Publications
Found 7 results
Filters: Author is Q.L. Li [Clear All Filters]
“Complete chloroplast genome sequence of cultivated Morus L. species”, vol. 15, no. 4, p. -, 2016.
, Conflicts of interestThe authors declare no conflict of interest.REFERENCESCai Z, Penaflor C, Kuehl JV, Leebens-Mack J, et al (2006). Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol. Biol. 6: 77. http://dx.doi.org/10.1186/1471-2148-6-77 Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, et al (2011). Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol. Biol. Evol. 28: 2077-2086. http://dx.doi.org/10.1093/molbev/msr028 Dong W, Xu C, Cheng T, Zhou S, et al (2013). Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales. PLoS One 8: e77965. http://dx.doi.org/10.1371/journal.pone.0077965 Drew BT, Ruhfel BR, Smith SA, Moore MJ, et al (2014). Another look at the root of the angiosperms reveals a familiar tale. Syst. Biol. 63: 368-382. http://dx.doi.org/10.1093/sysbio/syt108 Frazer KA, Pachter L, Poliakov A, Rubin EM, et al (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32: W273-9. http://dx.doi.org/10.1093/nar/gkh458 Goulding SE, Olmstead RG, Morden CW, Wolfe KH, et al (1996). Ebb and flow of the chloroplast inverted repeat. Mol. Gen. Genet. 252: 195-206. http://dx.doi.org/10.1007/BF02173220 Hahn C, Bachmann L, Chevreux B, et al (2013). Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads--a baiting and iterative mapping approach. Nucleic Acids Res. 41: e129. http://dx.doi.org/10.1093/nar/gkt371 Huang YY, Matzke AJM, Matzke M, et al (2013). Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS One 8: e74736. http://dx.doi.org/10.1371/journal.pone.0074736 Jansen RK, Palmer JD, et al (1987). A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 84: 5818-5822. http://dx.doi.org/10.1073/pnas.84.16.5818 Katti MV, Ranjekar PK, Gupta VS, et al (2001). Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol. 18: 1161-1167. http://dx.doi.org/10.1093/oxfordjournals.molbev.a003903 Kong W, Yang J, et al (2016). The complete chloroplast genome sequence of Morus mongolica and a comparative analysis within the Fabidae clade. Curr. Genet. 62: 165-172. http://dx.doi.org/10.1007/s00294-015-0507-9 Liu Y, Huo N, Dong L, Wang Y, et al (2013). Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants. PLoS One 8: e57533. http://dx.doi.org/10.1371/journal.pone.0057533 Lohse M, Drechsel O, Bock R, et al (2007). OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52: 267-274. http://dx.doi.org/10.1007/s00294-007-0161-y Millen RS, Olmstead RG, Adams KL, Palmer JD, et al (2001). Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13: 645-658. http://dx.doi.org/10.1105/tpc.13.3.645 Nazareno AG, Carlsen M, Lohmann LG, et al (2015). Complete chloroplast genome of Tanaecium tetragonolobum: the first Bignoniaceae plastome. PLoS One 10: e0129930. http://dx.doi.org/10.1371/journal.pone.0129930 Nock CJ, Baten A, King GJ, et al (2014). Complete chloroplast genome of Macadamia integrifolia confirms the position of the Gondwanan early-diverging eudicot family Proteaceae. BMC Genomics 15 (Suppl 9): S13. http://dx.doi.org/10.1186/1471-2164-15-S9-S13 Nguyen PA, Kim JS, Kim JH, et al (2015). The complete chloroplast genome of colchicine plants (Colchicum autumnale L. and Gloriosa superba L.) and its application for identifying the genus. Planta 242: 223-237. http://dx.doi.org/10.1007/s00425-015-2303-7 Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, et al (2007). Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions. Bioinformatics 23: 1-4. http://dx.doi.org/10.1093/bioinformatics/btl547 Ravi V, Khurana JP, Tyagi AK, Khurana P, et al (2006). The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genet. Genomes 3: 49-59. http://dx.doi.org/10.1007/s11295-006-0051-3 Ravi V, Khurana JP, Tyagi AK, Khurana P, et al (2008). An update on chloroplast genome. Plant Syst. Evol. 271: 101-122. http://dx.doi.org/10.1007/s00606-007-0608-0 Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, et al (2002). The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol. Biol. Evol. 19: 1602-1612. http://dx.doi.org/10.1093/oxfordjournals.molbev.a004222 Shaw J, Lickey EB, Schilling EE, Small RL, et al (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am. J. Bot. 94: 275-288. http://dx.doi.org/10.3732/ajb.94.3.275 Steane DA, et al (2005). Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae). DNA Res. 12: 215-220. http://dx.doi.org/10.1093/dnares/dsi006 Su HJ, Hogenhout SA, Al-Sadi AM, Kuo CH, et al (2014). Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the rosids. PLoS One 9: e113049. http://dx.doi.org/10.1371/journal.pone.0113049 Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Walker JF, Zanis MJ, Emery NC, et al (2014). Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae). Am. J. Bot. 101: 722-729. http://dx.doi.org/10.3732/ajb.1400049 Wu CS, Lai YT, Lin CP, Wang YN, et al (2009). Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy. Mol. Phylogenet. Evol. 52: 115-124. http://dx.doi.org/10.1016/j.ympev.2008.12.026 Yang Z, Yoder AD, et al (1999). Estimation of the transition/transversion rate bias and species sampling. J. Mol. Evol. 48: 274-283. http://dx.doi.org/10.1007/PL00006470 Zerega NJ, Clement WL, Datwyler SL, Weiblen GD, et al (2005). Biogeography and divergence times in the mulberry family (Moraceae). Mol. Phylogenet. Evol. 37: 402-416. http://dx.doi.org/10.1016/j.ympev.2005.07.004 Zhang H, Li C, Miao H, Xiong S, et al (2013). Insights from the complete chloroplast genome into the evolution of Sesamum indicum L. PLoS One 8: e80508. http://dx.doi.org/10.1371/journal.pone.0080508 Zhang SD, Soltis DE, Yang Y, Li DZ, et al (2011). Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol. Phylogenet. Evol. 60: 21-28. http://dx.doi.org/10.1016/j.ympev.2011.04.008
“A SNP in the 3'-UTR of HSF1 in dairy cattle affects binding of target bta-miR-484”, vol. 14, pp. 12746-12755, 2015.
, “Identification and characterization of a novel splice variant of the PLCζ1 gene in bull testis tissues”, vol. 13, pp. 9899-9909, 2014.
, “Increased expression of a novel splice variant of the complement component 4 (C4A) gene in mastitis-infected dairy cattle”, vol. 11, pp. 2909-2916, 2012.
,
Andersson L, Lunden A, Sigurdardottir S, Davies CJ, et al. (1988). Linkage relationships in the bovine MHC region. High recombination frequency between class II subregions. Immunogenetics 27: 273-280.
http://dx.doi.org/10.1007/BF00376122
PMid:2894354
Ast G (2004). How did alternative splicing evolve? Nat. Rev. Genet. 5: 773-782.
http://dx.doi.org/10.1038/nrg1451
PMid:15510168
Awdeh ZL and Alper CA (1980). Inherited structural polymorphism of the fourth component of human complement. Proc. Natl. Acad. Sci. U. S. A. 77: 3576-3580.
http://dx.doi.org/10.1073/pnas.77.6.3576
PMid:6932037 PMCid:349660
Belt KT, Yu CY, Carroll MC and Porter RR (1985). Polymorphism of human complement component C4. Immunogenetics 21: 173-180.
http://dx.doi.org/10.1007/BF00364869
PMid:3838531
Bradley A (2002). Bovine mastitis: an evolving disease. Vet. J. 164: 116-128.
http://dx.doi.org/10.1053/tvjl.2002.0724
PMid:12359466
Chacko E and Ranganathan S (2009). Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases. BMC Genomics 10 (Suppl 3): S11.
http://dx.doi.org/10.1186/1471-2164-10-S3-S11
PMid:19958474 PMCid:2788363
Cox BJ and Robins DM (1988). Tissue-specific variation in C4 and Slp gene regulation. Nucleic Acids Res. 16: 6857-6870.
http://dx.doi.org/10.1093/nar/16.14.6857
PMid:3405752 PMCid:338338
Dahl MR, Thiel S, Matsushita M, Fujita T, et al. (2001). MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity 15: 127-135.
http://dx.doi.org/10.1016/S1074-7613(01)00161-3
Dodds AW and Law SK (1990). The complement component C4 of mammals. Biochem. J. 265: 495-502.
