Publications

Found 24 results
Filters: Author is F. Liu  [Clear All Filters]
2016
F. Liu, Zhou, Z. L., Wang, C. Y., Wang, Y. H., Cai, X. Y., Wang, X. X., Wang, K. B., Zhang, Z. S., Liu, F., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Cai, X. Y., Wang, X. X., Wang, K. B., and Zhang, Z. S., Collinearity analysis of allotetraploid Gossypium tomentosum and Gossypium darwinii, vol. 15, p. -, 2016.
F. Liu, Zhou, Z. L., Wang, C. Y., Wang, Y. H., Cai, X. Y., Wang, X. X., Wang, K. B., Zhang, Z. S., Liu, F., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Cai, X. Y., Wang, X. X., Wang, K. B., and Zhang, Z. S., Collinearity analysis of allotetraploid Gossypium tomentosum and Gossypium darwinii, vol. 15, p. -, 2016.
F. Liu, Yang, L., Tian, Z. Z., Wu, P., Sun, S. L., Liu, F., Yang, L., Tian, Z. Z., Wu, P., and Sun, S. L., Constructing gene network based on biclusters of expression data, vol. 15, p. -, 2016.
F. Liu, Yang, L., Tian, Z. Z., Wu, P., Sun, S. L., Liu, F., Yang, L., Tian, Z. Z., Wu, P., and Sun, S. L., Constructing gene network based on biclusters of expression data, vol. 15, p. -, 2016.
J. Y. Zheng, Oluoch, G., Khan, M. K. Riaz, Wang, X. X., Cai, X. Y., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Li, X. Y., Liu, F., Wang, K. B., Zheng, J. Y., Oluoch, G., Khan, M. K. Riaz, Wang, X. X., Cai, X. Y., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Li, X. Y., Liu, F., and Wang, K. B., Mapping QTLs for drought tolerance in an F2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum, vol. 15, p. -, 2016.
J. Y. Zheng, Oluoch, G., Khan, M. K. Riaz, Wang, X. X., Cai, X. Y., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Li, X. Y., Liu, F., Wang, K. B., Zheng, J. Y., Oluoch, G., Khan, M. K. Riaz, Wang, X. X., Cai, X. Y., Zhou, Z. L., Wang, C. Y., Wang, Y. H., Li, X. Y., Liu, F., and Wang, K. B., Mapping QTLs for drought tolerance in an F2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum, vol. 15, p. -, 2016.
2015
X. Y. Cai, Liu, F., Zhou, Z. L., Wang, X. X., Wang, C. Y., Wang, Y. H., and Wang, K. B., Characterization and development of chloroplast microsatellite markers for Gossypium hirsutum, and cross-species amplification in other Gossypium species, vol. 14, pp. 11924-11932, 2015.
F. Liu and Cao, Y. P., Cloning and characterization of 5-enopyruvylshikimate-3-phosphate synthase from Pantoea sp, vol. 14, pp. 19233-19241, 2015.
F. Liu, Wang, Y. H., Gao, H. Y., Wang, C. Y., Zhou, Z. L., Cai, X. Y., Wang, X. X., Zhang, Z. S., and Wang, K. B., Construction and characterization of a bacterial artificial chromosome library for the allotetraploid Gossypium tomentosum, vol. 14, pp. 16975-16980, 2015.
J. Y. Huang, Yang, J. F., Qu, Q., Qu, J., Liu, F., Liu, F. E., Xiong, T., and Lu, S. H., DNA repair gene XRCC3 variants are associated with susceptibility to glioma in a Chinese population, vol. 14, pp. 10569-10575, 2015.
F. Liu, Zhou, Z. L., Wang, C. Y., Wang, Y. H., Cai, X. Y., Wang, X. X., Zhang, Z. S., and Wang, K. B., Genetic diversity and relationship analysis of Gossypium arboreum accessions, vol. 14, pp. 14522-14529, 2015.
