Publications

Found 7 results
Filters: Author is K.X. Tang  [Clear All Filters]
2012
W. Li, Li, L. G., Sun, X. F., and Tang, K. X., An oleosin-fusion protein driven by the CaMV35S promoter is accumulated in Arabidopsis (Brassicaceae) seeds and correctly targeted to oil bodies, vol. 11, pp. 2138-2146, 2012.
Abell BM, Holbrook LA, Abenes M, Murphy DJ, et al. (1997). Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 9: 1481-1493. PMid:9286116 PMCid:157013   Abell BM, High S and Moloney MM (2002). Membrane protein topology of oleosin is constrained by its long hydrophobic domain. J. Biol. Chem. 277: 8602-8610. http://dx.doi.org/10.1074/jbc.M103712200 PMid:11673452   Alexander LG, Sessions RB, Clarke AR, Tatham AS, et al. (2002). Characterization and modelling of the hydrophobic domain of a sunflower oleosin. Planta 214: 546-551. http://dx.doi.org/10.1007/s004250100655 PMid:11925038   Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, et al. (2006). A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1: 2320-2325. http://dx.doi.org/10.1038/nprot.2006.384 PMid:17406474   Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, et al. (2010). Seed-based expression systems for plant molecular farming. Plant Biotechnol. J. 8: 588-606. http://dx.doi.org/10.1111/j.1467-7652.2010.00511.x PMid:20500681   Chen JC, Lin RH, Huang HC and Tzen JT (1997). Cloning, expression and isoform classification of a minor oleosin in sesame oil bodies. J. Biochem. 122: 819-824. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021828 PMid:9399587   Clough SJ and Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x PMid:10069079   Fischer R, Stoger E, Schillberg S, Christou P, et al. (2004). Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7: 152-158. http://dx.doi.org/10.1016/j.pbi.2004.01.007 PMid:15003215   Greenspan P, Mayer EP and Fowler SD (1985). Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100: 965-973. http://dx.doi.org/10.1083/jcb.100.3.965 PMid:3972906   Hofgen R and Willmitzer L (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16: 9877. http://dx.doi.org/10.1093/nar/16.20.9877 PMid:3186459 PMCid:338805   Huang AHC (1992). Oil bodies and oleosins in seeds. Annu. Rev. Plant Biol. 43: 177-200. http://dx.doi.org/10.1146/annurev.pp.43.060192.001141   Huang CY, Chung CI, Lin YC, Hsing YI, et al. (2009). Oil bodies and oleosins in Physcomitrella possess characteristics representative of early trends in evolution. Plant Physiol. 150: 1192-1203. http://dx.doi.org/10.1104/pp.109.138123 PMid:19420327 PMCid:2705038   Keddie JS, Hubner G, Slocombe SP, Jarvis RP, et al. (1992). Cloning and characterisation of an oleosin gene from Brassica napus. Plant Mol. Biol. 19: 443-453. http://dx.doi.org/10.1007/BF00023392 PMid:1377966   Kroj T, Savino G, Valon C, Giraudat J, et al. (2003). Regulation of storage protein gene expression in Arabidopsis. Development 130: 6065-6073. http://dx.doi.org/10.1242/dev.00814 PMid:14597573   Murashige T and Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473-497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x   Nykiforuk CL, Boothe JG, Murray EW, Keon RG, et al. (2006). Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol. J. 4: 77-85. http://dx.doi.org/10.1111/j.1467-7652.2005.00159.x PMid:17177787   Plant AL, van Rooijen GJ, Anderson CP and Moloney MM (1994). Regulation of an Arabidopsis oleosin gene promoter in transgenic Brassica napus. Plant Mol. Biol. 25: 193-205. http://dx.doi.org/10.1007/BF00023237 PMid:8018869   Stoger E, Ma JK, Fischer R and Christou P (2005). Sowing the seeds of success: pharmaceutical proteins from plants. Curr. Opin. Biotechnol. 16: 167-173. http://dx.doi.org/10.1016/j.copbio.2005.01.005 PMid:15831382   Twyman RM, Stoger E, Schillberg S, Christou P, et al. (2003). Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21: 570-578. http://dx.doi.org/10.1016/j.tibtech.2003.10.002 PMid:14624867   Van Rooijen GJ and Moloney MM (1995a). Structural requirements of oleosin domains for subcellular targeting to the oil body. Plant Physiol. 109: 1353-1361. http://dx.doi.org/10.1104/pp.109.4.1353 PMid:8539295 PMCid:157669   Van Rooijen GJH and Moloney MM (1995b). Plant seed oil-bodies as carriers for foreign proteins. Bio/Technol. 13: 72-77.   Zou J, Brokx SJ and Taylor DC (1996). Cloning of a cDNA encoding the 21.2 kDa oleosin isoform from Arabidopsis thaliana and a study of its expression in a mutant defective in diacylglycerol acyltransferase activity. Plant Mol. Biol. 31: 429-433. http://dx.doi.org/10.1007/BF00021805 PMid:8756608
Q. Shen, Chen, Y. F., Wang, T., Wu, S. Y., Lu, X., Zhang, L., Zhang, F. Y., Jiang, W. M., Wang, G. F., and Tang, K. X., Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae), vol. 11, pp. 3298-3309, 2012.
