Publications

Found 6 results
Filters: Author is Y.X. Qi  [Clear All Filters]
2016
Y. X. Qi, Zhang, X. H., Wang, Y. Q., Pang, Y. Z., Zhang, Z. B., Zhang, T. L., Zhang, Z. X., Qi, Y. X., Zhang, X. H., Wang, Y. Q., Pang, Y. Z., Zhang, Z. B., Zhang, T. L., and Zhang, Z. X., Expression of MMP-1, -2, and -8 in longissimus dorsi muscle and their relationship with meat quality traits in cattle, vol. 15, p. -, 2016.
Y. X. Qi, Zhang, X. H., Wang, Y. Q., Pang, Y. Z., Zhang, Z. B., Zhang, T. L., Zhang, Z. X., Qi, Y. X., Zhang, X. H., Wang, Y. Q., Pang, Y. Z., Zhang, Z. B., Zhang, T. L., and Zhang, Z. X., Expression of MMP-1, -2, and -8 in longissimus dorsi muscle and their relationship with meat quality traits in cattle, vol. 15, p. -, 2016.
L. Zheng, Qi, Y. X., Liu, S., Shi, M. L., and Yang, W. P., miR-129b suppresses cell proliferation in the human lung cancer cell lines A549 and H1299, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe thank all of our lab members for helpful discussions and critical comments on this study. Research supported by the People’s Hospital of Laiwu City, and was approved by the Medical Scientific Research Foundation of Guangdong Province (Grant #B2014360) as well as the Scientific Research Project of Shenzhen Health Bureau (Grant #201402043) REFERENCESAlmeida MI, Reis RM, Calin GA, et al (2011). MicroRNA history: discovery, recent applications, and next frontiers. Mutat. Res. 717: 1-8. http://dx.doi.org/10.1016/j.mrfmmm.2011.03.009 Bandres E, Agirre X, Bitarte N, Ramirez N, et al (2009). Epigenetic regulation of microRNA expression in colorectal cancer. Int. J. Cancer 125: 2737-2743. http://dx.doi.org/10.1002/ijc.24638 Calin GA, Sevignani C, Dumitru CD, Hyslop T, et al (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101: 2999-3004. http://dx.doi.org/10.1073/pnas.0307323101 Chen X, Zhang L, Zhang T, Hao M, et al (2013). Methylation-mediated repression of microRNA 129-2 enhances oncogenic SOX4 expression in HCC. Liver Int. 33: 476-486. http://dx.doi.org/10.1111/liv.12097 Di Leva G, Croce CM, et al (2010). Roles of small RNAs in tumor formation. Trends Mol. Med. 16: 257-267. http://dx.doi.org/10.1016/j.molmed.2010.04.001 Garzon R, Calin GA, Croce CM, et al (2009). MicroRNAs in Cancer. Annu. Rev. Med. 60: 167-179. http://dx.doi.org/10.1146/annurev.med.59.053006.104707 Hayashita Y, Osada H, Tatematsu Y, Yamada H, et al (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65: 9628-9632. http://dx.doi.org/10.1158/0008-5472.CAN-05-2352 Hu Z, Chen X, Zhao Y, Tian T, et al (2010). Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J. Clin. Oncol. 28: 1721-1726. http://dx.doi.org/10.1200/JCO.2009.24.9342 Inamura K, Togashi Y, Nomura K, Ninomiya H, et al (2007). let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung Cancer 58: 392-396. http://dx.doi.org/10.1016/j.lungcan.2007.07.013 Johnson SM, Grosshans H, Shingara J, Byrom M, et al (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635-647. http://dx.doi.org/10.1016/j.cell.2005.01.014 Karaayvaz M, Zhai H, Ju J, et al (2013). miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis. 4: e659. http://dx.doi.org/10.1038/cddis.2013.193 Katada T, Ishiguro H, Kuwabara Y, Kimura M, et al (2009). microRNA expression profile in undifferentiated gastric cancer. Int. J. Oncol. 