J. Gao, Cheng, A. C., Wang, M. S., Jia, R. Y., Zhu, D. K., Chen, S., Liu, M. F., Liu, F., Yang, Q., Sun, K. F., and Chen, X. Y., Identification and characterization of the duck enteritis virus (DEV) US2 gene, vol. 14, pp. 13779-13790, 2015.
D. D. Li, Qin, Z. W., Lian, H., Yu, G. B., Sheng, Y. Y., and Liu, F., Inheritance and quantitative trait locus analysis of low-light tolerance in cucumber (Cucumis sativus L.), vol. 14, pp. 10609-10618, 2015.
Y. Y. Zhang, Huang, N., Xiao, X. H., Huang, L., Liu, F., Su, W. H., and Que, Y. X., Molecular variation of Sporisorium scitamineum in Mainland China revealed by internal transcribed spacers, vol. 14, pp. 7894-7909, 2015.
X. Y. Li, Liu, F., Hu, Y. F., Xia, M., Cheng, B. J., Zhu, S. W., and Ma, Q., Overexpression of an endo-1,4-β-glucanase V gene (EGV) from Trichoderma reesei leads to the accumulation of cellulase activity in transgenic rice, vol. 14, pp. 17519-17528, 2015.
2012
Y. - N. Yang, Ji, W. - N., Ma, Y. - T., Li, X. - M., Chen, B. - D., Xiang, Y., and Liu, F., Activation of the ERK1/2 pathway by the CaMEK gene via adeno-associated virus serotype 9 in cardiomyocytes, vol. 11, pp. 4672-4681, 2012.
Aliaga JC, Deschenes C, Beaulieu JF, Calvo EL, et al. (1999). Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. Am. J. Physiol. 277: G631-G641. PMid:10484389   Bueno OF and Molkentin JD (2002). Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ. Res. 91: 776-781. http://dx.doi.org/10.1161/01.RES.0000038488.38975.1A PMid:12411391   Cho HS, Chang SH, Chung YS, Shin JY, et al. (2009). Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells. J. Vet. Sci. 10: 23-28. http://dx.doi.org/10.4142/jvs.2009.10.1.23 PMid:19255520 PMCid:2801106   Garrington TP and Johnson GL (1999). Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11: 211-218. http://dx.doi.org/10.1016/S0955-0674(99)80028-3   Hajjar RJ and Samulski RJ (2006). Heart failure: a silver bullet to treat heart failure. Gene Ther. 13: 997. http://dx.doi.org/10.1038/sj.gt.3302747 PMid:17262904   Hausenloy DJ, Tsang A and Yellon DM (2005). The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc. Med. 15: 69-75. http://dx.doi.org/10.1016/j.tcm.2005.03.001 PMid:15885573   Kuno Y, Kondo K, Iwata H, Senga T, et al. (1998). Tumor-specific activation of mitogen-activated protein kinase in human colorectal and gastric carcinoma tissues. Jpn. J. Cancer Res. 89: 903-909. http://dx.doi.org/10.1111/j.1349-7006.1998.tb00647.x PMid:9818025   Lemieux E, Bergeron S, Durand V, Asselin C, et al. (2009). Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis. Int. J. Cancer 125: 1575-1586. http://dx.doi.org/10.1002/ijc.24485 PMid:19462441   Li DY, Tao L, Liu H, Christopher TA, et al. (2006). Role of ERK1/2 in the anti-apoptotic and cardioprotective effects of nitric oxide after myocardial ischemia and reperfusion. Apoptosis 11: 923-930. http://dx.doi.org/10.1007/s10495-006-6305-6 PMid:16547595   Li XM, Ma YT, Yang YN, Liu F, et al. (2009). Downregulation of survival signalling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure. Clin. Exp. Pharmacol. Physiol. 