Publications

Found 3 results
Filters: Author is A.S. Sameer  [Clear All Filters]
2011
Q. Qadri, Sameer, A. S., Shah, Z. A., Hamid, A., Alam, S., Manzoor, S., and Siddiqi, M. A., Genetic polymorphism of the glutathione-S-transferase P1 gene (GSTP1) and susceptibility to prostate cancer in the Kashmiri population, vol. 10, pp. 3038-3045, 2011.
Abate-Shen C and Shen MM (2000). Molecular genetics of prostate cancer. Genes Dev. 14: 2410-2434. http://dx.doi.org/10.1101/gad.819500 Adler V, Yin Z, Fuchs SY, Benezra M, et al. (1999). Regulation of JNK signaling by GSTp. EMBO J. 18: 1321-1334. http://dx.doi.org/10.1093/emboj/18.5.1321 PMid:10064598    PMCid:1171222 Antognelli C, Mearini L, Talesa VN, Giannantoni A, et al. (2005). Association of CYP17, GSTP1, and PON1 polymorphisms with the risk of prostate cancer. Prostate 63: 240-251. http://dx.doi.org/10.1002/pros.20184 PMid:15538743 Autrup JL, Thomassen LH, Olsen JH, Wolf H, et al. (1999). Glutathione S-transferases as risk factors in prostate cancer. Eur. J. Cancer Prev. 8: 525-532. http://dx.doi.org/10.1097/00008469-199912000-00008 PMid:10643942 Bostwick DG, Burke HB, Djakiew D, Euling S, et al. (2004). Human prostate cancer risk factors. Cancer 101: 2371-2490. http://dx.doi.org/10.1002/cncr.20408 PMid:15495199 Choi JY, Neuhouser ML, Barnett M, Hudson M, et al. (2007). Polymorphisms in oxidative stress-related genes are not associated with prostate cancer risk in heavy smokers. Cancer Epidemiol. Biomarkers Prev. 16: 1115-1120. http://dx.doi.org/10.1158/1055-9965.EPI-07-0040 Debes JD, Yokomizo A, McDonnell SK, Hebbring SJ, et al. (2004). Gluthatione-S-transferase P1 polymorphism I105V in familial and sporadic prostate cancer. Cancer Genet. Cytogenet. 155: 82-86. http://dx.doi.org/10.1016/j.cancergencyto.2004.03.015 PMid:15527908 Fleshner NE and Klotz LH (1998). Diet, androgens, oxidative stress and prostate cancer susceptibility. Cancer Metastasis Rev. 17: 325-330. http://dx.doi.org/10.1023/A:1006118628183 PMid:10453275 Garcia-Saez I, Parraga A, Phillips MF, Mantle TJ, et al. (1994). Molecular structure at 1.8 Åof mouse liver class pi glutathione S-transferase complexed with S-(p-nitrobenzyl)glutathione and other inhibitors. J. Mol. Biol. 237: 298- 314. http://dx.doi.org/10.1006/jmbi.1994.1232 PMid:8145243 Harries LW, Stubbins MJ, Forman D, Howard GC, et al. (1997). Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18: 641-644. http://dx.doi.org/10.1093/carcin/18.4.641 PMid:9111193 Hayes JD and Strange RC (2000). Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61: 154-166. http://dx.doi.org/10.1159/000028396 PMid:10971201 Henderson CJ, McLaren AW, Moffat GJ, Bacon EJ, et al. (1998). π-class glutathione S-transferase: regulation and function. Chem. Biol. Interact. 111-112: 69-82. http://dx.doi.org/10.1016/S0009-2797(97)00176-2 Hsing AW and Chokkalingam AP (2006). Prostate cancer epidemiology. Front. Biosci. 