PMid:2302180 PMCid:1136911
Galante PA, Sakabe NJ, Kirschbaum-Slager N and de Souza SJ (2004). Detection and evaluation of intron retention events in the human transcriptome. RNA 10: 757-765.
http://dx.doi.org/10.1261/rna.5123504
PMid:15100430 PMCid:1370565
Garcia-Blanco MA, Baraniak AP and Lasda EL (2004). Alternative splicing in disease and therapy. Nat. Biotechnol. 22: 535-546.
http://dx.doi.org/10.1038/nbt964
PMid:15122293
Giles CM (1984). A new genetic variant for Chido. Vox Sang. 46: 149-156.
http://dx.doi.org/10.1111/j.1423-0410.1984.tb00067.x
PMid:6710967
Guerra-Junior G, Grumach AS, de Lemos-Marini SH, Kirschfink M, et al. (2008). Complement 4 phenotypes and genotypes in Brazilian patients with classical 21-hydroxylase deficiency. Clin. Exp. Immunol. 155: 182-188.
http://dx.doi.org/10.1111/j.1365-2249.2008.03838.x
PMid:19137635 PMCid:2675248
Günther J, Koczan D, Yang W, Nurnberg G, et al. (2009). Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli. Vet. Res. 40: 31.
http://dx.doi.org/10.1051/vetres/2009014
PMid:19321125 PMCid:2695127
Hull J, Campino S, Rowlands K, Chan MS, et al. (2007). Identification of common genetic variation that modulates alternative splicing. PLoS Genet. 3: e99.
http://dx.doi.org/10.1371/journal.pgen.0030099
PMid:17571926 PMCid:1904363
Ju Z, Wang C, Li Q, Hou M, et al. (2011). Alternative splicing and mRNA expression analysis of bovine SLAMF7 gene in healthy and mastitis mammary tissues. Mol. Biol. Rep. DOI: 10.1007/s11033-011-1198-z.
http://dx.doi.org/10.1007/s11033-011-1198-z
Keren H, Lev-Maor G and Ast G (2010). Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11: 345-355.
http://dx.doi.org/10.1038/nrg2776
PMid:20376054
Kim E, Magen A and Ast G (2007). Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 35: 125-131.
http://dx.doi.org/10.1093/nar/gkl924
PMid:17158149 PMCid:1802581
Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62.
http://dx.doi.org/10.1186/1471-2105-6-62
PMid:15780134 PMCid:1274258
Le Hir H, Charlet-Berguerand N, de Franciscis V and Thermes C (2002). 5'-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology 63: 84-91.
http://dx.doi.org/10.1159/000065725
PMid:12187076
Liu HX, Cartegni L, Zhang MQ and Krainer AR (2001). A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat. Genet. 27: 55-58.
http://dx.doi.org/10.1038/83762
PMid:11137998
Morera AL, Henry M, Garcia-Hernandez A and Fernandez-Lopez L (2007). Acute phase proteins as biological markers of negative psychopathology in paranoid schizophrenia. Actas Esp. Psiquiatr. 35: 249-252.
PMid:17592787
Pattanakitsakul S, Zheng JH, Natsuume-Sakai S, Takahashi M, et al. (1992). Aberrant splicing caused by the insertion of the B2 sequence into an intron of the complement C4 gene is the basis for low C4 production in H-2k mice. J. Biol. Chem. 267: 7814-7820.
PMid:1373139
Petri M, Watson R, Winkelstein JA and McLean RH (1993). Clinical expression of systemic lupus erythematosus in patients with C4A deficiency. Medicine 72: 236-244.
http://dx.doi.org/10.1097/00005792-199307000-00003
PMid:8341140
Rainard P and Poutrel B (1995). Deposition of complement components on Streptococcus agalactiae in bovine milk in the absence of inflammation. Infect. Immun. 63: 3422-3427.
PMid:7642272 PMCid:173471
Rio DC (1991). Regulation of Drosophila P element transposition. Trends Genet. 7: 282-287.
PMid:1662417
Rupp R and Boichard D (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res. 34: 671-688.
http://dx.doi.org/10.1051/vetres:2003020
PMid:14556700
Vergani D, Johnston C, Abdullah N and Barnett AH (1983). Low serum C4 concentrations: an inherited predisposition to insulin dependent diabetes? Br. Med. J. 286: 926-928.
http://dx.doi.org/10.1136/bmj.286.6369.926
Wang Z, Zhang S and Wang G (2008). Response of complement expression to challenge with lipopolysaccharide in embryos/larvae of zebrafish Danio rerio: acquisition of immunocompetent complement. Fish Shellfish Immunol. 25: 264-270.
http://dx.doi.org/10.1016/j.fsi.2008.05.010
PMid:18657447
Witte DP, Welch TR and Beischel LS (1991). Detection and cellular localization of human C4 gene expression in the renal tubular epithelial cells and other extrahepatic epithelial sources. Am. J. Pathol. 139: 717-724.
