Publications

Found 3 results
Filters: Author is M.H. Hou  [Clear All Filters]
2011
Z. H. Ju, Li, Q. L., Huang, J. M., Hou, M. H., Li, R. L., Li, J. B., Zhong, J. F., and Wang, C. F., Three novel SNPs of the bovine Tf gene in Chinese native cattle and their associations with milk production traits, vol. 10, pp. 340-352, 2011.
Ardehali R, Shi L, Janatova J, Mohammad SF, et al. (2003). The inhibitory activity of serum to prevent bacterial adhesion is mainly due to apo-transferrin. J. Biomed. Mater. Res. A 66: 21-28. http://dx.doi.org/10.1002/jbm.a.10493 PMid:12833427   Ashton GC, Fallon GR and Suthcrland DN (1964). Transferrin (β-globulin) type and milk and butterfat production in dairy cows. J. Agric. Sci. 62: 27-34. http://dx.doi.org/10.1017/S0021859600059736   Bashirullah A, Cooperstock RL and Lipshitz HD (2001). Spatial and temporal control of RNA stability. Proc. Natl. Acad. Sci. U. S. A. 98: 7025-7028. http://dx.doi.org/10.1073/pnas.111145698 PMid:11416182 PMCid:34617   Beckman L and Beckman G (1986). Transferrin C2 as an enhancer of cyto- and genotoxic damage. Prog. Clin. Biol. Res. 209B: 221-224. PMid:3749080   Bond R, Kim JY and Lloyd DH (2005). Bovine and canine transferrin inhibit the growth of Malassezia pachydermatis in vitro. Med. Mycol. 43: 447-451. http://dx.doi.org/10.1080/13693780400020154 PMid:16178374   Brandon RB, Giffard JM and Bell K (1999). Single nucleotide polymorphisms in the equine transferrin gene. Anim. Genet. 30: 439-443. http://dx.doi.org/10.1046/j.1365-2052.1999.00546.x PMid:10612233   Casas E, Keele JW, Shackelford SD, Koohmaraie M, et al. (2004). Identification of quantitative trait loci for growth and carcass composition in cattle. Anim. Genet. 35: 2-6. http://dx.doi.org/10.1046/j.1365-2052.2003.01067.x PMid:14731222   Chaneton L, Tirante L, Maito J, Chaves J, et al. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91: 1865-1873. http://dx.doi.org/10.3168/jds.2007-0732 PMid:18420617   Chowdhary BP, Raudsepp T, Fronicke L and Scherthan H (1998). Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res. 8: 577-589. PMid:9647633   Douabin-Gicquel V, Soriano N, Ferran H, Wojcik F, et al. (2001). Identification of 96 single nucleotide polymorphisms in eight genes involved in iron metabolism: efficiency of bioinformatic extraction compared with a systematic sequencing approach. Hum. Genet. 109: 393-401. http://dx.doi.org/10.1007/s004390100599 PMid:11702220   Enns CA and Sussman HH (1981). Physical characterization of the transferrin receptor in human placentae. J. Biol. Chem. 256: 9820-9823. PMid:6268632   Fallin D, Cohen A, Essioux L, Chumakov I, et al. (2001). Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Res. 11: 143-151. http://dx.doi.org/10.1101/gr.148401 PMid:11156623 PMCid:311030   Fletcher J and Huehns ER (1968). Function of transferrin. Nature 218: 1211-1214. http://dx.doi.org/10.1038/2181211a0 PMid:5656647   Gahne B, Juneja RK and Grolmus J (1977). Horizontal polyacrylamide gradient gel electrophoresis for the simultaneous phenotyping of transferrin, post-transferrin, albumin and post-albumin in the blood plasma of cattle. Anim. Blood Groups Biochem. Genet. 8: 127-137. http://dx.doi.org/10.1111/j.1365-2052.1977.tb01637.x PMid:603096   Heringstad B, Klemetsdal G and Ruane J (2000). Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livest. Prod. Sci. 64: 95-106. http://dx.doi.org/10.1016/S0301-6226(99)00128-1   Huang J, Wang H, Wang C, Li J, et al. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol. Biol. Rep. 37: 477-483. http://dx.doi.org/10.1007/s11033-009-9669-1 PMid:19672694   Jansen RP (2001). mRNA localization: message on the move. Nat. Rev. Mol. Cell. Biol. 2: 247-256. http://dx.doi.org/10.1038/35067016 PMid:11283722   Kappes SM, Keele JW, Stone RT, McGraw RA, et al. (1997). A second-generation linkage map of the bovine genome. Genome Res. 7: 235-249. http://dx.doi.org/10.1101/gr.7.3.235 PMid:9074927   Khatib H, Zaitoun I, Chang YM, Maltecca C, et al. (2007). Evaluation of association between polymorphism within the thyroglobulin gene and milk production traits in dairy cattle. J. Anim. Breed. Genet. 