Publications

Found 23 results
Filters: Author is H.B. Wang  [Clear All Filters]
2013
S. Wei, Zan, L. S., Wang, H. B., Cheng, G., Du, M., Jiang, Z., Hausman, G. J., McFarland, D. C., and Dodson, M. V., Adenovirus-mediated interference of FABP4 regulates mRNA expression of ADIPOQ, LEP and LEPR in bovine adipocytes, vol. 12, pp. 494-505, 2013.
Barendse W, Bunch RJ, Thomas MB and Harrison BE (2009). A splice site single nucleotide polymorphism of the fatty acid binding protein 4 gene appears to be associated with intramuscular fat deposition in longissimus muscle in Australian cattle. Anim. Genet. 40: 770-773. http://dx.doi.org/10.1111/j.1365-2052.2009.01913.x PMid:19466936   Bork S, Horn P, Castoldi M, Hellwig I, et al. (2011). Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J. Cell Physiol. 226: 2226-2234. http://dx.doi.org/10.1002/jcp.22557 PMid:21660946   Dodson MV, Jiang Z, Chen J, Hausman GJ, et al. (2010a). Allied industry approaches to alter intramuscular fat content and composition in beef animals. J. Food Sci. 75: R1-R8. http://dx.doi.org/10.1111/j.1750-3841.2009.01396.x PMid:20492190   Dodson MV, Hausman GJ, Guan L, Du M, et al. (2010b). Skeletal muscle stem cells from animals I. Basic cell biology. Int. J. Biol. Sci. 6: 465-474. http://dx.doi.org/10.7150/ijbs.6.465 PMid:20827399 PMCid:2935669   Dodson MV, Hausman GJ, Guan L, Du M, et al. (2010c). Lipid metabolism, adipocyte depot physiology and utilization of meat animals as experimental models for metabolic research. Int. J. Biol. Sci. 6: 691-699. http://dx.doi.org/10.7150/ijbs.6.691 PMid:21103072 PMCid:2990072   Enns JE, Taylor CG and Zahradka P (2011). Variations in Adipokine Genes AdipoQ, Lep, and LepR are Associated with Risk for Obesity-Related Metabolic Disease: The Modulatory Role of Gene-Nutrient Interactions. J. Obes. 2011: 168659. http://dx.doi.org/10.1155/2011/168659 PMid:21773001 PMCid:3136149   Fernyhough ME, Okine E, Hausman G, Vierck JL, et al. (2007). PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest. Anim. Endocrinol. 33: 367-378. http://dx.doi.org/10.1016/j.domaniend.2007.05.001 PMid:17560753   Fire A, Xu S, Montgomery MK, Kostas SA, et al. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. http://dx.doi.org/10.1038/35888 PMid:9486653   Francke S, Manraj M, Lacquemant C, Lecoeur C, et al. (2001). A genome-wide scan for coronary heart disease suggests in Indo-Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27. Hum. Mol. Genet. 10: 2751-2765. http://dx.doi.org/10.1093/hmg/10.24.2751 PMid:11734540   Furuhashi M, Tuncman G, Görgün CZ, Makowski L, et al. (2007). Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 447: 959-965. http://dx.doi.org/10.1038/nature05844 PMid:17554340   Hausman GJ, Dodson MV, Ajuwon K, Azain M, et al. (2009). Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87: 1218-1246. http://dx.doi.org/10.2527/jas.2008-1427 PMid:18849378   Hirai S, Matsumoto H, Moriya NH, Kawachi H, et al. (2007a). Follistatin rescues the inhibitory effect of activin A on the differentiation of bovine preadipocyte. Domest. Anim. Endocrinol. 33: 269-280. http://dx.doi.org/10.1016/j.domaniend.2006.06.001 PMid:16829013   Hirai S, Matsumoto H, Hino N, Kawachi H, et al. (2007b). Myostatin inhibits differentiation of bovine preadipocyte. Domest. Anim. Endocrinol. 32: 1-14. http://dx.doi.org/10.1016/j.domaniend.2005.12.001 PMid:16431073   Hoashi S, Hinenoya T, Tanaka A, Ohsaki H, et al. (2008). Association between fatty acid compositions and genotypes of FABP4 and LXR-alpha in Japanese black cattle. BMC Genet. 9: 84. http://dx.doi.org/10.1186/1471-2156-9-84 PMid:19077218 PMCid:2628680   Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, et al. (1996). Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274: 1377-1379. http://dx.doi.org/10.1126/science.274.5291.1377 PMid:8910278   Jurie C, Cassar-Malek I, Bonnet M, Leroux C, et al. (2007). Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J. Anim. Sci. 85: 2660-2669. http://dx.doi.org/10.2527/jas.2006-837 PMid:17565066   Lee SH, van der Werf JH, Lee SH, Park EW, et al. (2010). Genetic polymorphisms of the bovine fatty acid binding protein 4 gene are significantly associated with marbling and carcass weight in Hanwoo (Korean Cattle). Anim. Genet. 41: 442-444. PMid:20331595   Mannen H (2011). Identification and utilization of genes associated with beef qualities. Anim. Sci. J. 82: 1-7. http://dx.doi.org/10.1111/j.1740-0929.2010.00845.x PMid:21269353   Michal JJ, Zhang ZW, Gaskins CT and Jiang Z (2006). The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim. Genet. 37: 400-402. http://dx.doi.org/10.1111/j.1365-2052.2006.01464.x PMid:16879357   Narukami T, Sasazaki S, Oyama K, Nogi T, et al. (2011). Effect of DNA polymorphisms related to fatty acid composition in adipose tissue of Holstein cattle. Anim. Sci. J. 82: 406-411. http://dx.doi.org/10.1111/j.1740-0929.2010.00855.x PMid:21615833   Ockner RK, Manning JA, Poppenhausen RB and Ho WK (1972). A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177: 56-58. http://dx.doi.org/10.1126/science.177.4043.56 PMid:5041774   Poulos SP, Dodson MV and Hausman GJ (2010). Cell line models for differentiation: preadipocytes and adipocytes. Exp. Biol. Med. 235: 1185-1193. http://dx.doi.org/10.1258/ebm.2010.010063 PMid:20864461   Sun YG, Zan LS, Wang HB, Guo HF, et al. (2009). Insulin inhibits the expression of adiponectin and adipoR2 mRNA in cultured bovine adipocytes. Asian-Aust. J. Anim. Sci. 22: 1429-1436.   Taniguchi M, Guan LL, Basarab JA, Dodson MV, et al. (2008a). Comparative analysis on gene expression profiles in cattle subcutaneous fat tissues. Comp. Biochem. Physiol. Part D Genomics Proteomics 3: 251-256. http://dx.doi.org/10.1016/j.cbd.2008.06.002 PMid:20494844   Taniguchi M, Guan LL, Zhang B, Dodson MV, et al. (2008b). Gene expression patterns of bovine perimuscular preadipocytes during adipogenesis. Biochem. Biophys. Res. Commun. 366: 346-351. http://dx.doi.org/10.1016/j.bbrc.2007.11.111 PMid:18060861   Tuncman G, Erbay E, Hom X, De Vivo, I, et al. (2006). A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc. Natl. Acad. Sci. U. S. A. 103: 6970-6975. http://dx.doi.org/10.1073/pnas.0602178103 PMid:16641093 PMCid:1447594   Tuschl T (2001). RNA interference and small interfering RNAs. Chembiochem 2: 239-245. http://dx.doi.org/10.1002/1439-7633(20010401)2:4<239::AID-CBIC239>3.0.CO;2-R   Vionnet N, Hani EH, Dupont S, Gallina S, et al. (2000). Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am. J. Hum. Genet. 67: 1470-1480. http://dx.doi.org/10.1086/316887 PMid:11067779 PMCid:1287924   Witthuhn BA and Bernlohr DA (2001). Upregulation of bone morphogenetic protein GDF-3/Vgr-2 expression in adipose tissue of FABP4/aP2 null mice. Cytokine 14: 129-135. http://dx.doi.org/10.1006/cyto.2001.0864 PMid:11396990   Xu A, Wang Y, Xu JY, Stejskal D, et al. (2006). Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin. Chem. 52: 405-413. http://dx.doi.org/10.1373/clinchem.2005.062463 PMid:16423904   Yu JY, DeRuiter SL and Turner DL (2002). RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 99: 6047-6052. http://dx.doi.org/10.1073/pnas.092143499 PMid:11972060 PMCid:122899   Zhao C, Tian F, Yu Y, Luo J, et al. (2012). Muscle transcriptomic analyses in Angus cattle with divergent tenderness. Mol. Biol. Rep. 39: 4185-4193. http://dx.doi.org/10.1007/s11033-011-1203-6 PMid:21901422
C. Z. Fu, Wang, H., Mei, C. G., Wang, J. L., Jiang, B. J., Ma, X. H., Wang, H. B., Cheng, G., and Zan, L. S., SNPs at 3'-UTR of the bovine CDIPT gene associated with Qinchuan cattle meat quality traits, vol. 12, pp. 775-782, 2013.
