 742-748. doi:10.1016/j.oraloncology.2006.09.006 PMid:17112770 Vincent SD, Fotos PG, Baker KA and Williams TP (1990). Oral lichen planus: the clinical, historical, and therapeutic features of 100 cases. Oral Surg. Oral Med. Oral Pathol. 70: 165-171. doi:10.1016/0030-4220(90)90112-6 Wilson E (1869). On lichen planus. J. Cutan. Med. Dis. Skin. 3: 117-132.
Z. Yang, Ke, Z. F., Zeng, C., Wang, Z., Shi, H. J., and Wang, L. T., Mutation characteristics in type I collagen genes in Chinese patients with osteogenesis imperfecta, vol. 10, pp. 177-185, 2011.
Barnes AM, Chang W, Morello R, Cabral WA, et al. (2006). Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. N. Engl. J. Med. 355: 2757-2764. http://dx.doi.org/10.1056/NEJMoa063804 PMid:17192541   Benusiene E and Kucinskas V (2003). COL1A1 mutation analysis in Lithuanian patients with osteogenesis imperfecta. J. Appl. Genet. 44: 95-102. PMid:12590186   Bhattacharyya N and Banerjee D (1999). Transcriptional regulatory sequences within the first intron of the chicken apolipoprotein AI (apoAI) gene. Gene 234: 371-380. http://dx.doi.org/10.1016/S0378-1119(99)00183-3   Chessler SD, Wallis GA and Byers PH (1993). Mutations in the carboxyl-terminal propeptide of the pro alpha 1(I) chain of type I collagen result in defective chain association and produce lethal osteogenesis imperfecta. J. Biol. Chem. 268: 18218-18225. PMid:8349697   Clement JQ and Wilkinson MF (2000). Rapid induction of nuclear transcripts and inhibition of intron decay in response to the polymerase II inhibitor DRB. J. Mol. Biol. 299: 1179-1191. http://dx.doi.org/10.1006/jmbi.2000.3745 PMid:10873444   Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, et al. (2002). Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277: 4223-4231. http://dx.doi.org/10.1074/jbc.M110709200 PMid:11704682   Engel J and Prockop DJ (1991). The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annu. Rev. Biophys. Biophys. Chem. 20: 137-152. http://dx.doi.org/10.1146/annurev.bb.20.060191.001033 PMid:1867713   Forlino A and Marini JC (2000). Osteogenesis imperfecta: prospects for molecular therapeutics. Mol. Genet. Metab. 71: 225-232. http://dx.doi.org/10.1006/mgme.2000.3039 PMid:11001814   Glorieux FH, Rauch F, Plotkin H, Ward L, et al. (2000). Type V osteogenesis imperfecta: a new form of brittle bone disease. J. Bone Miner. Res. 15: 1650-1658. http://dx.doi.org/10.1359/jbmr.2000.15.9.1650 PMid:10976985   Hartikka H, Kuurila K, Korkko J, Kaitila I, et al. (2004). Lack of correlation between the type of COL1A1 or COL1A2 mutation and hearing loss in osteogenesis imperfecta patients. Hum. Mutat. 24: 147-154. http://dx.doi.org/10.1002/humu.20071 PMid:15241796   Kuivaniemi H, Tromp G and Prockop DJ (1997). Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum. Mutat. 9: 300-315. http://dx.doi.org/10.1002/(SICI)1098-1004(1997)9:4<300::AID-HUMU2>3.0.CO;2-9   Mattick JS (1994). Introns: evolution and function. Curr. Opin. Genet. Dev. 4: 823-831. http://dx.doi.org/10.1016/0959-437X(94)90066-3   Morello R, Bertin TK, Chen Y, Hicks J, et al. (2006). CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127: 291-304. http://dx.doi.org/10.1016/j.cell.2006.08.039 PMid:17055431   Pace JM, Chitayat D, Atkinson M, Wilcox WR, et al. (2002). A single amino acid substitution (D1441Y) in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I collagen results in a lethal variant of osteogenesis imperfecta with features of dense bone diseases. J. Med. Genet. 39: 23-29. http://dx.doi.org/10.1136/jmg.39.1.23 PMid:11826020 PMCid:1734955   Pepin M, Atkinson M, Starman BJ and Byers PH (1997). Strategies and outcomes of prenatal diagnosis for osteogenesis imperfecta: a review of biochemical and molecular studies completed in 129 pregnancies. Prenat. Diagn. 17: 559- 570. http://dx.doi.org/10.1002/(SICI)1097-0223(199706)17:6<559::AID-PD111>3.0.CO;2-G   Pollitt R, McMahon R, Nunn J, Bamford R, et al. (2006). Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV. Hum. Mutat. 27: 716. http://dx.doi.org/10.1002/humu.9430 PMid:16786509   Sykes B (1993). Linkage analysis in dominantly inherited osteogenesis imperfecta. Am. J. Med. Genet. 45: 212-216. http://dx.doi.org/10.1002/ajmg.1320450212 PMid:8456805   Venturi G, Tedeschi E, Mottes M, Valli M, et al. (2006). Osteogenesis imperfecta: clinical, biochemical and molecular findings. Clin. Genet. 70: 131-139. http://dx.doi.org/10.1111/j.1399-0004.2006.00646.x PMid:16879195   Vuorio E and de Crombrugghe B (1990). The family of collagen genes. Annu. Rev. Biochem. 59: 837-872. http://dx.doi.org/10.1146/annurev.bi.59.070190.004201 PMid:2197991