124: 26-28. http://dx.doi.org/10.1111/j.1439-0388.2007.00634.x PMid:17302957   Kmiec M (1998). Transferyna- bia ko pe niace wiele ról w organizmie. Przegl. Hodowlany 1: 8-9.   Kruglyak L (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22: 139-144. http://dx.doi.org/10.1038/9642 PMid:10369254   Lambert LA, Perri H, Halbrooks PJ and Mason AB (2005). Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 142: 129-141. http://dx.doi.org/10.1016/j.cbpb.2005.07.007 PMid:16111909   Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62. http://dx.doi.org/10.1186/1471-2105-6-62 PMid:15780134 PMCid:1274258   Liu W, Wang J, Li Q, Ju Z, et al. (2010). Correlation analysis between three novel SNPs of the Src gene in bovine and milk production traits. Mol. Biol. Rep. 37: 3771-3777. http://dx.doi.org/10.1007/s11033-010-0031-4 PMid:20213510   MacGillivray RT, Mendez E, Sinha SK, Sutton MR, et al. (1982). The complete amino acid sequence of human serum transferrin. Proc. Natl. Acad. Sci. U. S. A. 79: 2504-2508. http://dx.doi.org/10.1073/pnas.79.8.2504 PMid:6953407 PMCid:346227   Majewski J and Ott J (2002). Distribution and characterization of regulatory elements in the human genome. Genome Res. 12: 1827-1836. http://dx.doi.org/10.1101/gr.606402 PMid:12466286 PMCid:187578   Mason C (2006). Basic mastitis bacteriology: untangling the pathogens. Ir. Vet. J. 59: 453-459.   Nott A, Meislin SH and Moore MJ (2003). A quantitative analysis of intron effects on mammalian gene expression. RNA 9: 607-617. http://dx.doi.org/10.1261/rna.5250403 PMid:12702819 PMCid:1370426   Poso J and Mantysaari EA (1996). Relationships between clinical mastitis, somatic cell score, and production for the first three lactations of Finnish Ayrshire. J. Dairy Sci. 79: 1284-1291. http://dx.doi.org/10.3168/jds.S0022-0302(96)76483-4   Retzer MD, Kabani A, Button LL, Yu RH, et al. (1996). Production and characterization of chimeric transferrins for the determination of the binding domains for bacterial transferrin receptors. J. Biol. Chem. 271: 1166-1173. http://dx.doi.org/10.1074/jbc.271.2.1166 PMid:8557646   Rupp R and Boichard D (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci. 82: 2198-2204. http://dx.doi.org/10.3168/jds.S0022-0302(99)75465-2   Sanz A, Ordovas L, Serrano C, Zaragoza P, et al. (2010). A single nucleotide polymorphism in the coding region of bovine transferrin is associated with milk fat yield. Genet. Mol. Res. 9: 843-848. http://dx.doi.org/10.4238/vol9-2gmr784 PMid:20449817   Seegers H, Fourichon C and Beaudeau F (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 34: 475-491. http://dx.doi.org/10.1051/vetres:2003027 PMid:14556691   Sevi A, Taibi L, Albenzio M, Annicchiarico G, et al. (2001). Airspace effects on the yield and quality of ewe milk. J. Dairy Sci. 84: 2632-2640. http://dx.doi.org/10.3168/jds.S0022-0302(01)74717-0   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Steppa R, Wójtowskl J, Bielinska S and Keszycka M (2009). Effect of transferrin and haemoglobin polymorphism on hygienic quality of milk in sheep. Züchtungskunde 81: 125-132.   Swanson KM, Stelwagen K, Dobson J, Henderson HV, et al. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci. 92: 117-129. http://dx.doi.org/10.3168/jds.2008-1382 PMid:19109270   Tao Q, Yu MX, Zhao YH and Wang DX (2007). Survey of incidence of cow mastitis in west Liaoning and the integrated control measures. China Cattle Sci. 4: 61-63 (in Chinese).   Wedekind C (1994). Mate choice and maternal selection for specific parasite resistances before; during and after fertilization. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 346: 303-311. http://dx.doi.org/10.1098/rstb.1994.0147 PMid:7708826   Zhang F, Huang J, Li Q, Ju Z, et al. (2010). Novel single nucleotide polymorphisms (SNPs) of the bovine STAT4 gene and their associations with production traits in Chinese Holstein cattle. Afr. J. Biotechnol. 9: 4003-4008.   Zhang YH, Pan YS, Gao Y, Ma Q, et al. (2008). Studies on transferrin and posttremsferr polymorphism and their relationship with performances in red steppe. Agric. Sci. Technol. 9: 109-112.