Antonsson BE (1994). Purification and characterization of phosphatidylinositol synthase from human placenta. Biochem. J. 297 (Pt 3): 517-522. PMid:8110188 PMCid:1137864   Brethour JR (1994). Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures. J. Anim. Sci. 72: 1425-1432. PMid:8071165   Chakraborty R, Zhong Y, de AM, Clemens PR, et al. (1994). Linkage disequilibria among (CA)n polymorphisms in the human dystrophin gene and their implications in carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophies. Genomics 21: 567-570. http://dx.doi.org/10.1006/geno.1994.1315 PMid:7959733   Chen H and Leibenguth F (1995). Studies on multilocus fingerprints, RAPD markers, and mitochondrial DNA of a gynogenetic fish (Carassius auratus gibelio). Biochem. Genet. 33: 297-306. http://dx.doi.org/10.1007/BF02399929 PMid:8748455   Deguchi A, Segawa K, Hosaka K, Weinstein IB, et al. (2002). Overexpression of phosphatidylinositol synthase enhances growth and G1 progression in NIH3T3 cells. Jpn. J. Cancer Res. 93: 157-166. http://dx.doi.org/10.1111/j.1349-7006.2002.tb01254.x PMid:11856479   Fu YY, Xiong YZ, Pan G, Cheng L, et al. (2009). Association of the polymorphism of porcine CDIPT gene with carcass and meat quality traits. Chin. J. Anim. Vet. Sci. 40: 787-791.   Hamlin KE, Green RD, Perkins TL, Cundiff LV, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: I. Description of age and weight effects. J. Anim. Sci. 73: 1713-1724. PMid:7673065   Lykidis A, Jackson PD, Rock CO and Jackowski S (1997). The role of CDP-diacylglycerol synthetase and phosphatidylinositol synthase activity levels in the regulation of cellular phosphatidylinositol content. J. Biol. Chem. 272: 33402-33409. http://dx.doi.org/10.1074/jbc.272.52.33402 PMid:9407135   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Neilson JR and Sandberg R (2010). Heterogeneity in mammalian RNA 3' end formation. Exp. Cell Res. 316: 1357-1364. http://dx.doi.org/10.1016/j.yexcr.2010.02.040 PMid:20211174 PMCid:2866830   White DA (1973). The Phospholipid Composition of Mammalian Tissues. In: Form and Function of Phospholipids (Ansell GB, Hawthorne JN and Dawson RMC, eds.). Elsevier, Amsterdam, 441-482.   Zhao J, Hyman L and Moore C (1999). Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63: 405-445. PMid:10357856 PMCid:98971   Zhou JP, Zhu XP, Zhang W, Qin F, et al. (2011). A novel single-nucleotide polymorphism in the 5' upstream region of the prolactin receptor gene is associated with fiber traits in Liaoning cashmere goats. Genet. Mol. Res. 10: 2511-2516. http://dx.doi.org/10.4238/2011.October.13.8 PMid:22009863   Zimin AV, Delcher AL, Florea L, Kelley DR, et al. (2009). A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10: R42. http://dx.doi.org/10.1186/gb-2009-10-4-r42 PMid:19393038 PMCid:2688933
2012
H. Wang, Zan, L. S., Wang, H. B., Gong, C., and Fu, C. Z., Cloning, expression analysis and sequence prediction of the CCAAT/enhancer-binding protein alpha gene of Qinchuan cattle, vol. 11, pp. 1651-1661, 2012.
Bennett CN, Hodge CL, MacDougald OA and Schwartz J (2003). Role of Wnt10b and C/EBPα in spontaneous adipogenesis of 243 cells. Biochem. Biophs. Res. 302: 12-16. http://dx.doi.org/10.1016/S0006-291X(03)00092-5   Birkenmeier EH, Gwynn B, Howard S and Jerry J (1989). Is CCAAT/enhancer-binding protein a central regulator of energy metabolism. Genes Dev. 3: 1146-1156. http://dx.doi.org/10.1101/gad.3.8.1146 PMid:2792758   Chui PC, Guan HP, Lehrke M and Lazar MA (2005). PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. J. Clin. Invest. 115: 2244-2256. http://dx.doi.org/10.1172/JCI24130 PMid:16007265 PMCid:1172230   Chumakov AM, Grillier I, Chumakova E, Chih D, et al. (1997). Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor. Mol. Cell Biol. 17: 1375-1386. PMid:9032264 PMCid:231862   Croniger CM, Millward C, Yang J, Kawai Y, et al. (2001). Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta have an attenuated response to cAMP and impaired carbohydrate metabolism. J. Biol. Chem. 276: 629- 638. http://dx.doi.org/10.1074/jbc.M007576200 PMid:11024029   Gomez-Santos C, Barrachina M, Gimenez-Xavier P, Dalfo E, et al. (2005). Induction of C/EBP beta and GADD153 expression by dopamine in human neuroblastoma cells. Relationship with alpha-synuclein increase and cell damage. Brain Res. Bull. 65: 87-95. PMid:15680548   Hanson RW (1998). Biological role of the isoforms of C/EBP minireview series. J. Biol. Chem. 273: 28543. http://dx.doi.org/10.1074/jbc.273.44.28543 PMid:9786840   Hu BL and Zan LS (2001). Association Analysis Between Bovine Carcass Traits and Meat Quality Traits. Master's thesis. Northwest A&F University, Yangling.   Imai T, Takakuwa R, Marchand S, Dentz E, et al. (2004). Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc. Natl. Acad. Sci. U. S. A. 101: 4543-4547. http://dx.doi.org/10.1073/pnas.0400356101 PMid:15070754 PMCid:384783   Julie L, Kirstin E and Nick AS (2009). Real-Time PCR: Current Technology and Applications. Caister Academic Press, Norfolk. PMCid:2767118   Lee CH, Olson P and Evans RM (2003). Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144: 2201-2207. http://dx.doi.org/10.1210/en.2003-0288 PMid:12746275   Lefterova MI, Zhang Y, Steger DJ, Schupp M, et al. (2008). PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 22: 2941-2952. http://dx.doi.org/10.1101/gad.1709008 PMid:18981473 PMCid:2577797   Lekstrom HJ and Xanthopoulos KG (1998). Biological role of CCAAT/enhancer-binding protein family of transcription factors. J. Biol. Chem. 273: 28545-28548. http://dx.doi.org/10.1074/jbc.273.44.28545   Lin FT, MacDougald OA, Diehl MA and Lane MD (1993). A 30-kDa alternative translation product of the CCAAT/ enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc. Nat. Acad. Sci. USA 90: 9606-9610. http://dx.doi.org/10.1073/pnas.90.20.9606 PMid:8415748 PMCid:47618   Lopez RG, Garcia-Silva S, Moore SJ, Bereshchenko O, et al. (2009). C/EBPα and beta couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat. Cell Biol. 11: 1181-1190. http://dx.doi.org/10.1038/ncb1960 PMid:19749746   MacDougald OA and Lane MD (1995). Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64: 345-373. http://dx.doi.org/10.1146/annurev.bi.64.070195.002021 PMid:7574486   Poli V (1998). The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J. Biol. Chem. 273: 29279-29282. http://dx.doi.org/10.1074/jbc.273.45.29279 PMid:9792624   Ramji DP and Foka P (2002). CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem. J. 365: 561-575. PMid:12006103 PMCid:1222736   Rosen ED, Hsu CH, Wang X, Sakai S, et al. (2002). C/EBPα induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16: 22-26. http://dx.doi.org/10.1101/gad.948702 PMid:11782441 PMCid:155311   Shimano H (2001). Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog. Lipid Res. 40: 439-452. http://dx.doi.org/10.1016/S0163-7827(01)00010-8   Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15: 1034-1050. http://dx.doi.org/10.1101/gr.3715005 PMid:16024819 PMCid:1182216   Storch J and Thumser AE (2000). The fatty acid transport function of fatty acid-binding proteins. Biochim. Biophys. Acta 1486: 28-44. http://dx.doi.org/10.1016/S1388-1981(00)00046-9   Taniguchi Y and Sasaki Y (1996). Rapid communication: nucleotide sequence of bovine C/EBP alpha gene. J. Anim. Sci. 74: 2554. PMid:8904724   Williams SC, Cantwell CA and Johnson PF (1991). A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev. 5: 1553-1567. http://dx.doi.org/10.1101/gad.5.9.1553 PMid:1884998   Yeh WC, Cao Z, Classon M and McKnight SL (1995). Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 9: 168-181. http://dx.doi.org/10.1101/gad.9.2.168 PMid:7531665   Zuo Y, Qiang L and Farmer SR (2006). Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/ EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. J. Biol. Chem. 281: 7960-7967. http://dx.doi.org/10.1074/jbc.M510682200 PMid:16431920
B. J. Jiang, Zhan, X. L., Fu, C. Z., Wang, H. B., Cheng, G., and Zan, L. S., Identification of ANAPC13 gene polymorphisms associated with body measurement traits in Bos taurus, vol. 11, pp. 2862-2870, 2012.