34: 537-542. Krol J, Loedige I, Filipowicz W, et al (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11: 597-610. Liu Y, Hei Y, Shu Q, Dong J, et al (2012). VCP/p97, down-regulated by microRNA-129-5p, could regulate the progression of hepatocellular carcinoma. PLoS One 7: e35800. http://dx.doi.org/10.1371/journal.pone.0035800 Lu CY, Lin KY, Tien MT, Wu CT, et al (2013). Frequent DNA methylation of MiR-129-2 and its potential clinical implication in hepatocellular carcinoma. Genes Chromosomes Cancer 52: 636-643. Malvezzi M, Bertuccio P, Levi F, La Vecchia C, et al (2013). European cancer mortality predictions for the year 2013. Ann. Oncol. 24: 792-800. http://dx.doi.org/10.1093/annonc/mdt010 Munker R, Calin GA, et al (2011). MicroRNA profiling in cancer. Clin. Sci. 121: 141-158. http://dx.doi.org/10.1042/CS20110005 Poghosyan H, Sheldon LK, Leveille SG, Cooley ME, et al (2013). Health-related quality of life after surgical treatment in patients with non-small cell lung cancer: a systematic review. Lung Cancer 81: 11-26. http://dx.doi.org/10.1016/j.lungcan.2013.03.013 Siegel R, Naishadham D, Jemal A, et al (2013). Cancer statistics, 2013. CA Cancer J. Clin. 63: 11-30. http://dx.doi.org/10.3322/caac.21166 Spira A, Ettinger DS, et al (2004). Multidisciplinary management of lung cancer. N. Engl. J. Med. 350: 379-392. http://dx.doi.org/10.1056/NEJMra035536 Takamizawa J, Konishi H, Yanagisawa K, Tomida S, et al (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64: 3753-3756. http://dx.doi.org/10.1158/0008-5472.CAN-04-0637 Tsai KW, Wu CW, Hu LY, Li SC, et al (2011). Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int. J. Cancer 129: 2600-2610. http://dx.doi.org/10.1002/ijc.25919 Wang R, Wang ZX, Yang JS, Pan X, et al (2011). MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 30: 2644-2658. http://dx.doi.org/10.1038/onc.2010.642 Yanaihara N, Caplen N, Bowman E, Seike M, et al (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189-198. http://dx.doi.org/10.1016/j.ccr.2006.01.025 Yu X, Song H, Xia T, Han S, et al (2013). Growth inhibitory effects of three miR-129 family members on gastric cancer. Gene 532: 87-93. http://dx.doi.org/10.1016/j.gene.2013.09.048 Zhang HC, Song YF, Ye J, Lai GX, et al. (2016). MicroRNA-154 functions as a tumor suppressor and directly targets HMGA2 in human non-small cell lung cancer. Genet. Mol. Res. 15: gmr.15028173. Zhang J, Xue ZQ, Chu XY, Wang YX, et al (2012). Surgical treatment and prognosis of octogenarians with non-small cell lung cancer. Asian Pac. J. Trop. Med. 5: 465-468. http://dx.doi.org/10.1016/S1995-7645(12)60079-0 Zhou X, Zhang L, Zheng B, Yan Y, et al (2016). MicroRNA-761 is upregulated in hepatocellular carcinoma and regulates tumorigenesis by targeting Mitofusin-2. Cancer Sci. 107: 424-432. http://dx.doi.org/10.1111/cas.12904  
2011
Y. Lu, Xu, W. H., Xie, Y. X., Zhang, X., Pu, J. J., Qi, Y. X., and Li, H. P., Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas, vol. 10, pp. 3098-3108, 2011.