PMid:1928296 PMCid:1886325
Yang Y, Chung EK, Zhou B, Blanchong CA, et al. (2003). Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size and polygenic variations, hemolytic activities, and body mass index. J. Immunol. 171: 2734-2745.
PMid:12928427
Yu CY, Belt KT, Giles CM, Campbell RD, et al. (1986). Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J. 5: 2873-2881.
PMid:2431902 PMCid:1167237
“Novel SNPs of the mannan-binding lectin 2 gene and their association with production traits in Chinese Holsteins”, vol. 11, pp. 3744-3754, 2012.
,
Agah A, Montalto MC, Young K and Stahl GL (2001). Isolation, cloning and functional characterization of porcine mannose-binding lectin. Immunology 102: 338-343.
http://dx.doi.org/10.1046/j.1365-2567.2001.01191.x
PMid:11298833 PMCid:1783182
Arora M, Munoz E and Tenner AJ (2001). Identification of a site on mannan-binding lectin critical for enhancement of phagocytosis. J. Biol. Chem. 276: 43087-43094.
http://dx.doi.org/10.1074/jbc.M105455200
PMid:11533031
Brown-Augsburger P, Hartshorn K, Chang D, Rust K, et al. (1996). Site-directed mutagenesis of Cys-15 and Cys-20 of pulmonary surfactant protein D. Expression of a trimeric protein with altered anti-viral properties. J. Biol. Chem. 271: 13724-13730.
http://dx.doi.org/10.1074/jbc.271.23.13724
PMid:8662732
Capparelli R, Parlato M, Amoroso MG, Roperto S, et al. (2008). Mannose-binding lectin haplotypes influence Brucella abortus infection in the water buffalo (Bubalus bubalis). Immunogenetics 60: 157-165.
http://dx.doi.org/10.1007/s00251-008-0284-4
PMid:18330558
Chaneton L, Tirante L, Maito J, Chaves J, et al. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91: 1865-1873.
http://dx.doi.org/10.3168/jds.2007-0732
PMid:18420617
Eisen DP and Minchinton RM (2003). Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 37: 1496-1505.
http://dx.doi.org/10.1086/379324
PMid:14614673
Fallin D, Cohen A, Essioux L, Chumakov I, et al. (2001). Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Res. 11: 143-151.
http://dx.doi.org/10.1101/gr.148401
PMid:11156623 PMCid:311030
Gjerstorff M, Hansen S, Jensen B, Dueholm B, et al. (2004). The genes encoding bovine SP-A, SP-D, MBL-A, conglutinin, CL-43 and CL-46 form a distinct collectin locus on Bos taurus chromosome 28 (BTA28) at position q.1.8-1.9. Anim. Genet. 35: 333-337.
http://dx.doi.org/10.1111/j.1365-2052.2004.01167.x
PMid:15265076
Holmskov U, Thiel S and Jensenius JC (2003). Collections and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol. 21: 547-578.
http://dx.doi.org/10.1146/annurev.immunol.21.120601.140954
PMid:12524383
Huang J, Wang H, Wang C, Li J, et al. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol. Biol. Rep. 37: 477-483.
http://dx.doi.org/10.1007/s11033-009-9669-1
PMid:19672694
Jensen PH, Weilguny D, Matthiesen F, McGuire KA, et al. (2005). Characterization of the oligomer structure of recombinant human mannan-binding lectin. J. Biol. Chem. 280: 11043-11051.
http://dx.doi.org/10.1074/jbc.M412472200
PMid:15653690
Kawai T, Suzuki Y, Eda S, Ohtani K, et al. (1997). Cloning and characterization of a cDNA encoding bovine mannan-binding protein. Gene 186: 161-165.
http://dx.doi.org/10.1016/S0378-1119(96)00664-6
Kawasaki N, Kawasaki T and Yamashina I (1983). Isolation and characterization of a mannan-binding protein from human serum. J. Biochem. 94: 937-947.
PMid:6643429
Larsen F, Madsen HO, Sim RB, Koch C, et al. (2004). Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. J. Biol. Chem. 279: 21302-21311.
http://dx.doi.org/10.1074/jbc.M400520200
PMid:14764589
Lillie BN, Brooks AS, Keirstead ND and Hayes MA (2005). Comparative genetics and innate immune functions of collagenous lectins in animals. Vet. Immunol. Immunopathol. 108: 97-110.
http://dx.doi.org/10.1016/j.vetimm.2005.07.001
PMid:16098608
Lillie BN, Keirstead ND, Squires EJ and Hayes MA (2006). Single-nucleotide polymorphisms in porcine mannan-binding lectin A. Immunogenetics 58: 983-993.