Aristarkhov A, Eytan E, Moghe A, Admon A, et al. (1996). E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc. Natl. Acad. Sci. U. S. A. 93: 4294-4299. http://dx.doi.org/10.1073/pnas.93.9.4294 PMid:8633058 PMCid:39529   Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499   Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, et al. (2008). Many sequence variants affecting diversity of adult human height. Nat. Genet. 40: 609-615. http://dx.doi.org/10.1038/ng.122 PMid:18391951   Harper JW, Burton JL and Solomon MJ (2002). The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 16: 2179-2206. http://dx.doi.org/10.1101/gad.1013102 PMid:12208841   Honda K, Mihara H, Kato Y, Yamaguchi A, et al. (2000). Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene 19: 2812-2819. http://dx.doi.org/10.1038/sj.onc.1203609 PMid:10851084   Irniger S, Piatti S, Michaelis C and Nasmyth K (1995). Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81: 269-278. http://dx.doi.org/10.1016/0092-8674(95)90337-2   Jin QJ, Sun JJ, Fang XT, Zhang CL, et al. (2011). Molecular characterization and polymorphisms of the caprine Somatostatin (SST) and SST Receptor 1 (SSTR1) genes that are linked with growth traits. Mol. Biol. Rep. 38: 3129-3135. http://dx.doi.org/10.1007/s11033-010-9983-7 PMid:20140708   King RW, Peters JM, Tugendreich S, Rolfe M, et al. (1995). A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81: 279-288. http://dx.doi.org/10.1016/0092-8674(95)90338-0   Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009   Lettre G, Jackson AU, Gieger C, Schumacher FR, et al. (2008). Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40: 584-591. http://dx.doi.org/10.1038/ng.125 PMid:18391950 PMCid:2687076   Li F, Chen H, Lei CZ, Ren G, et al. (2010a). Novel SNPs of the bovine GAD1/gad67 gene and their association with growth traits in three native Chinese cattle breeds. Mol. Biol. Rep. 37: 501-505. http://dx.doi.org/10.1007/s11033-009-9699-8 PMid:19728158   Li F, Chen H, Lei CZ, Ren G, et al. (2010b). Novel SNPs of the bovine NUCB2 gene and their association with growth traits in three native Chinese cattle breeds. Mol. Biol. Rep. 37: 541-546. http://dx.doi.org/10.1007/s11033-009-9732-y PMid:19728157   Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978   Mateescu RG, Zhang Z, Tsai K, Phavaphutanon J, et al. (2005). Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for hip dysplasia in a crossbreed pedigree. J. Hered. 96: 847-853. http://dx.doi.org/10.1093/jhered/esi109 PMid:16251522   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Nkrumah JD, Li C, Basarab JB, Guercio S, et al. (2003). Association of a single nucleotide polymorphism in the bovine leptin gene with feed intake, feed efficiency, growth, feeding behaviour, carcass quality and body composition. Can. J. Anim. Sci. 84: 211-219. http://dx.doi.org/10.4141/A03-033   Peters JM (2002). The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9: 931-943. http://dx.doi.org/10.1016/S1097-2765(02)00540-3   Ren G, Chen H, Zhang LZ, Lan XY, et al. (2010). A coding SNP of LHX4 gene is associated with body weight and body length in bovine. Mol. Biol. Rep. 37: 417-422. http://dx.doi.org/10.1007/s11033-009-9486-6 PMid:19283511   Rojas CA, Eloy NB, Lima MF, Rodrigues RL, et al. (2009). Overexpression of the Arabidopsis anaphase promoting complex subunit CDC27a increases growth rate and organ size. Plant Mol. Biol. 71: 307-318. http://dx.doi.org/10.1007/s11103-009-9525-7 PMid:19629716   Sambrook J and Russell DW (2002). Molecular Cloning. A Laboratory Manual. 3rd edn. Science Press, Beijing. PMCid:1123728   Sanna S, Jackson AU, Nagaraja R, Willer CJ, et al. (2008). Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 40: 198-203. http://dx.doi.org/10.1038/ng.74 PMid:18193045 PMCid:2914680   Soranzo N, Rivadeneira F, Chinappen-Horsley U, Malkina I, et al. (2009). Meta-analysis of genome-wide scans for human adult stature identifies novel loci and associations with measures of skeletal frame size. PLoS Genet. 5: e1000445. http://dx.doi.org/10.1371/journal.pgen.1000445 PMid:19343178 PMCid:2661236   Stroschein SL, Bonni S, Wrana JL and Luo K (2001). Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev. 15: 2822-2836. PMid:11691834 PMCid:312804   Sudakin V, Ganoth D, Dahan A, Heller H, et al. (1995). The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6: 185-197. PMid:7787245 PMCid:275828   Sun J, Jin Q, Zhang C, Fang X, et al. (2011). Polymorphisms in the bovine ghrelin precursor (GHRL) and Syndecan-1 (SDC1) genes that are associated with growth traits in cattle. Mol. Biol. Rep. 38: 3153-3160. http://dx.doi.org/10.1007/s11033-010-9986-4 PMid:20140707   Takai N, Miyazaki T, Fujisawa K, Nasu K, et al. (2001). Polo-like kinase (PLK) expression in endometrial carcinoma. Cancer Lett. 169: 41-49. http://dx.doi.org/10.1016/S0304-3835(01)00522-5   Tang Z, Bharadwaj R, Li B and Yu H (2001). Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1: 227-237. http://dx.doi.org/10.1016/S1534-5807(01)00019-3   Thornton BR and Toczyski DP (2006). Precise destruction: an emerging picture of the APC. Genes Dev. 20: 3069-3078. http://dx.doi.org/10.1101/gad.1478306 PMid:17114580   Wang J, Li ZJ, Lan XY, Hua LS, et al. (2010). Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations with growth traits. Mol. Biol. Rep. 37: 571-577. http://dx.doi.org/10.1007/s11033-009-9816-8 PMid:19760096   Weedon MN and Frayling TM (2008). Reaching new heights: insights into the genetics of human stature. Trends Genet. 24: 595-603. http://dx.doi.org/10.1016/j.tig.2008.09.006 PMid:18950892   Weedon MN, Lettre G, Freathy RM, Lindgren CM, et al. (2007). A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 39: 1245-1250. http://dx.doi.org/10.1038/ng2121 PMid:17767157 PMCid:3086278   Weedon MN, Lango H, Lindgren CM, Wallace C, et al. (2008). Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40: 575-583. http://dx.doi.org/10.1038/ng.121 PMid:18391952 PMCid:2681221   Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006   Zhao J, Li M, Bradfield JP, Zhang H, et al. (2010). The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature. BMC Med. Genet. 11: 96. http://dx.doi.org/10.1186/1471-2350-11-96 PMid:20546612 PMCid:2894790
2011
W. Q. Tian, Wang, H. C., Song, F. B., Zan, L. S., Wang, H., Wang, H. B., Xin, Y. P., and Ujan, J. A., Association between a single nucleotide polymorphism in the bovine chemerin gene and carcass traits in Qinchuan cattle, vol. 10, pp. 2833-2840, 2011.
Bozaoglu K, Bolton K, McMillan J, Zimmet P, et al. (2007). Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148: 4687-4694. http://dx.doi.org/10.1210/en.2007-0175 PMid:17640997 Gantz I, Konda Y, Yang YK, Miller DE, et al. (1996). Molecular cloning of a novel receptor (CMKLR1) with homology to the chemotactic factor receptors. Cytogenet. Cell Genet. 74: 286-290. http://dx.doi.org/10.1159/000134436 Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, et al. (2007). Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282: 28175-28188. http://dx.doi.org/10.1074/jbc.M700793200 PMid:17635925 Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009 Martensson UE, Fenyo EM, Olde B and Owman C (2006). Characterization of the human chemerin receptor - ChemR23/ CMKLR1 - as co-receptor for human and simian immunodeficiency virus infection, and identification of virus-binding receptor domains. Virology 355: 6-17. http://dx.doi.org/10.1016/j.virol.2006.07.010 PMid:16904155 Meder W, Wendland M, Busmann A, Kutzleb C, et al. (2003). Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett. 555: 495-499. http://dx.doi.org/10.1016/S0014-5793(03)01312-7 Methner A, Hermey G, Schinke B and Hermans-Borgmeyer I (1997). A novel G protein-coupled receptor with homology to neuropeptide and chemoattractant receptors expressed during bone development. Biochem. Biophys. Res. Commun. 233: 336-342. http://dx.doi.org/10.1006/bbrc.1997.6455 PMid:9144535 Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762 Mussig K, Staiger H, Machicao F, Thamer C, et al. (2009). RARRES2, encoding the novel adipokine chemerin, is a genetic determinant of disproportionate regional body fat distribution: a comparative magnetic resonance imaging study. Metabolism 58: 519-524. http://dx.doi.org/10.1016/j.metabol.2008.11.011 PMid:19303973 Nagpal S, Patel S, Jacobe H, DiSepio D, et al. (1997). Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J. Invest. Dermatol. 109: 91-95. http://dx.doi.org/10.1111/1523-1747.ep12276660 PMid:9204961 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Owman C, Nilsson C and Lolait SJ (1996). Cloning of cDNA encoding a putative chemoattractant receptor. Genomics 37: 187-194. http://dx.doi.org/10.1006/geno.1996.0541 PMid:8921391 Roh SG, Song SH, Choi KC, Katoh K, et al. (2007). Chemerin - a new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 362: 1013-1018. http://dx.doi.org/10.1016/j.bbrc.2007.08.104 PMid:17767914 Samson M, Edinger AL, Stordeur P, Rucker J, et al. (1998). ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur. J. Immunol. 28: 1689-1700. http://dx.doi.org/10.1002/(SICI)1521-4141(199805)28:05<1689::AID-IMMU1689>3.0.CO;2-I Sell H and Eckel J (2009). Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro evidence for a possible causal correlation? Proc. Nutr. Soc. 68: 378-384. http://dx.doi.org/10.1017/S0029665109990218 PMid:19698204 Song SH, Fukui K, Nakajima K, Kozakai T, et al. (2010). Cloning, expression analysis, and regulatory mechanisms of bovine chemerin and chemerin receptor. Domest. Anim. Endocrinol. 39: 97-105. http://dx.doi.org/10.1016/j.domaniend.2010.02.007 PMid:20399065 Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, et al. (2008). Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582: 573-578. http://dx.doi.org/10.1016/j.febslet.2008.01.023 PMid:18242188 Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, et al. (2003). Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198: 977-985. http://dx.doi.org/10.1084/jem.20030382 PMid:14530373 PMCid:2194212 Wittamer V, Bondue B, Guillabert A, Vassart G, et al. (2005). Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175: 487-493. PMid:15972683 Zabel BA, Allen SJ, Kulig P, Allen JA, et al. (2005). Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280: 34661-34666. http://dx.doi.org/10.1074/jbc.M504868200 PMid:16096270 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006
J. A. Ujan, Zan, L. S., Ujan, S. A., Adoligbe, C., and Wang, H. B., Back fat thickness and meat tenderness are associated with a 526 T→A mutation in the exon 1 promoter region of the MyF-5 gene in Chinese Bos taurus, vol. 10, pp. 3070-3079, 2011.