36: 1054-1061. http://dx.doi.org/10.1111/j.1440-1681.2009.05243.x PMid:19566828   Licato LL and Brenner DA (1998). Analysis of signaling protein kinases in human colon or colorectal carcinomas. Dig. Dis. Sci. 43: 1454-1464. http://dx.doi.org/10.1023/A:1018894227169 PMid:9690379   Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, et al. (2004). MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109: 1938-1941. http://dx.doi.org/10.1161/01.CIR.0000127126.73759.23 PMid:15096454   Manning G, Whyte DB, Martinez R, Hunter T, et al. (2002). The protein kinase complement of the human genome. Science 298: 1912-1934. http://dx.doi.org/10.1126/science.1075762 PMid:12471243   Mebratu Y and Tesfaigzi Y (2009). How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 8: 1168-1175. http://dx.doi.org/10.4161/cc.8.8.8147 PMid:19282669 PMCid:2728430   Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, et al. (2006). Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ. Res. 99: e3-e9. http://dx.doi.org/10.1161/01.RES.0000237661.18885.f6 PMid:16873720   Prasad KM, Xu Y, Yang Z, Acton ST, et al. (2011). Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution. Gene Ther. 18: 43-52. http://dx.doi.org/10.1038/gt.2010.105 PMid:20703310 PMCid:2988989   Simpson P and Savion S (1982). Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ. Res. 50: 101- 116. http://dx.doi.org/10.1161/01.RES.50.1.101 PMid:7053872   Treisman R (1996). Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8: 205-215. http://dx.doi.org/10.1016/S0955-0674(96)80067-6   Voisin L, Julien C, Duhamel S, Gopalbhai K, et al. (2008). Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer 8: 337. http://dx.doi.org/10.1186/1471-2407-8-337 PMid:19014680 PMCid:2596176   White JD, Thesier DM, Swain JB, Katz MG, et al. (2011). Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo. Gene Ther. 18: 546-552. http://dx.doi.org/10.1038/gt.2010.168 PMid:21228882   Yue TL, Wang C, Gu JL, Ma XL, et al. (2000). Inhibition of extracellular signal-regulated kinase enhances Ischemia/ Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ. Res. 86: 692-699. http://dx.doi.org/10.1161/01.RES.86.6.692 PMid:10747006
X. Cui, Liu, F., Wang, J. Q., Zhang, W. J., Wang, J. Y., Liu, K., Cui, S. Y., Zhang, J., and Xu, R. R., Complete sequence analysis of mitochondrial DNA of aplastic anemia patients, vol. 11, pp. 2130-2137, 2012.
Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, et al. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23: 147. http://dx.doi.org/10.1038/13779 PMid:10508508   Bohr VA, Stevnsner T and de Souza-Pinto NC (2002). Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 286: 127-134. http://dx.doi.org/10.1016/S0378-1119(01)00813-7   Chen D, Cao G, Hastings T, Feng Y, et al. (2002). Age-dependent decline of DNA repair activity for oxidative lesions in rat brain mitochondria. J. Neurochem. 81: 1273-1284. http://dx.doi.org/10.1046/j.1471-4159.2002.00916.x PMid:12068075   Chinnery PF and Schon EA (2003). Mitochondria. J. Neurol. Neurosurg. Psychiatr. 