http://dx.doi.org/10.1007/s00251-006-0160-z
PMid:17089118
Lillie BN, Keirstead ND, Squires EJ and Hayes MA (2007). Gene polymorphisms associated with reduced hepatic expression of porcine mannan-binding lectin C. Dev. Comp. Immunol. 31: 830-846.
http://dx.doi.org/10.1016/j.dci.2006.11.002
PMid:17194476
Ma BY, Nakamura N, Dlabac V, Naito H, et al. (2007). Isolation, cloning, and characterization of a novel phosphomannan-binding lectin from porcine serum. J. Biol. Chem. 282: 12963-12975.
http://dx.doi.org/10.1074/jbc.M611820200
PMid:17324926
Madsen HO, Garred P, Kurtzhals JA, Lamm LU, et al. (1994). A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics 40: 37-44.
http://dx.doi.org/10.1007/BF00163962
PMid:8206524
Madsen HO, Satz ML, Hogh B, Svejgaard A, et al. (1998). Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J. Immunol. 161: 3169-3175.
PMid:9743385
Nepomuceno RR, Henschen-Edman AH, Burgess WH and Tenner AJ (1997). cDNA cloning and primary structure analysis of C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro. Immunity 6: 119-129.
http://dx.doi.org/10.1016/S1074-7613(00)80419-7
Neth O, Jack DL, Dodds AW, Holzel H, et al. (2000). Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun. 68: 688-693.
http://dx.doi.org/10.1128/IAI.68.2.688-693.2000
PMid:10639434 PMCid:97193
Ohashi T and Erickson HP (2004). The disulfide bonding pattern in ficolin multimers. J. Biol. Chem. 279: 6534-6539.
http://dx.doi.org/10.1074/jbc.M310555200
PMid:14660572
Podolsky MJ, Lasker A, Flaminio MJ, Gowda LD, et al. (2006). Characterization of an equine mannose-binding lectin and its roles in disease. Biochem. Biophys. Res. Commun. 343: 928-936.
http://dx.doi.org/10.1016/j.bbrc.2006.03.055
PMid:16574074
Qiu H (2002). Modern Dairy Science. Agriculture Press, China, 1-12.
Risch NJ (2000). Searching for genetic determinants in the new millennium. Nature 405: 847-856.
http://dx.doi.org/10.1038/35015718
PMid:10866211
Rupp R and Boichard D (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci. 82: 2198-2204.
http://dx.doi.org/10.3168/jds.S0022-0302(99)75465-2
Seegers H, Fourichon C and Beaudeau F (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 34: 475-491.
http://dx.doi.org/10.1051/vetres:2003027
PMid:14556691
Shi L, Takahashi K, Dundee J, Shahroor-Karni S, et al. (2004). Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus. J. Exp. Med. 199: 1379-1390.
http://dx.doi.org/10.1084/jem.20032207
PMid:15148336 PMCid:2211809
Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98.
http://dx.doi.org/10.1038/sj.cr.7290272
PMid:15740637
Smithson A, Munoz A, Suarez B, Soto SM, et al. (2007). Association between mannose-binding lectin deficiency and septic shock following acute pyelonephritis due to Escherichia coli. Clin. Vaccine Immunol. 14: 256-261.
http://dx.doi.org/10.1128/CVI.00400-06
PMid:17202308 PMCid:1828851
Takahashi R, Tsutsumi A, Ohtani K, Muraki Y, et al. (2005). Association of mannose binding lectin (MBL) gene polymorphism and serum MBL concentration with characteristics and progression of systemic lupus erythematosus. Ann. Rheum. Dis. 64: 311-314.
http://dx.doi.org/10.1136/ard.2003.020172
PMid:15647440 PMCid:1755352
Wakamiya N, Okuno Y, Sasao F, Ueda S, et al. (1992). Isolation and characterization of conglutinin as an influenza A virus inhibitor. Biochem. Biophys. Res. Commun. 187: 1270-1278.
http://dx.doi.org/10.1016/0006-291X(92)90440-V
Wallis R, Shaw JM, Uitdehaag J, Chen CB, et al. (2004). Localization of the serine protease-binding sites in the collagen-like domain of mannose-binding protein: indirect effects of naturally occurring mutations on protease binding and activation. J. Biol. Chem. 279: 14065-14073.
http://dx.doi.org/10.1074/jbc.M400171200
PMid:14724269
“Three novel SNPs of the bovine Tf gene in Chinese native cattle and their associations with milk production traits”, vol. 10, pp. 340-352, 2011.