11: 1388-1413. http://dx.doi.org/10.2741/1891 PMid:16368524 Jeronimo C, Varzim G, Henrique R, Oliveira J, et al. (2002). I105V polymorphism and promoter methylation of the GSTP1 gene in prostate adenocarcinoma. Cancer Epidemiol. Biomarkers Prev. 11: 445-450. PMid:12010858 Kelada SN, Kardia SL, Walker AH, Wein AJ, et al. (2000). The glutathione S-transferase-mu and -theta genotypes in the etiology of prostate cancer: genotype-environment interactions with smoking. Cancer Epidemiol. Biomarkers Prev. 9: 1329-1334. PMid:11142418 Konwar R, Manchanda PK, Chaudhary P, Nayak VL, et al. (2010). Glutathione S-transferase (GST) gene variants and risk of benign prostatic hyperplasia: a report in a North Indian population. Asian Pac. J. Cancer Prev. 11: 1067-1072. PMid:21133626 Kote-Jarai Z, Easton D, Edwards SM, Jefferies S, et al. (2001). Relationship between glutathione S-transferase M1, P1 and T1 polymorphisms and early onset prostate cancer. Pharmacogenetics 11: 325-330. http://dx.doi.org/10.1097/00008571-200106000-00007 PMid:11434510 McCarty KM, Santella RM, Steck SE, Cleveland RJ, et al. (2009). PAH-DNA adducts, cigarette smoking, GST polymorphisms, and breast cancer risk. Environ. Health Perspect. 117: 552-558. PMid:19440493    PMCid:2679598 Mir O, Alexandre J, Tran A, Durand JP, et al. (2009). Relationship between GSTP1 Ile(105)Val polymorphism and docetaxel-induced peripheral neuropathy: clinical evidence of a role of oxidative stress in taxane toxicity. Ann. Oncol. 20: 736-740. http://dx.doi.org/10.1093/annonc/mdn698 PMid:19223573 Miyake H, Hara I, Kamidono S and Eto H (2004). Oxidative DNA damage in patients with prostate cancer and its response to treatment. J. Urol. 171: 1533-1536. http://dx.doi.org/10.1097/01.ju.0000116617.32728.ca PMid:15017214 Mo Z, Gao Y, Cao Y, Gao F, et al. (2009). An updating meta-analysis of the GSTM1, GSTT1, and GSTP1 polymorphisms and prostate cancer: a HuGE review. Prostate 69: 662-688. http://dx.doi.org/10.1002/pros.20907 PMid:19143011 Nakazato H, Suzuki K, Matsui H, Koike H, et al. (2003). Association of genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) with familial prostate cancer risk in a Japanese population. Anticancer Res. 23: 2897-2902. PMid:12926131 Ntais C, Polycarpou A and Ioannidis JP (2005). Association of GSTM1, GSTT1, and GSTP1 gene polymorphisms with the risk of prostate cancer: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 14: 176-181. PMid:15668493 Rebbeck TR (1997). Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol. Biomarkers Prev. 6: 733-743. PMid:9298582 Ryberg D, Skaug V, Hewer A, Phillips DH, et al. (1997). Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 18: 1285-1289. http://dx.doi.org/10.1093/carcin/18.7.1285 PMid:9230269 Shepard TF, Platz EA, Kantoff PW, Nelson WG, et al. (2000). No association between the I105V polymorphism of the glutathione S-transferase P1 gene (GSTP1) and prostate cancer risk: a prospective study. Cancer Epidemiol. Biomarkers Prev. 9: 1267-1268. PMid:11097238 Sikka SC (2003). Role of oxidative stress response elements and antioxidants in prostate cancer pathobiology and chemoprevention - a mechanistic approach. Curr. Med. Chem. 10: 2679-2692. http://dx.doi.org/10.2174/0929867033456341 PMid:14529458 Sreeja L, Syamala V, Hariharan S, Syamala VS, et al. (2008). Glutathione S-transferase M1, T1 and P1 polymorphisms: susceptibility and outcome in lung cancer patients. J. Exp. Ther. Oncol. 7: 73-85. PMid:18472644 Srivastava DS, Mandhani A, Mittal B and Mittal RD (2005). Genetic polymorphism of glutathione S-transferase genes (GSTM1, GSTT1 and GSTP1) and susceptibility to prostate cancer in Northern India. BJU Int. 95: 170-173. http://dx.doi.org/10.1111/j.1464-410X.2005.05271.x PMid:15638917 Steinhoff C, Franke KH, Golka K, Thier R, et al. (2000). Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma. Arch. Toxicol. 74: 521-526. http://dx.doi.org/10.1007/s002040000161 PMid:11131031 Vijayalakshmi K, Vettriselvi V, Krishnan M, Shroff S, et al. (2005). Polymorphisms at GSTM1 and GSTP1 gene loci and risk of prostate cancer in a South Indian population. Asian Pac. J. Cancer Prev. 6: 309-314. PMid:16235991 Wadelius M, Autrup JL, Stubbins MJ, Andersson SO, et al. (1999). Polymorphisms in NAT2, CYP2D6, CYP2C19 and GSTP1 and their association with prostate cancer. Pharmacogenetics 9: 333-340. http://dx.doi.org/10.1097/00008571-199906000-00008 PMid:10471065 Waris G and Ahsan H (2006). Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinog. 5: 14. http://dx.doi.org/10.1186/1477-3163-5-14 PMid:16689993    PMCid:1479806 Zimniak P, Nanduri B, Pikula S, Bandorowicz-Pikula J, et al. (1994). Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur. J. Biochem. 224: 893-899. http://dx.doi.org/10.1111/j.1432-1033.1994.00893.x PMid:7925413
A. S. Sameer, Shah, Z. A., Nissar, S., Mudassar, S., and Siddiqi, M. A., Risk of colorectal cancer associated with the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism in the Kashmiri population, vol. 10, pp. 1200-1210, 2011.
Bagley PJ and Selhub J (1998). A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc. Natl. Acad. Sci. U. S. A. 95: 13217-13220. doi:10.1073/pnas.95.22.13217 Bailey LB and Gregory JF III (1999). Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J. Nutr. 129: 919-922. PMid:10222379 Center MM, Jemal A and Ward E (2009a). International trends in colorectal cancer incidence rates. Cancer Epidemiol. Biomark. Prev. 18: 1688-1694. doi:10.1158/1055-9965.EPI-09-0090 Center MM, Jemal A, Smith RA and Ward E (2009b). Worldwide variations in colorectal cancer. CA Cancer J. Clin. 59: 366-378. doi:10.3322/caac.20038 PMid:19897840 Chandy S, Sadananda Adiga MN, Ramachandra N, Krishnamoorthy S, et al. (2010). Association of methylenetetrahydrofolate reductase gene polymorphisms & colorectal cancer in India. Indian J. Med. Res. 131: 659-664. PMid:20516537 Chen J, Giovannucci E, Kelsey K, Rimm EB, et al. (1996). A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res. 56: 4862-4864. PMid:8895734 Chen J, Giovannucci E, Hankinson SE, Ma J, et al. (1998). A prospective study of methylenetetrahydrofolate reductase and methionine synthase gene polymorphisms, and risk of colorectal adenoma. Carcinogenesis 19: 2129-2132. doi:10.1093/carcin/19.12.2129 PMid:9886567 Cicek MS, Nock NL, Li L, Conti DV, et al. (2004). Relationship between methylenetetrahydrofolate reductase C677T and A1298C genotypes and haplotypes and prostate cancer risk and aggressiveness. Cancer Epidemiol. Biomark. Prev. 13: 1331-1336. PMid:15298954 Frosst P, Blom HJ, Milos R, Goyette P, et al. (1995). A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10: 111-113. doi:10.1038/ng0595-111 PMid:7647779 Haghighi MM, Radpour R, Mahmoudi T, Mohebbi SR, et al. (2009). Association between MTHFR polymorphism (C677T) with nonfamilial colorectal cancer. Oncol. Res. 18: 57-63. doi:10.3727/096504009789954636 Houlston RS and Tomlinson IP (2001). Polymorphisms and colorectal tumor risk. Gastroenterology 121: 282-301. doi:10.1053/gast.2001.26265 PMid:11487538 Jemal A, Bray F, Center MM, Ferlay J, et al. (2011). Global cancer statistics. CA Cancer J. Clin. 61: 69-90. doi:10.3322/caac.20107 PMid:21296855 Keku T, Millikan R, Worley K, Winkel S, et al. (2002). 