Abdin MZ, Israr M, Rehman RU and Jain SK (2003). Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med. 69: 289-299. http://dx.doi.org/10.1055/s-2003-38871 PMid:12709893   Aquil S, Husaini AM, Abdin MZ and Rather GM (2009). Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med. 75: 1453-1458. http://dx.doi.org/10.1055/s-0029-1185775 PMid:19551613   Arsenault PR, Vail D, Wobbe KK, Erickson K, et al. (2010). Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua. Plant Physiol. 154: 958-968. http://dx.doi.org/10.1104/pp.110.162552 PMid:20724645 PMCid:2949044   Banyai W, Kirdmanee C, Mii M and Supaibulwatana K (2010). Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tiss Org. 103: 255-265. http://dx.doi.org/10.1007/s11240-010-9775-8   Bhattarai A, Ali AS, Kachur SP, Martensson A, et al. (2007). Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar. PLoS Med. 4: e309. http://dx.doi.org/10.1371/journal.pmed.0040309 PMid:17988171 PMCid:2062481   Chen DH and Ronald PC (1999). A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Rep. 17: 53-57. http://dx.doi.org/10.1023/A:1007585532036   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.   Duke MV, Paul RN, Elsohly HN, Sturtz G, et al. (1994). Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int. J. Plant Sci. 155: 365-372. http://dx.doi.org/10.1086/297173   Graham IA, Besser K, Blumer S, Branigan CA, et al. (2010). The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327: 328-331. http://dx.doi.org/10.1126/science.1182612 PMid:20075252   Han JL, Liu BY, Ye HC, Wang H, et al. (2006). Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J. Integr. Plant Biol. 48: 482-487. http://dx.doi.org/10.1111/j.1744-7909.2006.00208.x   Liu B, Wang H, Du Z, Li G, et al. (2011). Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep. 30: 689-694. http://dx.doi.org/10.1007/s00299-010-0967-9 PMid:21184232   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Maes L, Van Nieuwerburgh FC, Zhang Y, Reed DW, et al. (2011). Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol. 189: 176-189. http://dx.doi.org/10.1111/j.1469-8137.2010.03466.x PMid:20874804   McCormick S, Niedermeyer J, Fry J, Barnason A, et al. (1986). Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5: 81-84. http://dx.doi.org/10.1007/BF00269239   McNellis TW, von Arnim AG and Deng XW (1994). Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6: 1391-1400. PMid:7994173 PMCid:160528   Murashige T and Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473-497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x   Mutabingwa TK (2005). Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy! Acta Trop. 95: 305-315. http://dx.doi.org/10.1016/j.actatropica.2005.06.009 PMid:16098946   Nafis T, Akmal M, Ram M, Alam P, et al. (2011). Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnol. Rep. 5: 53-60. http://dx.doi.org/10.1007/s11816-010-0156-x   Napoli C, Lemieux C and Jorgensen R (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2: 279-289. PMid:12354959 PMCid:159885   Ohashi Y, Oka A, Ruberti I, Morelli G, et al. (2002). Entopically additive expression of GLABRA2 alters the frequency and spacing of trichome initiation. Plant J. 29: 359-369. http://dx.doi.org/10.1046/j.0960-7412.2001.01214.x PMid:11844112   Ram M, Khan MA, Jha P, Khan S, et al. (2010). HMG-CoA reductase limits artemisinin biosynthesis and accumulation in Artemisia annua L. plants. Acta Physiol. Plant. 32: 859-866. http://dx.doi.org/10.1007/s11738-010-0470-5   Ro DK, Paradise EM, Ouellet M, Fisher KJ, et al. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940-943. http://dx.doi.org/10.1038/nature04640 PMid:16612385   Stewart CN Jr and Via LE (1993). A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: 748-750. PMid:8512694   Teoh KH, Polichuk DR, Reed DW, Nowak G, et al. (2006). Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 580: 1411-1416. http://dx.doi.org/10.1016/j.febslet.2006.01.065 PMid:16458889   Teoh KH, Polichuk DR, Reed DW, Nowak G, et al. (2009). Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87: 635-642. http://dx.doi.org/10.1139/B09-032   Yang RY, Feng LL, Yang XQ, Yin LL, et al. (2008). Quantitative transcript profiling reveals down-regulation of A sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med. 74: 1510-1516. http://dx.doi.org/10.1055/s-2008-1081333 PMid:18816428   Zeng QP, Zeng XM, Yin LL, Yang RY, et al. (2009). Quantification of Three Key Enzymes Involved in Artemisinin Biogenesis in Artemisia annua by Polyclonal Antisera-Based ELISA. Plant Mol. Biol. Rep. 27: 50-57. http://dx.doi.org/10.1007/s11105-008-0056-1   Zhang L, Ding R, Chai Y, Bonfill M, et al. (2004). Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. U. S. A. 101: 6786-6791. http://dx.doi.org/10.1073/pnas.0401391101 PMid:15084741 PMCid:404123   Zhang L, Jing F, Li F, Li M, et al. (2009). Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol. Appl. Biochem. 52: 199-207. http://dx.doi.org/10.1042/BA20080068 PMid:18564056   Zhang Y, Teoh KH, Reed DW, Maes L, et al. (2008). The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J. Biol. Chem. 283: 21501-21508. http://dx.doi.org/10.1074/jbc.M803090200 PMid:18495659
2011
Y. L. Tang, Ren, W. W., Zhang, L., and Tang, K. X., Molecular cloning and characterization of a tocopherol cyclase gene from Lactuca sativa (Asteraceae), vol. 10, pp. 693-702, 2011.
Abbasi AR, Hajirezaei M, Hofius D, SonnewaldU, et al.(2007).Specific roles of alpha-andgamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol. 143: 1720-1738. doi:10.1104/pp.106.094771 PMid:17293434    PMCid:1851823 Azzi A, Gysin R, Kempna P, Munteanu A, et al. (2004). Vitamin E mediates cell signaling and regulation of gene expression. Ann. N. Y. Acad. Sci. 1031: 86-95. doi:10.1196/annals.1331.009 PMid:15753136 Collin VC, Eymery F, Genty B, Rey P, et al. (2008). Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell. Environ. 31: 244-257. PMid:17996014 DellaPenna D and Pogson BJ (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57: 711-738. doi:10.1146/annurev.arplant.56.032604.144301 PMid:16669779 Geourjon C andDeleage G (1995).SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11: 681-684. PMid:8808585 Guo J, Liu X, Chen S, Jin Z, et al. (2006). Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumulation and salt stress tolerance increase in tobacco plant. J. Appl. Environ. Biol. 12: 468-471. Havaux M, Eymery F, Porfirova S, Rey P, et al.(2005).Vitamin E protects against photoinhibition andphotooxidative stress in Arabidopsis thaliana. Plant Cell. 17: 3451-3469. doi:10.1105/tpc.105.037036 PMid:16258032    PMCid:1315381 Kanwischer M, Porfirova S, Bergmuller E andDormann P (2005).Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol. 137: 713-723. doi:10.1104/pp.104.054908 PMid:15665245    PMCid:1065371 Kumar R, Raclaru M, Schusseler T, Gruber J, et al. (2005). Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett. 579: 1357-1364. doi:10.1016/j.febslet.2005.01.030 PMid:15733841 Liu X, Hua X, Guo J, Qi D, et al. (2008). Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol. Lett. 30: 1275-1280. doi:10.1007/s10529-008-9672-y PMid:18317702 Munne-Bosch S, Schwarz K and Alegre L (1999). Enhanced formation of alpha-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol. 121: 1047-1052. doi:10.1104/pp.121.3.1047 PMid:10557254    PMCid:59469 Porfirova S, Bergmuller E, Tropf S, Lemke R, et al.(2002).Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis.Proc. Natl. Acad. Sci. U. S. A. 99: 12495-12500. doi:10.1073/pnas.182330899 PMid:12213958    PMCid:129473 Provencher LM, Miao L, Sinha N and Lucas WJ (2001). Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell. 13: 1127-1141. PMid:11340186    PMCid:135566 Sattler SE, Cahoon EB, Coughlan SJ and DellaPenna D (2003). Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 132: 2184-2195. doi:10.1104/pp.103.024257 PMid:12913173    PMCid:181302 Vidi PA, Kanwischer M, Baginsky S, Austin JR, et al. (2006). Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J. Biol. Chem. 281: 11225-11234. doi:10.1074/jbc.M511939200 PMid:16414959 Yamaguchi-Shinozaki K and Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 6: 251-264. PMid:8148648    PMCid:160431
Y. L. Tang, Ren, W. W., Zhang, L., and Tang, K. X., Molecular cloning and characterization of gene coding for γ-tocopherol methyltransferase from lettuce (Lactuca sativa), vol. 10. pp. 3204-3212, 2011.
Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, et al. (2007). Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol. 143: 1720-1738. http://dx.doi.org/10.1104/pp.106.094771 PMid:17293434    PMCid:1851823 Cho EA, Lee CA, Kim YS, Baek SH, et al. (2005). Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol. Cells 19: 16-22. PMid:15750335 Collin VC, Eymery F, Genty B, Rey P, et al. (2008). Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ. 31: 244-257. PMid:17996014 Geourjon C and Deléage G (1995). Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11: 681-684. PMid:8808585 Guo J, Liu X, Chen S and Jin Z (2006). Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumulation and salt stress tolerance increase in tobacco plant. J. Appl. Environ. Biol. 12: 468-471. Hare PD, Cress WA and Van Staden J (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21: 535-553. http://dx.doi.org/10.1046/j.1365-3040.1998.00309.x Havaux M, Eymery F, Porfirova S, Rey P, et al. (2005). Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17: 3451-3469. http://dx.doi.org/10.1105/tpc.105.037036 PMid:16258032    PMCid:1315381 Igamberdiev AU and Hill RD (2004). Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J. Exp. Bot. 55: 2473-2482. http://dx.doi.org/10.1093/jxb/erh272 PMid:15448180 Kiffin R, Bandyopadhyay U and Cuervo AM (2006). Oxidative stress and autophagy. Antioxid. Redox. Signal. 8: 152-162. http://dx.doi.org/10.1089/ars.2006.8.152 Kim YJ, Seo HY, Park TI and Baek SH (2005). Enhanced biosynthesis of α-tocopherol in transgenic soybean by introducing γ-TMT gene. J. Plant Biotechnol. 7: 203-209. Lee BK, Kim SL, Kim KH and Yu SH (2008). Seed specific expression of perilla γ-tocopherol methyltransferase gene increases α-tocopherol content in transgenic perilla (Perilla frutescens). Plant Cell Tissue Organ. Cult. 92: 47-54. http://dx.doi.org/10.1007/s11240-007-9301-9 Munne-Bosch S, Schwarz K and Alegre L (1999). Enhanced formation of alpha-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol. 121: 1047-1052. http://dx.doi.org/10.1104/pp.121.3.1047 PMid:10557254    PMCid:59469 Noctor G (2006). Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ. 29: 409-425. http://dx.doi.org/10.1111/j.1365-3040.2005.01476.x PMid:17080595 Seong ES, Ghimire BK, Goh EJ and Lim JD (2009). Overexpression of the γ-TMT gene in Codonopsis lanceolata. Biol. Plant 53: 631-636. http://dx.doi.org/10.1007/s10535-009-0115-y Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, et al. (2003). Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15: 3007-3019. http://dx.doi.org/10.1105/tpc.015875 PMid:14630966    PMCid:282849 Yamaguchi-Shinozaki K and Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264. PMid:8148648    PMCid:160431 Yusuf MA and Sarin NB (2007). Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res. 16: 109-113. http://dx.doi.org/10.1007/s11248-006-9028-0 PMid:17103027 Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, et al. (2010). Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta 1797: 1428-1438. http://dx.doi.org/10.1016/j.bbabio.2010.02.002 PMid:20144585