,
Ardehali R, Shi L, Janatova J, Mohammad SF, et al. (2003). The inhibitory activity of serum to prevent bacterial adhesion is mainly due to apo-transferrin. J. Biomed. Mater. Res. A 66: 21-28.
http://dx.doi.org/10.1002/jbm.a.10493
PMid:12833427
Ashton GC, Fallon GR and Suthcrland DN (1964). Transferrin (β-globulin) type and milk and butterfat production in dairy cows. J. Agric. Sci. 62: 27-34.
http://dx.doi.org/10.1017/S0021859600059736
Bashirullah A, Cooperstock RL and Lipshitz HD (2001). Spatial and temporal control of RNA stability. Proc. Natl. Acad. Sci. U. S. A. 98: 7025-7028.
http://dx.doi.org/10.1073/pnas.111145698
PMid:11416182 PMCid:34617
Beckman L and Beckman G (1986). Transferrin C2 as an enhancer of cyto- and genotoxic damage. Prog. Clin. Biol. Res. 209B: 221-224.
PMid:3749080
Bond R, Kim JY and Lloyd DH (2005). Bovine and canine transferrin inhibit the growth of Malassezia pachydermatis in vitro. Med. Mycol. 43: 447-451.
http://dx.doi.org/10.1080/13693780400020154
PMid:16178374
Brandon RB, Giffard JM and Bell K (1999). Single nucleotide polymorphisms in the equine transferrin gene. Anim. Genet. 30: 439-443.
http://dx.doi.org/10.1046/j.1365-2052.1999.00546.x
PMid:10612233
Casas E, Keele JW, Shackelford SD, Koohmaraie M, et al. (2004). Identification of quantitative trait loci for growth and carcass composition in cattle. Anim. Genet. 35: 2-6.
http://dx.doi.org/10.1046/j.1365-2052.2003.01067.x
PMid:14731222
Chaneton L, Tirante L, Maito J, Chaves J, et al. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91: 1865-1873.
http://dx.doi.org/10.3168/jds.2007-0732
PMid:18420617
Chowdhary BP, Raudsepp T, Fronicke L and Scherthan H (1998). Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res. 8: 577-589.
PMid:9647633
Douabin-Gicquel V, Soriano N, Ferran H, Wojcik F, et al. (2001). Identification of 96 single nucleotide polymorphisms in eight genes involved in iron metabolism: efficiency of bioinformatic extraction compared with a systematic sequencing approach. Hum. Genet. 109: 393-401.
http://dx.doi.org/10.1007/s004390100599
PMid:11702220
Enns CA and Sussman HH (1981). Physical characterization of the transferrin receptor in human placentae. J. Biol. Chem. 256: 9820-9823.
PMid:6268632
Fallin D, Cohen A, Essioux L, Chumakov I, et al. (2001). Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Res. 11: 143-151.
http://dx.doi.org/10.1101/gr.148401
PMid:11156623 PMCid:311030
Fletcher J and Huehns ER (1968). Function of transferrin. Nature 218: 1211-1214.
http://dx.doi.org/10.1038/2181211a0
PMid:5656647
Gahne B, Juneja RK and Grolmus J (1977). Horizontal polyacrylamide gradient gel electrophoresis for the simultaneous phenotyping of transferrin, post-transferrin, albumin and post-albumin in the blood plasma of cattle. Anim. Blood Groups Biochem. Genet. 8: 127-137.
http://dx.doi.org/10.1111/j.1365-2052.1977.tb01637.x
PMid:603096
Heringstad B, Klemetsdal G and Ruane J (2000). Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livest. Prod. Sci. 64: 95-106.
http://dx.doi.org/10.1016/S0301-6226(99)00128-1
Huang J, Wang H, Wang C, Li J, et al. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol. Biol. Rep. 37: 477-483.
http://dx.doi.org/10.1007/s11033-009-9669-1
PMid:19672694
Jansen RP (2001). mRNA localization: message on the move. Nat. Rev. Mol. Cell. Biol. 2: 247-256.
http://dx.doi.org/10.1038/35067016
PMid:11283722
Kappes SM, Keele JW, Stone RT, McGraw RA, et al. (1997). A second-generation linkage map of the bovine genome. Genome Res. 7: 235-249.
http://dx.doi.org/10.1101/gr.7.3.235
PMid:9074927
Khatib H, Zaitoun I, Chang YM, Maltecca C, et al. (2007). Evaluation of association between polymorphism within the thyroglobulin gene and milk production traits in dairy cattle. J. Anim. Breed. Genet. 124: 26-28.
http://dx.doi.org/10.1111/j.1439-0388.2007.00634.x
PMid:17302957
Kmiec M (1998). Transferyna- bia ko pe niace wiele ról w organizmie. Przegl. Hodowlany 1: 8-9.