Adoligbe C, Zan LS, Wang HB and Ujjan JA (2011). A novel polymorphism of GDF10 gene and its association with body measurement traits in cattle. Genet. Mol. Res. 10: 988-995. http://dx.doi.org/10.4238/vol10-2gmr989 PMid:21710448 Bhuiyan MSA, Kim NK, Cho YM, Yoon D, et al. (2009). Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest. Sci. 126: 292-297. http://dx.doi.org/10.1016/j.livsci.2009.05.019 Carmo FMS, Guimarães SEF, Lopes PS, Pires AV, et al. (2005). Association of MYF5 gene allelic variants with production traits in pigs. Genet. Mol. Biol. 28: 363-369. http://dx.doi.org/10.1590/S1415-47572005000300004 Casas E, Shackelford SD, Keele JW, Stone RT, et al. (2000). Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J. Anim. Sci. 78: 560-569. PMid:10764062 Chung ER and Kim WT (2005). Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Aust. J. Anim. Sci. 18: 1061-1065. Cieslak D, Kapelanksi W, Blicharski T and Pierzchala M (2000). Restriction fragment length polymorphism in myogenin and MYF-3 genes and their influence on lean meat content in pigs. J. Anim. Breed. Genet. 117: 43-55. http://dx.doi.org/10.1046/j.1439-0388.2000.00209.x Dario C, Selvaggi M, Carnicella D and Bufano G (2009). STAT5A/AvaI polymorphism in Podolica bulls and its effect on growth performance traits. Livest. Sci. 123: 83-87. http://dx.doi.org/10.1016/j.livsci.2008.10.011 Davis GP, Hetzel DJS, Corbet NJ, Scacheri S, et al. (1998). The Mapping of Quantitative Trait Loci for Birth Weight in a Tropical Beef Herd. Proceedings 6th World Congress of Genetics Applied to Livestock Productions, Amidale, 441-444. Humpolícek P, Urban T and Tvrdon Z (2007). Relation of porcinemyogenin gene PCR/RFLP MspI and reproduction traits of the Czech Large White sows. Livest. Sci. 110: 288-291. http://dx.doi.org/10.1016/j.livsci.2007.02.015 Khatib H, Zaitoun I, Wiebelhaus-Finger J, Chang YM, et al. (2007). The association of bovine PPARGC1A and OPN genes with milk composition in two independent Holstein cattle populations. J. Dairy Sci. 90: 2966-2970. http://dx.doi.org/10.3168/jds.2006-812 PMid:17517737 Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8: 1075-1080. http://dx.doi.org/10.2217/14622416.8.8.1075 PMid:17716239 Kunhareang S, Zhou H and Hickford JG (2009). Allelic variation in the porcine MYF5 gene detected by PCR-SSCP. Mol. Biotechnol. 41: 208-212. http://dx.doi.org/10.1007/s12033-008-9122-z PMid:19021001 Kurland CG (1991). Codon bias and gene expression. FEBS Lett. 285: 165-169. http://dx.doi.org/10.1016/0014-5793(91)80797-7 Li C, Basarab J, Snelling WM, Benkel B, et al. (2002a). Identical by Descent Haplotype Sharing analysis: Application in Fine Mapping of QTLs for Birth Weight in Commercial Lines of Bos taurus. Proceedings of 7th World Congress of Genetics Applied Livestock Production, Montpellier, 481-484. Li C, Basarab J, Snelling WM, Benkel B, et al. (2002b). The identification of common haplotypes on bovine chromosome 5 within commercial lines of Bos taurus and their associations with growth traits. J. Anim. Sci. 80: 1187-1194. PMid:12019605 Li C, Basarab J, Snelling WM, Benkel B, et al. (2004). Assessment of positional candidate genes Myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. J. Anim. Sci. 82: 1-7. Maak S, Neumann K and Swalve HH (2006). Identification and analysis of putative regulatory sequences for the MYF5/ MYF6 locus in different vertebrate species. Gene 379: 141-147. http://dx.doi.org/10.1016/j.gene.2006.05.007 PMid:16820272 McIlveen H and Buchanan J (2001). The impact of sensory factors on beef purchase and consumption. Nutr. Food Sci. 31: 286-292. http://dx.doi.org/10.1108/00346650110409119 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Robakowska-Hyzorek D, Oprzadek J, Zelazowska B, Olbromski R, et al. (2010). Effect of the g.-723G- T polymorphism in the bovine myogenic factor 5 (Myf5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of polish holstein-friesian cattle. Biochem. Genet. 48: 450-464. http://dx.doi.org/10.1007/s10528-009-9328-1 PMid:20127165 Sambrook J and Russell DW (2002). Translated by Huang, P.T. Molecular Cloning A Laboratory Manual. 3rd edn. Science Press, Beijing. Shah JH, Maguire DJ, Munce TB and Cotterill A (2008). Alanine in HI: a silent mutation cries out! Adv. Exp. Med. Biol. 614: 145-150. http://dx.doi.org/10.1007/978-0-387-74911-2_17 PMid:18290324 Shin SC and Chung ER (2007). Association of SNP marker in the leptin gene with carcass and meat quality traits in Korean cattle. Asian Australas. J. Anim. Sci. 20: 1-6. Stone RT, Keele JW, Shackelford SD, Kappes SM, et al. (1999). A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. J. Anim. Sci. 77: 1379-1384. PMid:10375215 te Pas MF, Soumillion A, Hardes FL, Verburg FJ, et al. (1999). Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness and lean weight of pigs. J. Anim. Sci. 77: 2352-2356. PMid:10492439 van Wijk HJ, Arts DJ, Matthews JO, Webster M, et al. (2005). Genetic parameters for carcass composition and pork quality estimated in a commercial production chain. J. Anim. Sci. 83: 324-333. PMid:15644503 Venza M, Visalli M, Venza I, Torino C, et al. (2009). Altered binding of MYF-5 to FOXE1 promoter in non-syndromic and CHARGE-associated cleft palate. J. Oral Pathol. Med. 38: 18-23. http://dx.doi.org/10.1111/j.1600-0714.2008.00726.x Verner J, Humpolicek P and Knoll A (2007). Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J. Anim. Breed. Genet. 124: 81-85. http://dx.doi.org/10.1111/j.1439-0388.2007.00639.x PMid:17488358 Wei S, Linsen Z, Ujan JA, Wang H, et al. (2011). Novel polymorphism of the bovine fat mass and obesity-associated (FTO) gene are relted to backfat thickness and longissimus muscle area in five Chinese native cattle breeds. Afr. J. Biotechnol. 10: 2820-2824. Wheeler TL, Koohmaraie M, Cundiff LV and Dikeman ME (1994). Effects of cooking and shearing methodology on variation in Warner-Bratzler shear force values in beef. J. Anim. Sci. 72: 2325-2330. PMid:8002450 Wyszynska-Koko J, Pierzchala M, Flisikowski K, Kamyczek M, et al. (2006). Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs. J. Appl. Genet. 47: 131-138. http://dx.doi.org/10.1007/BF03194612 PMid:16682754 Zhang RF, Chen H, Lei CZ, Zhang CL, et al. (2007). Association between polymorphisms of MSTN and MYF5 genes and growth traits in three Chinese cattle breeds. Asian Australas. J. Anim. Sci. 20: 1798-1804. Zhong X, Zan LS, Wang HB and Liu YF (2010). Polymorphic CA microsatellites in the third exon of the bovine BMP4 gene. Genet. Mol. Res. 9: 868-874. http://dx.doi.org/10.4238/vol9-2gmr732 PMid:20467979
J. A. Ujan, Zan, L. S., Wang, H. B., Ujan, S. A., Adoligbe, C., Wang, H. C., and Biao, S. F., Lack of an association between a single nucleotide polymorphism in the bovine myogenic determination 1 (MyoD1) gene and meat quality traits in indigenous Chinese cattle breeds, vol. 10, pp. 2213-2222, 2011.