5,10-Methylenetetrahydrofolate reductase codon 677 and 1298 polymorphisms and colon cancer in African Americans and whites. Cancer Epidemiol. Biomark. Prev. 11: 1611- 1621. PMid:12496052 Kono S and Chen K (2005). Genetic polymorphisms of methylenetetrahydrofolate reductase and colorectal cancer and adenoma. Cancer Sci. 96: 535-542. doi:10.1111/j.1349-7006.2005.00090.x PMid:16128738 Levine AJ, Siegmund KD, Ervin CM, Diep A, et al. (2000). The methylenetetrahydrofolate reductase 677C→T polymorphism and distal colorectal adenoma risk. Cancer Epidemiol. Biomark. Prev. 9: 657-663. PMid:10919734 Lucock M (2000). Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab. 71: 121-138. doi:10.1006/mgme.2000.3027 PMid:11001804 Ma J, Stampfer MJ, Giovannucci E, Artigas C, et al. (1997). Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 57: 1098-1102. PMid:9067278 Marugame T, Tsuji E, Kiyohara C, Eguchi H, et al. (2003). Relation of plasma folate and methylenetetrahydrofolate reductase C677T polymorphism to colorectal adenomas. Int. J. Epidemiol. 32: 64-66. doi:10.1093/ije/dyg004 PMid:12690011 Mir MM, Dar NA, Gochhait S, Zargar SA, et al. (2005). p53 mutation profile of squamous cell carcinomas of the esophagus in Kashmir (India): a high-incidence area. Int. J. Cancer 116: 62-68. doi:10.1002/ijc.21002 PMid:15761872 Murtaza I, Mushtaq D, Margoob MA, Dutt A, et al. (2006). A study on p53 gene alterations in esophageal squamous cell carcinoma and their correlation to common dietary risk factors among population of the Kashmir Valley. World J. Gastroenterol. 12: 4033-4037. PMid:16810754 Park KS, Mok JW and Kim JC (1999). The 677C > T mutation in 5,10-methylenetetrahydrofolate reductase and colorectal cancer risk. Genet. Test. 3: 233-236. doi:10.1089/gte.1999.3.233 PMid:10464674 Sachse C, Smith G, Wilkie MJ, Barrett JH, et al. (2002). A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer. Carcinogenesis 23: 1839-1849. doi:10.1093/carcin/23.11.1839 PMid:12419832 Saffroy R, Lemoine A and Debuire B (2005). MTHFR (5,10-Methylenetetrahydrofolate reductase) Atlas Genet Cytogenet Oncol Haematol. Available at [http://AtlasGeneticsOncology.org/Genes/MTHFRID41448ch1p36.html]. Accessed 2009. Salam I, Hussain S, Mir MM, Dar NA, et al. (2009). Aberrant promoter methylation and reduced expression of p16 gene in esophageal squamous cell carcinoma from Kashmir Valley: a high-risk area. Mol. Cell Biochem. 332: 51-58. doi:10.1007/s11010-009-0173-7 PMid:19513816 Sameer AS, Chowdri NA, Syeed N, Banday MZ, et al. (2010a). SMAD4 - molecular gladiator of the TGF-beta signaling is trampled upon by mutational insufficiency in colorectal carcinoma of Kashmiri population: an analysis with relation to KRAS proto-oncogene. BMC Cancer 10: 300. doi:10.1186/1471-2407-10-300 PMid:20565773    PMCid:2927996 Sameer AS, Shah ZA, Syeed N, Banday MZ, et al. (2010b). TP53 Pro47Ser and Arg72Pro polymorphisms and colorectal cancer predisposition in an ethnic Kashmiri population. Genet. Mol. Res. 9: 651-660. doi:10.4238/vol9-2gmr751 PMid:20449797 Shannon B, Gnanasampanthan S, Beilby J and Iacopetta B (2002). A polymorphism in the methylenetetrahydrofolate reductase gene predisposes to colorectal