Kruglyak L (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22: 139-144.
http://dx.doi.org/10.1038/9642
PMid:10369254
Lambert LA, Perri H, Halbrooks PJ and Mason AB (2005). Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 142: 129-141.
http://dx.doi.org/10.1016/j.cbpb.2005.07.007
PMid:16111909
Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62.
http://dx.doi.org/10.1186/1471-2105-6-62
PMid:15780134 PMCid:1274258
Liu W, Wang J, Li Q, Ju Z, et al. (2010). Correlation analysis between three novel SNPs of the Src gene in bovine and milk production traits. Mol. Biol. Rep. 37: 3771-3777.
http://dx.doi.org/10.1007/s11033-010-0031-4
PMid:20213510
MacGillivray RT, Mendez E, Sinha SK, Sutton MR, et al. (1982). The complete amino acid sequence of human serum transferrin. Proc. Natl. Acad. Sci. U. S. A. 79: 2504-2508.
http://dx.doi.org/10.1073/pnas.79.8.2504
PMid:6953407 PMCid:346227
Majewski J and Ott J (2002). Distribution and characterization of regulatory elements in the human genome. Genome Res. 12: 1827-1836.
http://dx.doi.org/10.1101/gr.606402
PMid:12466286 PMCid:187578
Mason C (2006). Basic mastitis bacteriology: untangling the pathogens. Ir. Vet. J. 59: 453-459.
Nott A, Meislin SH and Moore MJ (2003). A quantitative analysis of intron effects on mammalian gene expression. RNA 9: 607-617.
http://dx.doi.org/10.1261/rna.5250403
PMid:12702819 PMCid:1370426
Poso J and Mantysaari EA (1996). Relationships between clinical mastitis, somatic cell score, and production for the first three lactations of Finnish Ayrshire. J. Dairy Sci. 79: 1284-1291.
http://dx.doi.org/10.3168/jds.S0022-0302(96)76483-4
Retzer MD, Kabani A, Button LL, Yu RH, et al. (1996). Production and characterization of chimeric transferrins for the determination of the binding domains for bacterial transferrin receptors. J. Biol. Chem. 271: 1166-1173.
http://dx.doi.org/10.1074/jbc.271.2.1166
PMid:8557646
Rupp R and Boichard D (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci. 82: 2198-2204.
http://dx.doi.org/10.3168/jds.S0022-0302(99)75465-2
Sanz A, Ordovas L, Serrano C, Zaragoza P, et al. (2010). A single nucleotide polymorphism in the coding region of bovine transferrin is associated with milk fat yield. Genet. Mol. Res. 9: 843-848.
http://dx.doi.org/10.4238/vol9-2gmr784
PMid:20449817
Seegers H, Fourichon C and Beaudeau F (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 34: 475-491.
http://dx.doi.org/10.1051/vetres:2003027
PMid:14556691
Sevi A, Taibi L, Albenzio M, Annicchiarico G, et al. (2001). Airspace effects on the yield and quality of ewe milk. J. Dairy Sci. 84: 2632-2640.
http://dx.doi.org/10.3168/jds.S0022-0302(01)74717-0
Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98.
http://dx.doi.org/10.1038/sj.cr.7290272
PMid:15740637
Steppa R, Wójtowskl J, Bielinska S and Keszycka M (2009). Effect of transferrin and haemoglobin polymorphism on hygienic quality of milk in sheep. Züchtungskunde 81: 125-132.
Swanson KM, Stelwagen K, Dobson J, Henderson HV, et al. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci. 92: 117-129.
http://dx.doi.org/10.3168/jds.2008-1382
PMid:19109270
Tao Q, Yu MX, Zhao YH and Wang DX (2007). Survey of incidence of cow mastitis in west Liaoning and the integrated control measures. China Cattle Sci. 4: 61-63 (in Chinese).
Wedekind C (1994). Mate choice and maternal selection for specific parasite resistances before; during and after fertilization. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 346: 303-311.
http://dx.doi.org/10.1098/rstb.1994.0147
PMid:7708826
Zhang F, Huang J, Li Q, Ju Z, et al. (2010). Novel single nucleotide polymorphisms (SNPs) of the bovine STAT4 gene and their associations with production traits in Chinese Holstein cattle. Afr. J. Biotechnol. 9: 4003-4008.
Zhang YH, Pan YS, Gao Y, Ma Q, et al. (2008). Studies on transferrin and posttremsferr polymorphism and their relationship with performances in red steppe. Agric. Sci. Technol. 9: 109-112.
“Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle”, vol. 10, pp. 3199-3203, 2011.
, Baker EN and Baker HM (2005). Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol. Life Sci. 62: 2531-2539.
http://dx.doi.org/10.1007/s00018-005-5368-9
PMid:16261257
Bannerman DD, Paape MJ, Lee JW, Zhao X, et al. (2004). Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immunol. 11: 463-472.
PMid:15138171 PMCid:404560
Chaneton L, Tirante L, Maito J, Chaves J, et al. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J. Dairy Sci. 91: 1865-1873.
http://dx.doi.org/10.3168/jds.2007-0732
PMid:18420617
Garcia-Blanco MA, Baraniak AP and Lasda EL (2004). Alternative splicing in disease and therapy. Nat. Biotechnol. 22: 535-546.
http://dx.doi.org/10.1038/nbt964
PMid:15122293
Hagiwara S, Kawai K, Anri A and Nagahata H (2003). Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J. Vet. Med. Sci. 65: 319-323.
http://dx.doi.org/10.1292/jvms.65.319
PMid:12679560
Huang JM, Wang HM, Wang CF, Li JB, et al. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrin gene and their associations with mastitis in Chinese Holstein cattle. Mol. Bio. Rep. 37: 477- 483.
http://dx.doi.org/10.1007/s11033-009-9669-1
PMid:19672694
Hurley WL and Rejman JJ (1993). Bovine lactoferrin in involuting mammary tissue. Cell Biol. Int. 17: 283-289.
http://dx.doi.org/10.1006/cbir.1993.1064
PMid:8513296
Kawai K, Hagiwara S, Anri A and Nagahata H (1999). Lactoferrin concentration in milk of bovine clinical mastitis. Vet. Res. Commun. 23: 391-398.
http://dx.doi.org/10.1023/A:1006347423426
PMid:10598071
Komine K, Komine Y, Kuroishi T, Kobayashi J, et al. (2005). Small molecule lactoferrin with an inflammatory effect but no apparent antibacterial activity in mastitic mammary gland secretion. J. Vet. Med. Sci 67: 667-677.
http://dx.doi.org/10.1292/jvms.67.667
PMid:16082114
Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62.
http://dx.doi.org/10.1186/1471-2105-6-62
PMid:15780134 PMCid:1274258
Lynch KW (2004). Consequences of regulated pre-mRNA splicing in the immune system. Nat. Rev. Immunol. 4: 931-940.
http://dx.doi.org/10.1038/nri1497
PMid:15573128
Nagahata H, Ito H, Maruta H, Nishikawa Y, et al. (2007). Controlling highly prevalent Staphylococcus aureus mastitis from the dairy farm. J. Vet. Med. Sci. 69: 893-898.
http://dx.doi.org/10.1292/jvms.69.893
PMid:17917373
Nickerson SC, Owens WE and Boddie RL (1995). Mastitis in dairy heifers: initial studies on prevalence and control. J. Dairy Sci. 78: 1607-1618.
http://dx.doi.org/10.3168/jds.S0022-0302(95)76785-6
Pawlik A, Sender G and Korwin-Kossakowska A (2009). Bovine lactoferrin gene polymorphism and expression in relation to mastitis resistance-a review. Anim. Sci. Pap. Rep. 27: 263-271.
Pitkala A, Haveri M, Pyorala S, Myllys V, et al. (2004). Bovine mastitis in Finland 2001 - prevalence, distribution of bacteria, and antimicrobial resistance. J. Dairy Sci. 87: 2433-2441.
http://dx.doi.org/10.3168/jds.S0022-0302(04)73366-4
Stamm S, Ben-Ari S, Rafalska I, Tang Y, et al. (2005). Function of alternative splicing. Gene 344: 1-20.
http://dx.doi.org/10.1016/j.gene.2004.10.022
PMid:15656968
Swanson KM, Stelwagen K, Dobson J, Henderson HV, et al. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci. 92: 117-129.
http://dx.doi.org/10.3168/jds.2008-1382
PMid:19109270
Ward PP, Paz E and Conneely OM (2005). Multifunctional roles of lactoferrin: a critical overview. Cell Mol. Life Sci. 62: 2540-2548.
http://dx.doi.org/10.1007/s00018-005-5369-8
PMid:16261256
Wellnitz O and Kerr DE (2004). Cryopreserved bovine mammary cells to model epithelial response to infection. Vet. Immunol. Immunopathol. 101: 191-202.
http://dx.doi.org/10.1016/j.vetimm.2004.04.019
PMid:15350749