74: 1188-1199. http://dx.doi.org/10.1136/jnnp.74.9.1188 PMid:12933917 PMCid:1738655   Clayton DA (1984). Transcription of the mammalian mitochondrial genome. Annu. Rev. Biochem. 53: 573-594. http://dx.doi.org/10.1146/annurev.bi.53.070184.003041 PMid:6383200   DiMauro S and Schon EA (2003). Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348: 2656-2668. http://dx.doi.org/10.1056/NEJMra022567 PMid:12826641   Gattermann N (2000). From sideroblastic anemia to the role of mitochondrial DNA mutations in myelodysplastic syndromes. Leuk. Res. 24: 141-151. http://dx.doi.org/10.1016/S0145-2126(99)00160-5   Gattermann N (2004). Mitochondrial DNA mutations in the hematopoietic system. Leukemia 18: 18-22. http://dx.doi.org/10.1038/sj.leu.2403209 PMid:14614516   Grist SA, Lu XJ and Morley AA (2004). Mitochondrial mutations in acute leukaemia. Leukemia 18: 1313-1316. http://dx.doi.org/10.1038/sj.leu.2403380 PMid:15129223   Hatfill SJ, La Cock CJ, Laubscher R, Downing TG, et al. (1993). A role for mitochondrial DNA in the pathogenesis of radiation-induced myelodysplasia and secondary leukemia. Leuk. Res. 17: 907-913. http://dx.doi.org/10.1016/0145-2126(93)90036-K   Lee MS and Levin BC (2002). MitoAnalyzer, a computer program and interactive web site to determine the effects of single nucleotide polymorphisms and mutations in human mitochondrial DNA. Mitochondrion 1: 321-326. http://dx.doi.org/10.1016/S1567-7249(01)00031-9   Linnartz B, Anglmayer R and Zanssen S (2004). Comprehensive scanning of somatic mitochondrial DNA alterations in acute leukemia developing from myelodysplastic syndromes. Cancer Res. 64: 1966-1971. http://dx.doi.org/10.1158/0008-5472.CAN-03-2956 PMid:15026331   Penta JS, Johnson FM, Wachsman JT and Copeland WC (2001). Mitochondrial DNA in human malignancy. Mutat. Res. 488: 119-133. http://dx.doi.org/10.1016/S1383-5742(01)00053-9   Richter C, Park JW and Ames BN (1988). Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. U. S. A. 85: 6465-6467. http://dx.doi.org/10.1073/pnas.85.17.6465 PMid:3413108 PMCid:281993   Shadel GS and Clayton DA (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409-435. http://dx.doi.org/10.1146/annurev.biochem.66.1.409 PMid:9242913   Shin MG, Kajigaya S, Levin BC and Young NS (2003). Mitochondrial DNA mutations in patients with myelodysplastic syndromes. Blood 101: 3118-3125. http://dx.doi.org/10.1182/blood-2002-06-1825 PMid:12446454   Suganuma K, Miwa H, Imai N, Shikami M, et al. (2010). Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation. Leuk. Lymphoma 51: 2112-2119. http://dx.doi.org/10.3109/10428194.2010.512966 PMid:20860495   Wulfert M, Kupper AC, Tapprich C, Bottomley SS, et al. (2008). Analysis of mitochondrial DNA in 104 patients with myelodysplastic syndromes. Exp. Hematol. 36: 577-586. http://dx.doi.org/10.1016/j.exphem.2008.01.004 PMid:18439489
2011
Y. - Y. Zheng, Xie, X., Ma, Y. - T., Yang, Y. - N., Fu, Z. - Y., Li, X. - M., Liu, F., Yang, S. - J., Ma, X., and Chen, B. - D., S323I polymorphism of the C5L2 gene was not identified in a Chinese population with familial combined hyperlipidemia or with type 2 diabetes, vol. 10, pp. 3256-3266, 2011.