cancers with microsatellite instability. Gut 50: 520-524. doi:10.1136/gut.50.4.520 PMid:11889073    PMCid:1773174 Siddiqi M, Kumar R, Fazili Z, Spiegelhalder B, et al. (1992). Increased exposure to dietary amines and nitrate in a population at high risk of oesophageal and gastric cancer in Kashmir (India). Carcinogenesis 13: 1331-1335. doi:10.1093/carcin/13.8.1331 PMid:1499084 Slattery ML, Potter JD, Samowitz W, Schaffer D, et al. (1999). Methylenetetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol. Biomark. Prev. 8: 513-518. PMid:10385141 Ulrich CM, Kampman E, Bigler J, Schwartz SM, et al. (1999). Colorectal adenomas and the C677T MTHFR polymorphism: evidence for gene-environment interaction? Cancer Epidemiol. Biomark. Prev. 8: 659-668. PMid:10744125 Wagner C (1995). Biochemical Role of Folate in Cellular Metabolism. In: Folate in Health and Disease (Bailey LB, ed.) Marcel Dekker, New York, 23-42. Yin G, Kono S, Toyomura K, Hagiwara T, et al. (2004). Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci. 95: 908-913. doi:10.1111/j.1349-7006.2004.tb02201.x PMid:15546509
2010
A. S. Sameer, Shah, Z. A., Syeed, N., Banday, M. Z., Bashir, S. M., Bhat, B. A., and Siddiqi, M. A., TP53 Pro47Ser and Arg72Pro polymorphisms and colorectal cancer predisposition in an ethnic Kashmiri population, vol. 9, pp. 651-660, 2010.
Beckman G, Birgander R, Sjalander A, Saha N, et al. (1994). Is p53 polymorphism maintained by natural selection? Hum. Hered. 44: 266-270. http://dx.doi.org/10.1159/000154228 PMid:7927355   Bojesen SE and Nordestgaard BG (2008). The common germline Arg72Pro polymorphism of p53 and increased longevity in humans. Cell Cycle 7: 158-163. http://dx.doi.org/10.4161/cc.7.2.5249 PMid:18256523   Boyle P and Leon ME (2002). Epidemiology of colorectal cancer. Br. Med. Bull. 64: 1-25. http://dx.doi.org/10.1093/bmb/64.1.1 PMid:12421722   Costa S, Pinto D, Pereira D, Rodrigues H, et al. (2008). Importance of TP53 codon 72 and intron 3 duplication 16bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer 8: 32. http://dx.doi.org/10.1186/1471-2407-8-32 PMid:18230179 PMCid:2254432   Devesa SS and Chow WH (1993). Variation in colorectal cancer incidence in the United States by subsite of origin. Cancer 71: 3819-3826. http://dx.doi.org/10.1002/1097-0142(19930615)71:12<3819::AID-CNCR2820711206>3.0.CO;2-L   Dumont P, Leu JI, Della Pietra AC, George DL, et al. (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 33: 357-365. http://dx.doi.org/10.1038/ng1093 PMid:12567188   Felley-Bosco E, Weston A, Cawley HM, Bennett WP, et al. (1993). Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am. J. Hum. Genet. 53: 752-759. PMid:8352280 PMCid:1682404   Gapstur SM, Potter JD and Folsom AR (1994). Alcohol consumption and colon and rectal cancer in postmenopausal women. Int. J. Epidemiol. 23: 50-57. http://dx.doi.org/10.1093/ije/23.1.50 PMid:8194924   Gemignani F, Moreno V, Landi S, Moullan N, et al. (2004). A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene 23: 1954-1956. http://dx.doi.org/10.1038/sj.onc.1207305 PMid:14647431   Hamajima N, Matsuo K, Suzuki T, Nakamura T, et al. (2002). No associations of p73 G4C14-to-A4T14 at exon 2 and p53 Arg72Pro polymorphisms with the risk of digestive tract cancers in Japanese. Cancer Lett. 181: 81-85. http://dx.doi.org/10.1016/S0304-3835(02)00041-1   Hiyama T, Tanaka S, Kitadai Y, Ito M, et al. (2002). p53 Codon 72 polymorphism in gastric cancer susceptibility in patients with Helicobacter pylori-associated chronic gastritis. Int. J. Cancer 100: 304-308. http://dx.doi.org/10.1002/ijc.10483 PMid:12115545   Iacopetta B (2003). TP53 mutation in colorectal cancer. Hum. Mutat. 