J. M. Huang, Wang, Z. Y., Ju, Z. H., Wang, C. F., Li, Q. L., Sun, T., Hou, Q. L., Hang, S. Q., Hou, M. H., and Zhong, J. F., Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle, vol. 10, pp. 3199-3203, 2011.
Baker EN and Baker HM (2005). Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol. Life Sci. 62: 2531-2539. http://dx.doi.org/10.1007/s00018-005-5368-9 PMid:16261257 Bannerman DD, Paape MJ, Lee JW, Zhao X, et al. (2004). Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immunol. 11: 463-472. PMid:15138171    PMCid:404560 Chaneton L, Tirante L, Maito J, Chaves J, et al. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91: 1865-1873. http://dx.doi.org/10.3168/jds.2007-0732 PMid:18420617 Garcia-Blanco MA, Baraniak AP and Lasda EL (2004). Alternative splicing in disease and therapy. Nat. Biotechnol. 22: 535-546. http://dx.doi.org/10.1038/nbt964 PMid:15122293 Hagiwara S, Kawai K, Anri A and Nagahata H (2003). Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J. Vet. Med. Sci. 65: 319-323. http://dx.doi.org/10.1292/jvms.65.319 PMid:12679560 Huang JM, Wang HM, Wang CF, Li JB, et al. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol. Bio. Rep. 37: 477- 483. http://dx.doi.org/10.1007/s11033-009-9669-1 PMid:19672694 Hurley WL and Rejman JJ (1993). Bovine lactoferrin in involuting mammary tissue. Cell Biol. Int. 17: 283-289. http://dx.doi.org/10.1006/cbir.1993.1064 PMid:8513296 Kawai K, Hagiwara S, Anri A and Nagahata H (1999). Lactoferrin concentration in milk of bovine clinical mastitis. Vet. Res. Commun. 23: 391-398. http://dx.doi.org/10.1023/A:1006347423426 PMid:10598071 Komine K, Komine Y, Kuroishi T, Kobayashi J, et al. (2005). Small molecule lactoferrin with an inflammatory effect but no apparent antibacterial activity in mastitic mammary gland secretion. J. Vet. Med. Sci 67: 667-677. http://dx.doi.org/10.1292/jvms.67.667 PMid:16082114 Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62. http://dx.doi.org/10.1186/1471-2105-6-62 PMid:15780134    PMCid:1274258 Lynch KW (2004). Consequences of regulated pre-mRNA splicing in the immune system. Nat. Rev. Immunol. 4: 931-940. http://dx.doi.org/10.1038/nri1497 PMid:15573128 Nagahata H, Ito H, Maruta H, Nishikawa Y, et al. (2007). Controlling highly prevalent Staphylococcus aureus mastitis from the dairy farm. J. Vet. Med. Sci. 69: 893-898. http://dx.doi.org/10.1292/jvms.69.893 PMid:17917373 Nickerson SC, Owens WE and Boddie RL (1995). Mastitis in dairy heifers: initial studies on prevalence and control. J. Dairy Sci. 78: 1607-1618. http://dx.doi.org/10.3168/jds.S0022-0302(95)76785-6 Pawlik A, Sender G and Korwin-Kossakowska A (2009). Bovine lactoferrin gene polymorphism and expression in relation to mastitis resistance-a review. Anim. Sci. Pap. Rep. 27: 263-271. Pitkala A, Haveri M, Pyorala S, Myllys V, et al. (2004). Bovine mastitis in Finland 2001 - prevalence, distribution of bacteria, and antimicrobial resistance. J. Dairy Sci. 87: 2433-2441. http://dx.doi.org/10.3168/jds.S0022-0302(04)73366-4 Stamm S, Ben-Ari S, Rafalska I, Tang Y, et al. (2005). Function of alternative splicing. Gene 344: 1-20. http://dx.doi.org/10.1016/j.gene.2004.10.022 PMid:15656968 Swanson KM, Stelwagen K, Dobson J, Henderson HV, et al. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci. 92: 117-129. http://dx.doi.org/10.3168/jds.2008-1382 PMid:19109270 Ward PP, Paz E and Conneely OM (2005). Multifunctional roles of lactoferrin: a critical overview. Cell Mol. Life Sci. 62: 2540-2548. http://dx.doi.org/10.1007/s00018-005-5369-8 PMid:16261256 Wellnitz O and Kerr DE (2004). Cryopreserved bovine mammary cells to model epithelial response to infection. Vet. Immunol. Immunopathol. 101: 191-202. http://dx.doi.org/10.1016/j.vetimm.2004.04.019 PMid:15350749