Bhuiyan MSA, Kim NK, Cho YM, Yoon D, et al. (2009). Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest. Sci. 126: 292-297. http://dx.doi.org/10.1016/j.livsci.2009.05.019 Carmo FMS, Guimarães SEF, Lopes PS, Pires AV, et al. (2005). Association of MYF5 gene allelic variants with production traits in pigs. Genet. Mol. Biol. 28: 363-369. http://dx.doi.org/10.1590/S1415-47572005000300004 Casas E, Shackelford SD, Keele JW, Koohmaraie M, et al. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci. 81: 2976-2983. PMid:14677852 Cieslak D, Kapelanski W, Blicharski T and Pierzchala M (2000). Restriction fragment length polymorphisms in myogenin and myf3 genes and their influence on lean meat content in pigs. J. Anim. Breed. Genet. 117: 43-55. http://dx.doi.org/10.1046/j.1439-0388.2000.00209.x Cieslak D, Kuryl J, Kapelañski W, Pierzchala M, et al. (2002). A relationship between genotypes at MYOG, MYF3 and MYF5 loci and carcass meat and fat deposition traits in pigs. Anim. Sci. Pap. Rep. 20: 77-92. Estellé J, Gil F, Vázquez JM, Latorre R, et al. (2008). A QTL genome scan for porcine muscle fiber traits reveals over dominance and epistasis. J. Anim. Sci. 86: 3290-3299. http://dx.doi.org/10.2527/jas.2008-1034 PMid:18641172 Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499 Humpolíček P, Urban T and Tvrdoň Z (2007). Relation of porcinemyogenin gene PCR/RFLP MspI and reproduction traits of the Czech Large White sows. Livest. Sci. 110: 288-291. http://dx.doi.org/10.1016/j.livsci.2007.02.015 Kapelanski W, Grajewska S, Kuryl J, Bocian M et al. (2005). Polymorphism in coding and non coding regions of the MYOD gene family and meat quality in pigs. Fol. Biol. 53: 45-49. http://dx.doi.org/10.3409/173491605775789506 Klosowska D and Fiedler I (2003). Muscle fiber types in pigs of different genotypes in relation to meat quality. Anim. Sci. Pap. Rep. 21 (Suppl 1): 49-60. Klosowska D, Kuryl J, Cieoelak D and Elminowska-Wenda G (2001). The relationship between polymorphisms in porcine MYOG, MYF-3 and MYF-5 genes and micro-structural characteristics of longissimus muscle - a preliminary study. In: 47th Intern. Congress of Meat Sci. Technology, Kraków, 142-143. Klosowska D, Kuryl J, Elminowska-Wenda G and Kapelanski W (2004). A relationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrain × (Polish Large White × Polish Landrace) crosses. Czech J. Anim. Sci. 49: 99-107. Knoll A, Nebola M, Dvorak J and Cepica S (1997). Detection of a DdeI PCR RFLP within intron 1 of the porcine MYOD1 (MYF3) locus. Anim. Genet. 28: 321. PMid:9345748 Kuryl J, Kapelañski W, Cieoelak D, Pierzchala M et al. (2002). Are polymorphisms in non-coding regions of porcine MyoD genes suitable for predicting meat and fat deposition in the carcass. Anim. Sci. Pap. Rep. 20: 245-254. Liu M, Peng J, Xu DQ, Zheng R, et al. (2008). Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in Large White x Meishan F2 pig populations. Biochem. Genet. 46: 720-732. http://dx.doi.org/10.1007/s10528-008-9187-1 PMid:18777094 MacNeil MD and Newman S (1994). Selection indices for Canadian beef production using specialized sire and dam lines. Can. J. Animal Sci. 74: 419-424. http://dx.doi.org/10.4141/cjas94-060 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Noguera JL, Varona L, Gómez-Raya L, Sánchez A, et al. (2003). Estrogen receptor polymorphism in Landrace pigs and its association with litter size performance. Livest. Prod. Sci. 82: 53-59. http://dx.doi.org/10.1016/S0301-6226(03)00004-6 O’vilo C, Fernandez A, Rodriguez MC, Nieto M, et al. (2006). Association of MC4R gene variants with growth, fatness, carcass composition and meat and fat quality traits in heavy pigs. Meat Sci. 73: 42-47. http://dx.doi.org/10.1016/j.meatsci.2005.10.016 PMid:22062052 Pette D and Staron RS (1997). Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol. 170: 143-223. http://dx.doi.org/10.1016/S0074-7696(08)61622-8 Rexroad CE III, Bennett GL, Stone RT, Keele JW, et al. (2001). Comparative mapping of BTA15 and HSA11 including a region containing a QTL for meat tenderness. Mamm. Genome 12: 561-565. http://dx.doi.org/10.1007/s0033500-20028 Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, et al. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75: 1351-1359. http://dx.doi.org/10.1016/0092-8674(93)90621-V Sambrook J and Russell DW (2002). Translated by Huang, P. T. Molecular Cloning a Laboratory Manual. 3rd. edn. Science Press, Beijing. te Pas MF (2004). Candidate genes for meat production and meat quality: the MRF genes. Anim. Sci. Pap. Rep. 22: 115-118. te Pas MF and Visscher AH (1994). Genetic regulation of meat production by embryonic muscle formation - a review. J. Anim. Breed. Genet. 111: 404-412. http://dx.doi.org/10.1111/j.1439-0388.1994.tb00477.x PMid:21395789 te Pas MF, Devries AG and Visscher AH (1994). The MyoD gene Family and Meat Production - A Review. In: Proc. 40th Inter. Congress of Meat Sci. Technology, Hague, S-VII-08.1-6. te Pas MF, Harders FL, Soumillion A, Born L, et al. (1999a). Genetic variation at the porcine MYF-5 gene locus. Lack Of association with meat production traits. Mamm. Genome 10: 123-127. http://dx.doi.org/10.1007/s003359900956 te Pas MF, Soumillion A, Harders FL and Verburg FJ (1999b). Influences of Myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J. Anim. Sci. 77: 2352-2356. PMid:10492439 te Pas MF, Verburg FJ, Gerritsen CL and de Greef KH (2000). Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. J. Anim. Sci. 78: 69-77. PMid:10682804 Van Wijk HJ, Arts DJ, Matthews JO, Webster M, et al. (2005). Genetic parameters for carcass composition and pork quality estimated in a commercial production chain 1. J. Anim. Sci. 83: 324-333. PMid:15644503 Verner J, Humpolicek P and Knoll A (2007). Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J. Anim. Breed. Genet. 124: 81-85. http://dx.doi.org/10.1111/j.1439-0388.2007.00639.x PMid:17488358 Wojciech K, Salomea G, Jolanta K and Maria B (2005). Polymorphism in coding and non-coding regions of the MyoD gene family and meat quality in pigs. Fol. Biol. 53: 45-49. http://dx.doi.org/10.3409/173491605775789506 Wyszynska-Koko J, Pierzchala M, Flisikowski K, Kamyczek M, et al. (2006). Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in longissimus dorsi versus production traits in pigs. J. Appl.Genet. 47: 131-138. http://dx.doi.org/10.1007/BF03194612 PMid:16682754 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006
Y. Jiao, Zan, L. S., Liu, Y. F., and Wang, H. B., Molecular characterization, polymorphism of the ACOX1 gene and association with ultrasound traits in Bos taurus, vol. 10, pp. 1948-1957, 2011.
Brethour JR (1994). Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures. J. Anim. Sci. 72: 1425-1432. PMid:8071165 Casas-Carrillo E, Prill-Adams A, Price SG, Clutter AC, et al. (1997). Mapping genomic regions associated with growth rate in pigs. J. Anim. Sci. 75: 2047-2053. PMid:9263050 Clop A, Ovilo C, Perez-Enciso M, Cercos A, et al. (2003). Detection of QTL affecting fatty acid composition in the pig. Mamm. Genome 14: 650-656. http://dx.doi.org/10.1007/s00335-002-2210-7 PMid:14629115 Fan CY, Pan J, Chu R, Lee D, et al. (1996). Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J. Biol. Chem. 271: 24698-24710. http://dx.doi.org/10.1074/jbc.271.40.24698 PMid:8798738 Fournier B, Saudubray JM, Benichou B, Lyonnet S, et al. (1994). Large deletion of the peroxisomal acyl-CoA oxidase gene in pseudoneonatal adrenoleukodystrophy. J. Clin. Invest. 94: 526-531. http://dx.doi.org/10.1172/JCI117365 PMid:8040306    PMCid:296126 Hamlin KE, Green RD, Cundiff LV, Wheeler TL, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: II. Relationship between real-time ultrasound measures and carcass retail yield. J. Anim. Sci. 73: 1725-1734. PMid:7673066 Jiao Y, Zan LS, Liu YF, Wang HB, et al. (2010). A novel polymorphism of the MYPN gene and its association with meat quality traits in Bos taurus. Genet. Mol. Res. 9: 1751-1758. http://dx.doi.org/10.4238/vol9-3gmr906 PMid:20812196 Kim S, Sohn I, Ahn JI, Lee KH, et al. (2004). Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 340: 99-109. http://dx.doi.org/10.1016/j.gene.2004.06.015 PMid:15556298 Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An Alul PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009 Li Y, Tharappel JC, Cooper S, Glenn M, et al. (2000). Expression of the hydrogen peroxide-generating enzyme fatty acyl CoA oxidase activates NF-kappaB. DNA Cell Biol. 19: 113-120. http://dx.doi.org/10.1089/104454900314627 PMid:10701777 Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978 Morais S, Knoll-Gellida A, Andre M, Barthe C, et al. (2007). Conserved expression of alternative splicing variants of peroxisomal acyl-CoA oxidase 1 in vertebrates and developmental and nutritional regulation in fish. Physiol. Genomics 28: 239-252. http://dx.doi.org/10.1152/physiolgenomics.00136.2006 PMid:17090698 Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762 Nohammer C, El-Shabrawi Y, Schauer S, Hiden M, et al. (2000). cDNA cloning and analysis of tissue-specific expression of mouse peroxisomal straight-chain acyl-CoA oxidase. Eur. J. Biochem. 267: 1254-1260. http://dx.doi.org/10.1046/j.1432-1327.2000.01128.x Oaxaca-Castillo D, Andreoletti P, Vluggens A, Yu S, et al. (2007). Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene. Biochem. Biophys. Res. Commun. 360: 314-319. http://dx.doi.org/10.1016/j.bbrc.2007.06.059 PMid:17603022    PMCid:2732019 Rosewich H, Waterham HR, Wanders RJ, Ferdinandusse S, et al. (2006). Pitfall in metabolic screening in a patient with fatal peroxisomal beta-oxidation defect. Neuropediatrics 37: 95-98. http://dx.doi.org/10.1055/s-2006-923943 PMid:16773508 Varanasi U, Chu R, Chu S, Espinosa R, et al. (1994). Isolation of the human peroxisomal acyl-CoA oxidase gene: organization, promoter analysis, and chromosomal localization. Proc. Natl. Acad. Sci. U. S. A. 91: 3107-3111. http://dx.doi.org/10.1073/pnas.91.8.3107 Wanders RJ (2004). Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol. Genet. Metab. 83: 16-27. http://dx.doi.org/10.1016/j.ymgme.2004.08.016 PMid:15464416 Yue G, Schröffel JJ, Moser G, Bartenschlager H, et al. (2003). Linkage and QTL mapping for Sus scrofa chromosome 12. J. Anim. Breed. Genet. 120: 95-102. http://dx.doi.org/10.1046/j.0931-2668.2003.00429.x Zuo B, Yang H, Wang J, Lei MG, et al. (2007a). Molecular characterization, sequence variation and association with fat deposition traits of ACOX1 gene in pigs. J. Anim. Feed Sci. 16: 433-444. Zuo B, Yang H, Lei MG, Li FE, et al. (2007b). Association of the polymorphism in GYS1 and ACOX1 genes with meat quality traits in pigs. Animal 1: 1243-1248. http://dx.doi.org/10.1017/S1751731107000523
C. Adoligbe, Zan, L. S., Wang, H. B., and Ujjan, J. A., A novel polymorphism of the GDF10 gene and its association with body measurement traits in Chinese indigenous cattle, vol. 10, pp. 988-995, 2011.