21: 271-276. http://dx.doi.org/10.1002/humu.10175 PMid:12619112   Ignaszak-Szczepaniak M, Horst-Sikorska W, Sawicka J, Kaczmarek M, et al. (2006). The TP53 codon 72 polymorphism and predisposition to adrenocortical cancer in Polish patients. Oncol. Rep. 16: 65-71. PMid:16786124   Irarrazabal CE, Rojas C, Aracena R, Marquez C, et al. (2003). Chilean pilot study on the risk of lung cancer associated with codon 72 polymorphism in the gene of protein p53. Toxicol. Lett. 144: 69-76. http://dx.doi.org/10.1016/S0378-4274(02)00336-3   Katkoori VR, Jia X, Shanmugam C, Wan W, et al. (2009). Prognostic significance of p53 codon 72 polymorphism differs with race in colorectal adenocarcinoma. Clin. Cancer Res. 15: 2406-2416. http://dx.doi.org/10.1158/1078-0432.CCR-08-1719 PMid:19339276 PMCid:3635077   Lee JM, Lee YC, Yang SY, Shi WL, et al. (2000). Genetic polymorphisms of p53 and GSTP1, but not NAT2, are associated with susceptibility to squamous-cell carcinoma of the esophagus. Int. J. Cancer 89: 458-464. http://dx.doi.org/10.1002/1097-0215(20000920)89:5<458::AID-IJC10>3.0.CO;2-R   Leu JI, Dumont P, Hafey M, Murphy ME, et al. (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak- Mcl1 complex. Nat. Cell Biol. 6: 443-450. http://dx.doi.org/10.1038/ncb1123 PMid:15077116   Li X, Dumont P, Della PA, Shetler C, et al. (2005). The codon 47 polymorphism in p53 is functionally significant. J. Biol. Chem. 280: 24245-24251. http://dx.doi.org/10.1074/jbc.M414637200 PMid:15851479   Lung FW, Lee TM, Shu BC and Chang FH (2004). p53 codon 72 polymorphism and susceptibility malignancy of colorectal cancer in Taiwan. J. Cancer Res. Clin. Oncol. 130: 728-732. http://dx.doi.org/10.1007/s00432-004-0605-4 PMid:15365822   Marin MC, Jost CA, Brooks LA, Irwin MS, et al. (2000). A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat. Genet. 25: 47-54. http://dx.doi.org/10.1038/75586 PMid:10802655   Mir MM, Dar NA, Gochhait S, Zargar SA, et al. (2005). p53 mutation profile of squamous cell carcinomas of the esophagus in Kashmir (India): a high-incidence area. Int. J. Cancer 116: 62-68. http://dx.doi.org/10.1002/ijc.21002 PMid:15761872   Murphy ME (2006). Polymorphic variants in the p53 pathway. Cell Death Differ. 13: 916-920. http://dx.doi.org/10.1038/sj.cdd.4401907 PMid:16557270   Murtaza I, Mushtaq D, Margoob MA, Dutt A, et al. (2006). A study on p53 gene alterations in esophageal squamous cell carcinoma and their correlation to common dietary risk factors among population of the Kashmir valley. World J. Gastroenterol. 12: 4033-4037. PMid:16810754   Perez LO, Abba MC, Dulout FN and Golijow CD (2006). Evaluation of p53 codon 72 polymorphism in adenocarcinomas of the colon and rectum in La Plata, Argentina. World J. Gastroenterol. 