Aarts MG, te Lintel HB, Holub EB, Beynon JL, et al. (1998). Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol. Plant Microbe Interact. 11: 251-258. http://dx.doi.org/10.1094/MPMI.1998.11.4.251 PMid:9530866 Agrios GN (1997). Plant Pathology. 4th edn. Academic Press, New York. Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694    PMCid:146917 Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, et al. (1997). Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9: 641-651. PMid:9144966    PMCid:156945 Bai J, Pennill LA, Ning J, Lee SW, et al. (2002). Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 12: 1871-1884. http://dx.doi.org/10.1101/gr.454902 PMid:12466291    PMCid:187567 Bailey TL and Elkan C (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2: 28-36. PMid:7584402 Bent AF, Kunkel BN, Dahlbeck D, Brown KL, et al. (1994). RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265: 1856-1860. http://dx.doi.org/10.1126/science.8091210 PMid:8091210 Carlier J, Fouré E, Gauhl F and Jones DR (2000). Fungal Diseases of the Foliage. In: Diseases of Banana Abacá and Enset (Jones DR, ed.). CABI Publishing, Wallingford, 37-141. Dixon MS, Jones DA, Keddie JS, Thomas CM, et al. (1996). The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84: 451-459. http://dx.doi.org/10.1016/S0092-8674(00)81290-8 Eddy SR (2007). HMMER: Profile Hidden Markov Models for Biological Sequence Analysis. Available at [http://hmmer.janelia.org]. Accessed March 15, 2010. FAO (2005). (Food and Agricultural Organization). Available at [http://www.fao.org/lim500/nphwrap.pi?productioncrops. primary&Domain=SUA&]. Accessed December 3, 2009. Feuillet C, Schachermayr G and Keller B (1997). Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J. 11: 45-52. http://dx.doi.org/10.1046/j.1365-313X.1997.11010045.x PMid:9025301 Grant MR, Godiard L, Straube E, Ashfield T, et al. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269: 843-846. http://dx.doi.org/10.1126/science.7638602 PMid:7638602 Jeong SC, Hayes AJ, Biyashev RM and Saghai MMA (2001). Diversity and evolution of a non-TIR-NBS sequence family that clusters to a chromosomal “hotspot” for disease resistance genes in soybean. Theor. Appl. Genet. 103: 406-414. http://dx.doi.org/10.1007/s001220100567 Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, et al. (1994). Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789-793. http://dx.doi.org/10.1126/science.7973631 PMid:7973631 Jones DR (2000). Introduction of Banana. In: Diseases of Banana, Abacá and Enset (Jones DR, ed.). CABI Publishing, Wallingford, 1-36. Joshi RK, Mohanty S, Subudhi E and Nayak S (2010). Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama). Genet. Mol. Res. 9: 1796-1806. http://dx.doi.org/10.4238/vol9-3gmr910 PMid:20830672 Lawrence GJ, Finnegan EJ, Ayliffe MA and Ellis JG (1995). The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7: 1195-1206. PMid:7549479    PMCid:160944 Leister D, Kurth J, Laurie DA, Yano M, et al. (1999). RFLP- and physical mapping of resistance gene homologues in rice (O. sative) and Barley (H. vulgare). Theor. Appl. Genet. 98: 509-520. http://dx.doi.org/10.1007/s001220051099 Marín DH, Romero RA, Guzmán M and Sutton TB (2003). Black sigatoka: an increasing threat to banana cultivation. Plant Disease 87: 208-222. http://dx.doi.org/10.1094/PDIS.2003.87.3.208 Martín GB, Brommonschenkel SH, Chunwongse J, Frary A, et al. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432-1436. http://dx.doi.org/10.1126/science.7902614 PMid:7902614 Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, et al. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20: 317-332. http://dx.doi.org/10.1046/j.1365-313X.1999.t01-1-00606.x PMid:10571892 Meyers BC, Morgante M and Michelmore RW (2002). TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J. 32: 77-92. http://dx.doi.org/10.1046/j.1365-313X.2002.01404.x PMid:12366802 Michelmore R (2000). Genomic approaches to plant disease resistance. Curr. Opin. Plant Biol. 3: 125-131. http://dx.doi.org/10.1016/S1369-5266(99)00050-3 Michelmore RW and Meyers BC (1998). Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8: 1113-1130. PMid:9847076 Noel L, Moores TL, van Der Biezen EA, Parniske M, et al. (1999). Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11: 2099-2112. PMid:10559437    PMCid:144120 Ori N, Eshed Y, Paran I, Presting G, et al. (1997). The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9: 521-532. PMid:9144960    PMCid:156936 Page RD (1996). TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358. PMid:8902363 Pan Q, Wendel J and Fluhr R (2000). Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50: 203-213. PMid:10754062 Pei X, Li S, Jiang Y, Zhang Y, et al. (2007). Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Plant Sci. 172: 1166-1174. http://dx.doi.org/10.1016/j.plantsci.2007.02.019 Penuela S, Danesh D and Young ND (2002). Targeted isolation, sequence analysis, and physical mapping of nonTIR NBS-LRR genes in soybean. Theor. Appl. Genet. 104: 261-272. http://dx.doi.org/10.1007/s00122-001-0785-0 Peraza-Echeverria S, James-Kay A, Canto-Canche B and Castillo-Castro E (2007). Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana. Mol. Genet. Genom. 278: 443-453. http://dx.doi.org/10.1007/s00438-007-0262-9 PMid:17587056 Robert NGM, David JB, Franc CB, Candice MRS, et al. (2008). Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acaminata Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol. 8: 15. http://dx.doi.org/10.1186/1471-2229-8-15 PMid:18234103    PMCid:2262081 Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. PMid:3447015 Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, et al. (1996). Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86: 123-133. http://dx.doi.org/10.1016/S0092-8674(00)80083-5 Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor, USA, Cold Spring Harbor Laboratory, New York. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, et al. (1996). Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768. http://dx.doi.org/10.1126/science.274.5288.765 PMid:8864112 Song WY, Wang GL, Chen LL, Kim HS, et al. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804-1806. http://dx.doi.org/10.1126/science.270.5243.1804 PMid:8525370 Staden R (1996). The Staden sequence analysis package. Mol. Biotechnol. 5: 233-241. http://dx.doi.org/10.1007/BF02900361 PMid:8837029 Tai TH, Dahlbeck D, Clark ET, Gajiwala P, et al. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. U. S. A. 96: 14153-14158. http://dx.doi.org/10.1073/pnas.96.24.14153 Thevissen K, Cammue BP, Lemaire K, Winderickx J, et al. (2000). A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc. Natl. Acad. Sci. U. S. A. 97: 9531-9536. http://dx.doi.org/10.1073/pnas.160077797 PMid:10931938 van Der Biezen EA and Jones JD (1998). The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8: R226-R227. http://dx.doi.org/10.1016/S0960-9822(98)70145-9 Wang ZX, Yano M, Yamanouchi U, Iwamoto M, et al. (1999). The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19: 55-64. http://dx.doi.org/10.1046/j.1365-313X.1999.00498.x PMid:10417726 Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, et al. (1994). The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101-1115. http://dx.doi.org/10.1016/0092-8674(94)90283-6 Wiame L, Swennen R and Sági L (2000). PCR-based cloning of candidate disease resistance genes from banana (Musa acuminata). Acta Hortic. 521: 51-57. Xie YB, Tang DZ, Zhang YS and Li WM (1998). Isolation of homologous sequences of R gene from rice. Chin. Sci. Bull. 43: 277-281. Yamanashi Y, Okada M, Semba T, Yamori T, et al. (1993). Identification of HS1 protein as a major substrate of protein-tyrosine kinase(s) upon B-cell antigen receptor-mediated signaling. Proc. Natl. Acad. Sci. U. S. A. 90: 3631-3635. http://dx.doi.org/10.1073/pnas.90.8.3631 Yoshimura S, Yamanouchi U, Katayose Y, Toki S, et al. (1998). Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. 95: 1663-1668. http://dx.doi.org/10.1073/pnas.95.4.1663