Cunningham NS, Jenkins NA, Gilbert DJ, Copeland NG, et al. (1995). Growth/differentiation factor-10: a new member of the transforming growth factor-beta superfamily related to bone morphogenetic protein-3. Growth Factors 12: 99-109. doi:10.3109/08977199509028956 PMid:8679252 Galdones E and Hales BF (2008). Retinoic acid receptor gamma-induced misregulation of chondrogenesis in the murine limb bud in vitro. Toxicol. Sci. 106: 223-232. doi:10.1093/toxsci/kfn169 PMid:18703560 Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499 Hino J, Takao M, Takeshita N, Konno Y, et al. (1996). cDNA cloning and genomic structure of human bone morphogenetic protein-3B (BMP-3b). Biochem. Biophys. Res. Commun. 223: 304-310. doi:10.1006/bbrc.1996.0889 PMid:8670277 Hino J, Matsuo H and Kangawa K (1999). Bone morphogenetic protein-3b (BMP-3b) gene expression is correlated with differentiation in rat calvarial osteoblasts. Biochem. Biophys. Res. Commun. 256: 419-424. doi:10.1006/bbrc.1999.0341 PMid:10079200 Hino J, Kangawa K, Matsuo H, Nohno T, et al. (2004). Bone morphogenetic protein-3 family members and their biological functions. Front. Biosci. 9: 1520-1529. doi:10.2741/1355 PMid:14977563 Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics. 8: 1075-1080. doi:10.2217/14622416.8.8.1075 PMid:17716239 Kurland CG (1991). Codon bias and gene expression. FEBS Lett. 285: 165-169. doi:10.1016/0014-5793(91)80797-7 Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. doi:10.1007/s11033-009-9604-5 PMid:19590978 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. doi:10.1073/pnas.76.10.5269 Sambrook J and Russell DW (2002). Molecular Cloning: A Laboratory Manual, 3rd edn. Science Press, Beijing. Shah JH, Maguire DJ, Munce TB and Cotterill A (2008). Alanine in HI: a silent mutation cries out! Adv. Exp. Med. Biol. 614: 145-150. doi:10.1007/978-0-387-74911-2_17 PMid:18290324 Takao M, Hino J, Takeshita N, Konno Y, et al. (1996). Identification of rat bone morphogenetic protein-3b (BMP-3b), a new member of BMP-3. Biochem. Biophys. Res. Commun. 219: 656-662. doi:10.1006/bbrc.1996.0289 PMid:8605043 Wozney JM, Rosen V, Celeste AJ, Mitsock LM, et al. (1988). Novel regulators of bone formation: molecular clones and activities. Science 242: 1528-1534. doi:10.1126/science.3201241 PMid:3201241 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. doi:10.1016/j.ab.2007.03.023 PMid:17449006 Zhao R, Lawler AM and Lee SJ (1999). Characterization of GDF-10 expression patterns and null mice. Dev. Biol. 212: 68-79. doi:10.1006/dbio.1999.9326 PMid:10419686 Zhong X, Zan LS, Wang HB and Liu YF (2010). Polymorphic CA microsatellites in the third exon of the bovine BMP4 gene. Genet. Mol. Res. 9: 868-874. doi:10.4238/vol9-2gmr732 PMid:20467979
M. Xue, Zan, L. S., Gao, L., and Wang, H. B., A novel polymorphism of the myogenin gene is associated with body measurement traits in native Chinese breeds, vol. 10, pp. 2721-2728, 2011.
Anton I, Fésüs L and Zsolnai A (2002). Simultaneous identification of two MspI polymorphisms of the porcine myogenin gene in Hungarian breeds. J. Anim. Breed. Genet. 119: 280-283. http://dx.doi.org/10.1046/j.1439-0388.2002.00343.x Bhuiyan MSA, Kim NK, Cho YM, Yoon D, et al. (2009). Identification of SNPs in MyoD gene family and their associations with carcass traits in cattle. Livest. Sci. 126: 292-297. http://dx.doi.org/10.1016/j.livsci.2009.05.019 Braun T, Buschhausen-Denker G, Bober E, Tannich E, et al. (1989). A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8: 701-709. PMid:2721498    PMCid:400865 Buckingham M, Bajard L, Chang T, Daubas P, et al. (2003). The formation of skeletal muscle: from somite to limb. J. Anat. 202: 59-68. http://dx.doi.org/10.1046/j.1469-7580.2003.00139.x PMid:12587921    PMCid:1571050 Casas E, Keele JW, Shackelford SD, Koohmaraie M, et al. (2004). Identification of quantitative trait loci for growth and carcass composition in cattle. Anim. Genet. 35: 2-6. http://dx.doi.org/10.1046/j.1365-2052.2003.01067.x PMid:14731222 Davis RL, Weintraub H and Lassar AB (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987-1000. http://dx.doi.org/10.1016/0092-8674(87)90585-X Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499 Hasty P, Bradley A, Morris JH, Edmondson DG, et al. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501-506. http://dx.doi.org/10.1038/364501a0 PMid:8393145 Kapelanski W, Grajewska S, Kuryl J, Bocian M, et al. (2005). Polymorphism in coding and non-coding regions of the MyoD gene family and meat quality in pigs. Folia Biol. 53: 45-49. http://dx.doi.org/10.3409/173491605775789506 Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8: 1075-1080. http://dx.doi.org/10.2217/14622416.8.8.1075 PMid:17716239 Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978 Mendez EA, Ernst CW and Rothschild MF (1997). Rapid communication: a novel DNA polymorphism of the porcine myogenin (MyoG) gene. J. Anim. Sci. 75: 1984. PMid:9222859 Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762 Olson EN (1990). MyoD family: a paradigm for development? Genes Dev. 4: 1454-1461. http://dx.doi.org/10.1101/gad.4.9.1454 Pas MF and Visscher AH (1994). Genetic regulation of meat production by embryonic muscle formation - a review. J. Anim. Breed. Genet. 111: 404-412. http://dx.doi.org/10.1111/j.1439-0388.1994.tb00477.x PMid:21395789 Qu L, Li X, Wu G and Yang N (2005). Efficient and sensitive method of DNA silver staining in polyacrylamide gels. Electrophoresis 26: 99-101. http://dx.doi.org/10.1002/elps.200406177 PMid:15624131 Rehfeldt C, Fiedler I, Dietl G and Ender K (2000). Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livest. Prod. Sci. 66: 177-188. http://dx.doi.org/10.1016/S0301-6226(00)00225-6 Shah JH, Maguire DJ, Munce TB and Cotterill A (2008). Alanine in HI: a silent mutation cries out! Adv. Exp. Med. Biol. 614: 145-150. http://dx.doi.org/10.1007/978-0-387-74911-2_17 PMid:18290324 Soumillion A, Erkens JH, Lenstra JA, Rettenberger G, et al. (1997). Genetic variation in the porcine myogenin gene locus. Mamm. Genome 8: 564-568. http://dx.doi.org/10.1007/s003359900504 PMid:9250861 Stickland NC and Handel SE (1986). The numbers and types of muscle fibres in large and small breeds of pigs. J. Anat. 147: 181-189. PMid:2961720    PMCid:1261556 te Pas MF, Soumillion A, Harders FL, Verburg FJ, et al. (1999). Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J. Anim. Sci. 77: 2352-2356. PMid:10492439 te Pas MF, Verburg FJ, Gerritsen CL and de Greef KH (2000). Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. J. Anim. Sci. 78: 69-77. PMid:10682804 Verner J, Humpolicek P and Knoll A (2007). Impact of MyoD family genes on pork traits in Large White and Landrace pigs. J. Anim. Breed. Genet. 124: 81-85. http://dx.doi.org/10.1111/j.1439-0388.2007.00639.x PMid:17488358 Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, et al. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. U. S. A. 86: 5434-5438. http://dx.doi.org/10.1073/pnas.86.14.5434 Weintraub H, Davis R, Tapscott S, Thayer M, et al. (1991). The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251: 761-766. http://dx.doi.org/10.1126/science.1846704 PMid:1846704 Wright WE, Sassoon DA and Lin VK (1989). Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56: 607-617. http://dx.doi.org/10.1016/0092-8674(89)90583-7 Wyszynska-Koko J, Pierzchala M, Flisikowski K, Kamyczek M, et al. (2006). Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs. J. Appl. Genet. 47: 131-138. http://dx.doi.org/10.1007/BF03194612 PMid:16682754 Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006
H. Wang, Zan, L. S., Wang, H. B., and Song, F. B., A novel SNP of the C/EBPα gene associated with superior meat quality in indigenous Chinese cattle, vol. 10, pp. 2069-2077, 2011.