12: 1426-1429. PMid:16552814   Pietsch EC, Humbey O and Murphy ME (2006). Polymorphisms in the p53 pathway. Oncogene 25: 1602-1611. http://dx.doi.org/10.1038/sj.onc.1209367 PMid:16550160   Pinto GR, Yoshioka FK, Silva RL, Clara CA, et al. (2008). Prognostic value of TP53 Pro47Ser and Arg72Pro single nucleotide polymorphisms and the susceptibility to gliomas in individuals from Southeast Brazil. Genet. Mol. Res. 7: 207-216. http://dx.doi.org/10.4238/vol7-1gmr415 PMid:18393224   Sameer AS, Ul Rehman S, Pandith AA, Syeed N, et al. (2009). Molecular gate keepers succumb to gene aberrations in colorectal cancer in Kashmiri population, revealing a high incidence area. Saudi J. Gastroenterol. 15: 244-252. http://dx.doi.org/10.4103/1319-3767.56102 PMid:19794270 PMCid:2981841   Sayhan N, Yazici H, Budak M, Bitisik O, et al. (2001). P53 codon 72 genotypes in colon cancer. Association with human papillomavirus infection. Res. Commun. Mol. Pathol. Pharmacol. 109: 25-34. PMid:11458982   Schneider-Stock R, Boltze C, Peters B, Szibor R, et al. (2004). Selective loss of codon 72 proline p53 and frequent mutational inactivation of the retained arginine allele in colorectal cancer. Neoplasia 6: 529-535. http://dx.doi.org/10.1593/neo.04178 PMid:15548361 PMCid:1531656   Shah A and Jan GM (1990). Pattern of cancer at Srinagar (Kashmir). Indian J. Pathol. Microbiol. 33: 118-123. PMid:2391141   Siddiqi M, Kumar R, Fazili Z, Spiegelhalder B, et al. (1992). Increased exposure to dietary amines and nitrate in a population at high risk of oesophageal and gastric cancer in Kashmir (India). Carcinogenesis 13: 1331-1335. http://dx.doi.org/10.1093/carcin/13.8.1331 PMid:1499084   Sjalander A, Birgander R, Athlin L, Stenling R, et al. (1995). P53 germ line haplotypes associated with increased risk for colorectal cancer. Carcinogenesis 16: 1461-1464. http://dx.doi.org/10.1093/carcin/16.7.1461 PMid:7614678   Sjalander A, Birgander R, Hallmans G, Cajander S, et al. (1996). p53 polymorphisms and haplotypes in breast cancer. Carcinogenesis 17: 1313-1316. http://dx.doi.org/10.1093/carcin/17.6.1313 PMid:8681448   Soussi T and May P (1996). Structural aspects of the p53 protein in relation to gene evolution: a second look. J. Mol. Biol. 260: 623-637. http://dx.doi.org/10.1006/jmbi.1996.0425 PMid:8709143   Thomas M, Kalita A, Labrecque S, Pim D, et al. (1999). Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol. Cell Biol. 19: 1092-1100. PMid:9891044 PMCid:116039   Toyama T, Zhang Z, Nishio M, Hamaguchi M, et al. (2007). Association of TP53 codon 72 polymorphism and the outcome of adjuvant therapy in breast cancer patients. Breast Cancer Res. 9: R34. http://dx.doi.org/10.1186/bcr1682 PMid:17537232 PMCid:1929098   Whibley C, Pharoah PD and Hollstein M (2009). p53 polymorphisms: cancer implications. Nat. Rev. Cancer 9: 95-107. http://dx.doi.org/10.1038/nrc2584 PMid:19165225   Zehbe I, Voglino G, Delius H, Wilander E, et al. (1998). Risk of cervical cancer and geographical variations of human papillomavirus 16 E6 polymorphisms. Lancet 352: 1441-1442. http://dx.doi.org/10.1016/S0140-6736(05)61263-9   Zhu ZZ, Wang AZ, Jia HR, Jin XX, et al. (2007). Association of the TP53 codon 72 polymorphism with colorectal cancer in a Chinese population. Jpn. J. Clin. Oncol. 37: 385-390. http://dx.doi.org/10.1093/jjco/hym034 PMid:17599946   Zhu ZZ, Liu B, Wang AZ, Jia HR, et al. (2008). Association of p53 codon 72 polymorphism with liver metastases of colorectal cancers positive for p53 overexpression. J. Zhejiang. Univ. Sci. B 9: 847-852. http://dx.doi.org/10.1631/jzus.B0820100 PMid:18988302 PMCid:2579946