Aouizerat BE, Allayee H, Cantor RM, Davis RC, et al. (1999). A genome scan for familial combined hyperlipidemia reveals evidence of linkage with a locus on chromosome 11. Am. J. Hum. Genet. 65: 397-412. http://dx.doi.org/10.1086/302490 PMid:10417282 Cianflone K (2003). Acylation stimulating protein and triacylglycerol synthesis: potential drug targets? Curr. Pharm. Des. 9: 1397-1410. http://dx.doi.org/10.2174/1381612033454784 PMid:12769731 Cianflone K, Xia Z and Chen LY (2003). Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim. Biophys. Acta 1609: 127-143. http://dx.doi.org/10.1016/S0005-2736(02)00686-7 Cui W, Lapointe M, Gauvreau D, Kalant D, et al. (2009a). Recombinant C3adesArg/acylation stimulating protein (ASP) is highly bioactive: a critical evaluation of C5L2 binding and 3T3-L1 adipocyte activation. Mol. Immunol. 46: 3207- 3217. http://dx.doi.org/10.1016/j.molimm.2009.08.013 PMid:19767107 Cui W, Simaan M, Laporte S, Lodge R, et al. (2009b). C5a- and ASP-mediated C5L2 activation, endocytosis and recycling are lost in S323I-C5L2 mutation. Mol. Immunol. 46: 3086-3098. http://dx.doi.org/10.1016/j.molimm.2009.06.007 PMid:19615750 de Lind van Wijngaarden RF, Cianflone K, Gao Y, Leunissen RW, et al. (2010). Cardiovascular and metabolic risk profile and acylation-stimulating protein levels in children with Prader-Willi syndrome and effects of growth hormone treatment. J. Clin. Endocrinol. Metab. 95: 1758-1766. http://dx.doi.org/10.1210/jc.2009-0656 Faraj M, Sniderman AD and Cianflone K (2004). ASP enhances in situ lipoprotein lipase activity by increasing fatty acid trapping in adipocytes. J. Lipid Res. 45: 657-666. http://dx.doi.org/10.1194/jlr.M300299-JLR200 PMid:14703506 Huertas-Vazquez A, Aguilar-Salinas C, Lusis AJ, Cantor RM, et al. (2005). Familial combined hyperlipidemia in Mexicans: association with upstream transcription factor 1 and linkage on chromosome 16q24.1. Arterioscler. Thromb. Vasc. Biol. 25: 1985-1991. http://dx.doi.org/10.1161/01.ATV.0000175297.37214.a0 PMid:15976322 Kalant D, MacLaren R, Cui W, Samanta R, et al. (2005). C5L2 is a functional receptor for acylation-stimulating protein. J. Biol. Chem. 280: 23936-23944. http://dx.doi.org/10.1074/jbc.M406921200 PMid:15833747 MacLaren R, Kalant D and Cianflone K (2007). The ASP receptor C5L2 is regulated by metabolic hormones associated with insulin resistance. Biochem. Cell Biol. 85: 11-21. http://dx.doi.org/10.1139/o06-207 PMid:17464341 Marcil M, Vu H, Cui W, Dastani Z, et al. (2006). Identification of a novel C5L2 variant (S323I) in a French Canadian family with familial combined hyperlipemia. Arterioscler. Thromb. Vasc. Biol. 26: 1619-1625. http://dx.doi.org/10.1161/01.ATV.0000222907.72985.0b PMid:16627811 Maslowska M, Wang HW and Cianflone K (2005). Novel roles for acylation stimulating protein/C3adesArg: a review of recent in vitro and in vivo evidence. Vitam. Horm. 70: 309-332. http://dx.doi.org/10.1016/S0083-6729(05)70010-8 Paglialunga S, Julien P, Tahiri Y, Cadelis F, et al. (2009). Lipoprotein lipase deficiency is associated with elevated acylation stimulating protein plasma levels. J. Lipid Res. 50: 1109-1119. http://dx.doi.org/10.1194/jlr.M800430-JLR200 PMid:19237736    PMCid:2681393 Saleh J, Al-Khanbashi M, Al-Maarof M, Al-Lawati M, et al. (2009). Acylation-stimulating protein increases and correlates with increased progesterone levels during the luteal phase of the menstrual cycle. Eur. J. Endocrinol. 