Brethour JR (2000). Using serial ultrasound measures to generate models of marbling and backfat thickness changes in feedlot cattle. J. Anim. Sci. 78: 2055-2061. PMid:10947087 Chumakov AM, Grillier I, Chumakova E, Chih D, et al. (1997). Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor. Mol. Cell Biol. 17: 1375-1386. PMid:9032264    PMCid:231862 Constance CM, Morgan JI and Umek RM (1996). C/EBPalpha regulation of the growth-arrest-associated gene gadd45. Mol. Cell Biol. 16: 3878-3883. PMid:8668205    PMCid:231384 Freytag SO, Paielli DL and Gilbert JD (1994). Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 8: 1654-1663. http://dx.doi.org/10.1101/gad.8.14.1654 Graves BJ, Johnson PF and McKnight SL (1986). Homologous recognition of a promoter domain common to the MSV LTR and the HSV tk gene. Cell 44: 565-576. http://dx.doi.org/10.1016/0092-8674(86)90266-7 Hamlin KE, Green RD, Cundiff LV, Wheeler TL, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: II Relationship between real-time ultrasound measures and carcass retail yield. J. Anim. Sci. 73: 1725-1734. PMid:7673066 Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8: 1075-1080. http://dx.doi.org/10.2217/14622416.8.8.1075 PMid:17716239 Kurland CG (1991). Codon bias and gene expression. FEBS Lett. 285: 165-169. http://dx.doi.org/10.1016/0014-5793(91)80797-7 Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009 Lekstrom-Himes J and Xanthopoulos KG (1998). Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J. Biol. Chem. 273: 28545-28548. http://dx.doi.org/10.1074/jbc.273.44.28545 PMid:9786841 Lin FT and Lane MD (1992). Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. Genes Dev. 6: 533-544. http://dx.doi.org/10.1101/gad.6.4.533 Lin FT, MacDougald OA, Diehl AM and Lane MD (1993). A 30-kDa alternative translation product of the CCAAT/ enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc. Natl. Acad. Sci. U. S. A. 90: 9606-9610. http://dx.doi.org/10.1073/pnas.90.20.9606 Liu YF, Zan LS, Li K, Zhao SP, et al. (2009). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978 MacDougald OA and Lane MD (1995). Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64: 345-373. http://dx.doi.org/10.1146/annurev.bi.64.070195.002021 PMid:7574486 McKnight SL, Lane MD and Gluecksohn-Waelsch S (1989). Is CCAAT/enhancer-binding protein a central regulator of energy metabolism? Genes Dev. 3: 2021-2024. http://dx.doi.org/10.1101/gad.3.12b.2021 Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762 Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472    PMCid:1213072 Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Park EA, Roesler WJ, Liu J, Klemm DJ, et al. (1990). The role of the CCAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP). Mol. Cell Biol. 10: 6264-6272. PMid:2147222    PMCid:362901 Simon CW, Cantwell CA and Johnson PF (1991). A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Gene Dev. 5: 1553-1567. http://dx.doi.org/10.1101/gad.5.9.1553 Tang XY, Xu XL, Qian YZ and Jia Y (2006). Improvement of marbling grading system for Chinese beef. Sci. Agric. Sin. 39: 2101-2106. Wall PB, Rouse GH, Wilson DE, Tait RG Jr, et al. (2004). Use of ultrasound to predict body composition changes in steers at 100 and 65 days before slaughter. J. Anim. Sci. 82: 1621-1629. PMid:15216987 Wang ND, Finegold MJ, Bradley A, Ou CN, et al. (1995). Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269: 1108-1112. http://dx.doi.org/10.1126/science.7652557 PMid:7652557 Wu Z, Rosen ED, Brun R, Hauser S, et al. (1999). Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3: 151-158. http://dx.doi.org/10.1016/S1097-2765(00)80306-8 Yang D, Zan L, Wang H, Ma Y, et al. (2009). Genetic variation of calsarcin-1 gene and association with carcass traits in 3 Chinese indigenous cattle. Afr. J. Biotechnol. 8: 2713-2717. Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006 Zhou GH, Sun BZ, Xu XL and Liu L (2010). NY/T676-Beef Quality Grading. Nanjing Agricultural University, Ministry of Agriculture, Nanjing.
L. Gao, Zan, L. S., Wang, H. B., Hao, R. J., and Zhong, X., Polymorphism of somatostatin gene and its association with growth traits in Chinese cattle, vol. 10, pp. 703-711, 2011.
Andrews PC, Pollock HG, Elliott WM, Youson JH, et al. (1988). Isolation and characterization of a variant somatostatin-14 and two related somatostatins of 34 and 37 residues from lamprey (Petromyzon marinus). J. Biol. Chem. 263: 15809-15814. PMid:2902094 Bruno JF, Xu Y, Song J and Berelowitz M (1992). Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc. Natl. Acad. Sci. U. S. A. 89: 11151-11155. doi:10.1073/pnas.89.23.11151 Butler AA and Le Roith D (2001). Control of growth by the somatropic axis: growth hormone and the insulin-like growth factors have related and independent roles. Annu. Rev. Physiol. 63: 141-164. doi:10.1146/annurev.physiol.63.1.141 PMid:11181952 Byun SO, Fang Q, Zhou H and Hickford JG (2008). Rapid genotyping of the ovine ADRB3 gene by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP). Mol. Cell Probes 22: 69-70. doi:10.1016/j.mcp.2007.08.005 PMid:17936579 Canosa LF, Chang JP and Peter RE (2007). Neuroendocrine control of growth hormone in fish. Gen. Comp. Endocrinol. 151: 1-26. doi:10.1016/j.ygcen.2006.12.010 PMid:17286975 Devos N, Deflorian G, Biemar F, Bortolussi M, et al. (2002). Differential expression of two somatostatin genes during zebrafish embryonic development. Mech. Dev. 115: 133-137. doi:10.1016/S0925-4773(02)00082-5 Heaton MP, Harhay GP, Bennett GL, Stone RT, et al. (2002). Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mamm. Genome 13: 272-281. doi:10.1007/s00335-001-2146-3 PMid:12016516 Kang TC, Park SK, Do SG, Suh JG, et al. (2000). The over-expression of somatostatin in the gerbil entorhinal cortex induced by seizure. Brain Res. 882: 55-61. doi:10.1016/S0006-8993(00)02824-9 Kubota A, Yamada Y, Kagimoto S, Shimatsu A, et al. (1994). Identification of somatostatin receptor subtypes and an implication for the efficacy of somatostatin analogue SMS 201-995 in treatment of human endocrine tumors. J. Clin. Invest. 93: 1321-1325. doi:10.1172/JCI117090 PMid:8132773    PMCid:294095 Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12. doi:10.1016/j.smallrumres.2006.10.009 Liu Y, Lu D, Zhang Y, Li S, et al. (2010). The evolution of somatostatin in vertebrates. Gene 463: 21-28. doi:10.1016/j.gene.2010.04.016 PMid:20472043 Patel YC (1999). Somatostatin and its receptor family. Front. Neuroendocrinol. 20: 157-198. doi:10.1006/frne.1999.0183 PMid:10433861 Planas JV, Mendez E, Baños N, Capilla E, et al. (2000). Fish insulin, IGF-I and IGF-II receptors: a phylogenetic approach. Am. Zool. 40: 223-233. doi:10.1668/0003-1569(2000)040[0223:FIIIAI]2.0.CO;2 Qu L, Li X, Wu G and Yang N (2005). Efficient and sensitive method of DNA silver staining in polyacrylamide gels. Electrophoresis 26: 99-101. doi:10.1002/elps.200406177 PMid:15624131 Reichlin S (1983). Somatostatin. N. Engl. J. Med. 309: 1495-1501, 1556-1563. doi:10.1056/NEJM198312153092406 PMid:6139753 Tostivint H, Lihrmann I and Vaudry H (2008). New insight into the molecular evolution of the somatostatin family. Mol. Cell Endocrinol. 286: 5-17. doi:10.1016/j.mce.2008.02.029 PMid:18406049 Very NM and Sheridan MA (2002). The role of somatostatins in the regulation of growth in fish. Fish Physiol. Biochem. 27: 217-226. doi:10.1023/B:FISH.0000032727.75493.e8 Werner FA, Durstewitz G, Habermann FA, Thaller G, et al. (2004). Detection and characterization of SNPs useful for identity control and parentage testing in major European dairy breeds. Anim. Genet. 35: 44-49. doi:10.1046/j.1365-2052.2003.01071.x PMid:14731229 Yamada Y, Stoffel M, Espinosa R III, Xiang KS, et al. (1993). Human somatostatin receptor genes: localization to human chromosomes 14, 17, and 22 and identification of simple tandem repeat polymorphisms. Genomics 15: 449-452. doi:10.1006/geno.1993.1088 PMid:8449518
2010
Y. Jiao, Zan, L. S., Liu, Y. F., Wang, H. B., and Guo, B. L., A novel polymorphism of the MYPN gene and its association with meat quality traits in Bos taurus, vol. 9, pp. 1751-1758, 2010.
Bang ML, Mudry RE, McElhinny AS, Trombitas K, et al. (2001). Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J. Cell Biol. 153: 413-427. http://dx.doi.org/10.1083/jcb.153.2.413 PMid:11309420 PMCid:2169455   Brethour JR (1994). Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures. J. Anim. Sci. 72: 1425-1432. PMid:8071165   Davoli R, Braglia S, Lama B, Fontanesi L, et al. (2003). Mapping, identification of polymorphisms and analysis of allele frequencies in the porcine skeletal muscle myopalladin and titin genes. Cytogenet. Genome Res. 102: 152-156. http://dx.doi.org/10.1159/000075741 PMid:14970695   Du DS, Zhai LW, Xu DA and Wang CD (2009). SNPs detection of EPOR & MYPN gene and association with meat quality traits in porcine. Acta Vet. Zootech. Sin. 36: 80-83.   Duboscq-Bidot L, Xu P, Charron P, Neyroud N, et al. (2008). Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res. 77: 118-125. http://dx.doi.org/10.1093/cvr/cvm015 PMid:18006477   Gilbert R, Cohen JA, Pardo S, Basu A, et al. (1999). Identification of the A-band localization domain of myosin binding proteins C and H (MyBP-C, MyBP-H) in skeletal muscle. J. Cell. Sci. 112 (Pt 1): 69-79. PMid:9841905   Hamlin KE, Green RD, Cundiff LV, Wheeler TL, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: II. Relationship between real-time ultrasound measures and carcass retail yield. J. Anim. Sci. 73: 1725-1734. PMid:7673066   Knoll R, Hoshijima M and Chien KR (2002). Z-line proteins: implications for additional functions. Eur. Heart J. Suppl. 4: I-13-I-17. http://dx.doi.org/10.1016/S1520-765X(02)90105-7   Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978   Ma K and Wang K (2002). Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin. FEBS Lett. 532: 273-278. http://dx.doi.org/10.1016/S0014-5793(02)03655-4   McElhinny AS, Schwach C, Valichnac M, Mount-Patrick S, et al. (2003). Nebulin: the nebulous, multifunctional giant of striated muscle. Trends Cardiovasc. Med. 13: 195-201. http://dx.doi.org/10.1016/S1050-1738(03)00076-8   Mestroni L (2009). Phenotypic heterogeneity of sarcomeric gene mutations: a matter of gain and loss? J. Am. Coll. Cardiol. 54: 343-345. http://dx.doi.org/10.1016/j.jacc.2009.04.029 PMid:19608032 PMCid:2756576   Mullenbach R, Lagoda PJ and Welter C (1989). An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 5: 391. PMid:2623762   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Ohtsuka H, Yajima H, Maruyama K and Kimura S (1997). Binding of the N-terminal 63 kDa portion of connectin/titin to alpha-actinin as revealed by the yeast two-hybrid system. FEBS Lett. 401: 65-67. http://dx.doi.org/10.1016/S0014-5793(96)01432-9   Otey CA, Rachlin A, Moza M, Arneman D, et al. (2005). The palladin/myotilin/myopalladin family of actin-associated scaffolds. Int. Rev. Cytol. 246: 31-58. http://dx.doi.org/10.1016/S0074-7696(05)46002-7   Parast MM and Otey CA (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. J. Cell. Biol. 150: 643-656. http://dx.doi.org/10.1083/jcb.150.3.643 PMid:10931874 PMCid:2175193   Salmikangas P, Mykkanen OM, Gronholm M, Heiska L, et al. (1999). Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum. Mol. Genet. 8: 1329-1336. http://dx.doi.org/10.1093/hmg/8.7.1329 PMid:10369880   Silvia MG, Daniel A and Carol AO (2008). The role of palladin in actin organization and cell motility. Cell Biol. 87: 517-525.   Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, et al. (1997). Tissue-specific expression and alpha-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J. Mol. Biol. 270: 688-695. http://dx.doi.org/10.1006/jmbi.1997.1145 PMid:9245597   Vaughan KT, Weber FE and Fischman DA (1992). cDNA cloning and sequence comparisons of human and chicken muscle C-protein and 86 kD protein. Symp. Soc. Exp. Biol. 46: 167-177. PMid:1341033   Wang C, Huang ZH and Zhang XQ (2007). Analysis on associations of myopalladin gene polymorphisms with carcass traits in pigs. Acta Vet. Zootech. Sin. 38: 760-764.   Wimmers K, Murani E, Te Pas MF, Chang KC, et al. (2007). Associations of functional candidate genes derived from gene-expression profiles of prenatal porcine muscle tissue with meat quality and muscle deposition. Anim. Genet. 38: 474-484. http://dx.doi.org/10.1111/j.1365-2052.2007.01639.x PMid:17697135   Young P, Ferguson C, Banuelos S and Gautel M (1998). Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J. 17: 1614-1624. http://dx.doi.org/10.1093/emboj/17.6.1614 PMid:9501083 PMCid:1170509
X. Zhong, Zan, L. S., Wang, H. B., and Liu, Y. F., Polymorphic CA microsatellites in the third exon of the bovine BMP4 gene, vol. 9, pp. 868-874, 2010.
Bellusci S, Henderson R, Winnier G, Oikawa T, et al. (1996). Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development 122: 1693-1702. PMid:8674409   Biet E, Sun J and Dutreix M (1999). Conserved sequence preference in DNA binding among recombination proteins: an effect of ssDNA secondary structure. Nucleic Acids Res. 27: 596-600. http://dx.doi.org/10.1093/nar/27.2.596 PMid:9862985 PMCid:148220   De Smit MH and van Duin J (1994). Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244: 144-150. http://dx.doi.org/10.1006/jmbi.1994.1714 PMid:7966326   Fang X, Xu H, Zhang C, Chen H, et al. (2009). Polymorphism in BMP4 gene and its association with growth traits in goats. Mol. Biol. Rep. 36: 1339-1344. http://dx.doi.org/10.1007/s11033-008-9317-1 PMid:18642131   Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499   Hogan BL (1996). Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10: 1580-1594. http://dx.doi.org/10.1101/gad.10.13.1580 PMid:8682290   Jeffreys AJ, Murray J and Neumann R (1998). High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol. Cell 2: 267-273. http://dx.doi.org/10.1016/S1097-2765(00)80138-0   Karlin S, Campbell AM and Mrazek J (1998). Comparative DNA analysis across diverse genomes. Annu. Rev. Genet. 32: 185-225. http://dx.doi.org/10.1146/annurev.genet.32.1.185 PMid:9928479   Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978   Mangino M, Torrente I, De Luca A, Sanchez O, et al. (1999). A single-nucleotide polymorphism in the human bone morphogenetic protein-4 (BM 4) gene. J. Hum. Genet. 44: 76-77. http://dx.doi.org/10.1007/s100380050113 PMid:9929985   Massague J (1998). TGF-beta signal transduction. Annu. Rev. Biochem. 67: 753-791. http://dx.doi.org/10.1146/annurev.biochem.67.1.753 PMid:9759503   Miyazaki Y, Oshima K, Fogo A, Hogan BL, et al. (2000). Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Invest. 105: 863-873. http://dx.doi.org/10.1172/JCI8256 PMid:10749566 PMCid:377476   Nakase T, Nomura S, Yoshikawa H, Hashimoto J, et al. (1994). Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing. J. Bone Miner. Res. 9: 651-659. http://dx.doi.org/10.1002/jbmr.5650090510 PMid:8053394   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Ramesh BL, Wilson SG, Dick IM, Islam FM, et al. (2005). Bone mass effects of a BMP4 gene polymorphism in postmenopausal women. Bone 36: 555-561. http://dx.doi.org/10.1016/j.bone.2004.12.005 PMid:15777683   Sambrook J and Russell DW (2002). Molecular Cloning. A Laboratory Manual. 3rd edn. Sci. Press, Beijing.   Shafritz AB and Kaplan FS (1998). Differential expression of bone and cartilage related genes in fibrodysplasia ossificans progressiva, myositis ossificans traumatica, and osteogenic sarcoma. Clin. Orthop. Relat. Res. 346: 46-52. http://dx.doi.org/10.1097/00003086-199801000-00008 PMid:9577409   Templeton AR, Clark AG, Weiss KM, Nickerson DA, et al. (2000). Recombinational and mutational hotspots within the human lipoprotein lipase gene. Am. J. Hum. Genet. 66: 69-83. http://dx.doi.org/10.1086/302699 PMid:10631137 PMCid:1288350   Urist MR (1965). Bone: formation by autoinduction. Science 150: 893-899. http://dx.doi.org/10.1126/science.150.3698.893 PMid:5319761   Winnier G, Blessing M, Labosky PA and Hogan BL (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9: 2105-2116. http://dx.doi.org/10.1101/gad.9.17.2105 PMid:7657163   Wozney JM, Rosen V, Celeste AJ, Mitsock LM, et al. (1988). Novel regulators of bone formation: molecular clones and activities. Science 242: 1528-1534. http://dx.doi.org/10.1126/science.3201241 PMid:3201241   Zhang CL, Wang Y, Chen H, Lan XY, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006