160: 301-307. http://dx.doi.org/10.1530/EJE-08-0784 PMid:19022911 Xiang SQ, Cianflone K, Kalant D and Sniderman AD (1999). Differential binding of triglyceride-rich lipoproteins to lipoprotein lipase. J. Lipid Res. 40: 1655-1663. PMid:10484612 Xiang X, Ma YT, Fu ZY, Yang YN, et al. (2009). Haplotype analysis of the CYP8A1 gene associated with myocardial infarction. Clin. Appl. Thromb. Hemost. 15: 574-580. http://dx.doi.org/10.1177/1076029608329581 PMid:19147528 Xie X, Ma YT, Fu ZY, Yang YN, et al. (2009). Association of polymorphisms of PTGS2 and CYP8A1 with myocardial infarction. Clin. Chem. Lab. Med. 47: 347-352. http://dx.doi.org/10.1515/CCLM.2009.078 PMid:19327107 Xie X, Ma YT, Yang YN, Li XM, et al. (2010a). Alcohol consumption and ankle-to-brachial index: results from the Cardiovascular Risk Survey. PLoS One 5: e15181. http://dx.doi.org/10.1371/journal.pone.0015181 PMid:21152041    PMCid:2996294 Xie X, Ma YT, Yang YN, Fu ZY, et al. (2010b). Polymorphisms in the SAA1/2 gene are associated with carotid intima media thickness in healthy Han Chinese subjects: the Cardiovascular Risk Survey. PLoS One 5: e13997. http://dx.doi.org/10.1371/journal.pone.0013997 PMid:21103356    PMCid:2982816 Yang YN, Wang XL, Ma YT, Xie X, et al. (2010). Association of interaction between smoking and CYP 2C19*3 polymorphism with coronary artery disease in a Uighur population. Clin. Appl. Thromb. Hemost. 16: 579-583. http://dx.doi.org/10.1177/1076029610364522 PMid:20460345
B. Jiang, Zhu, Z. Z., Liu, F., Yang, L. J., Zhang, W. Y., Yuan, H. H., Wang, J. G., Hu, X. H., and Huang, G., STAT3 gene polymorphisms and susceptibility to non-small cell lung cancer, vol. 10, pp. 1856-1865, 2011.
Abdulghani J, Gu L, Dagvadorj A, Lutz J, et al. (2008). Stat3 promotes metastatic progression of prostate cancer. Am. J. Pathol. 172: 1717-1728. http://dx.doi.org/10.2353/ajpath.2008.071054 PMid:18483213    PMCid:2408430 Barrett JC, Fry B, Maller J and Daly MJ (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263-265. http://dx.doi.org/10.1093/bioinformatics/bth457 PMid:15297300 Barrett JC, Hansoul S, Nicolae DL, Cho JH, et al. (2008). Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet. 40: 955-962. http://dx.doi.org/10.1038/ng.175 PMid:18587394    PMCid:2574810 Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, et al. (2009). gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15: 91-102. http://dx.doi.org/10.1016/j.ccr.2009.01.002 PMid:19185844 Bowman T, Garcia R, Turkson J and Jove R (2000). STATs in oncogenesis. Oncogene 19: 2474-2488. http://dx.doi.org/10.1038/sj.onc.1203527 PMid:10851046 Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, et al. (1999). Stat3 as an oncogene. Cell 98: 295-303. http://dx.doi.org/10.1016/S0092-8674(00)81959-5 Darnell JE (2005). Validating Stat3 in cancer therapy. Nat. Med. 11: 595-596. http://dx.doi.org/10.1038/nm0605-595 PMid:15937466 Dauer DJ, Ferraro B, Song L, Yu B, et al. (2005). Stat3 regulates genes common to both wound healing and cancer. Oncogene 24: 3397-3408. http://dx.doi.org/10.1038/sj.onc.1208469 PMid:15735721 Ferguson LR, Han DY, Fraser AG, Huebner C, et al. (2010). Genetic factors in chronic inflammation: single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn’s disease in a New Zealand population. Mutat. Res. 690: 108-115. http://dx.doi.org/10.1016/j.mrfmmm.2010.01.017 PMid:20109474 Fletcher S, Drewry JA, Shahani VM, Page BD, et al. (2009). Molecular disruption of oncogenic signal transducer and activator of transcription 3 (STAT3) protein. Biochem. Cell Biol. 87: 825-833. http://dx.doi.org/10.1139/O09-044 PMid:19935868 Grivennikov SI and Karin M (2010). Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 21: 11-19. http://dx.doi.org/10.1016/j.cytogfr.2009.11.005 Horinaga M, Okita H, Nakashima J, Kanao K, et al. (2005). Clinical and pathologic significance of activation of signal transducer and activator of transcription 3 in prostate cancer. Urology 66: 671-675. http://dx.doi.org/10.1016/j.urology.2005.03.066 PMid:16140113 Hsieh FC, Cheng G and Lin J (2005). Evaluation of potential Stat3-regulated genes in human breast cancer. Biochem. Biophys. Res. Commun. 335: 292-299. http://dx.doi.org/10.1016/j.bbrc.2005.07.075 PMid:16081048 Hsu HS, Huang PI, Chang YL, Tzao C, et al. (2011). Cucurbitacin i inhibits tumorigenic ability and enhances radiochemosensitivity in nonsmall cell lung cancer-derived CD133-positive cells. Cancer 117: 2970-2985. http://dx.doi.org/10.1002/cncr.25869 PMid:21225866 Ito N, Eto M, Nakamura E, Takahashi A, et al. (2007). STAT3 polymorphism predicts interferon-alfa response in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 25: 2785-2791. http://dx.doi.org/10.1200/JCO.2006.09.8897 PMid:17602083 Jing N, Zhu Q, Yuan P, Li Y, et al. (2006). Targeting signal transducer and activator of transcription 3 with G-quartet oligonucleotides: a potential novel therapy for head and neck cancer. Mol. Cancer Ther. 5: 279-286. http://dx.doi.org/10.1158/1535-7163.MCT-05-0302 PMid:16505101 Karin M (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431-436. http://dx.doi.org/10.1038/nature04870 PMid:16724054 Kreil S, Waghorn K, Ernst T, Chase A, et al. (2010). A polymorphism associated with STAT3 expression and response of chronic myeloid leukemia to interferon alpha. Haematologica 95: 148-152. http://dx.doi.org/10.3324/haematol.2009.011510 PMid:20065083    PMCid:2805737 Lai SY and Johnson FM (2010). Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist. Updat. 13: 67-78. http://dx.doi.org/10.1016/j.drup.2010.04.001 PMid:20471303 Lin Q, Lai R, Chirieac LR, Li C, et al. (2005). Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am. J. Pathol. 167: 969-980. http://dx.doi.org/10.1016/S0002-9440(10)61187-X Parkin DM, Bray F, Ferlay J and Pisani P (2005). Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108. http://dx.doi.org/10.3322/canjclin.55.2.74 Sansone P, Storci G, Tavolari S, Guarnieri T, et al. (2007). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J. Clin. Invest. 117: 3988-4002. http://dx.doi.org/10.1172/JCI32533 PMid:18060036    PMCid:2096439 Scagliotti GV, Longo M and Novello S (2009). Nonsmall cell lung cancer in never smokers. Curr. Opin. Oncol. 21: 99-104. http://dx.doi.org/10.1097/CCO.0b013e328321049e PMid:19532009 Shields PG (2002). Molecular epidemiology of smoking and lung cancer. Oncogene 21: 6870-6876. http://dx.doi.org/10.1038/sj.onc.1205832 PMid:12362269 Siddiquee K, Zhang S, Guida WC, Blaskovich MA, et al. (2007a). Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc. Natl. Acad. Sci. U. S. A. 104: 7391-7396. http://dx.doi.org/10.1073/pnas.0609757104 PMid:17463090    PMCid:1863497 Siddiquee KA, Gunning PT, Glenn M, Katt WP, et al. (2007b). An oxazole-based small-molecule Stat3 inhibitor modulates Stat3 stability and processing and induces antitumor cell effects. ACS Chem. Biol. 2: 787-798. http://dx.doi.org/10.1021/cb7001973 PMid:18154266 Stephens M, Smith NJ and Donnelly P (2001). A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68: 978-989. http://dx.doi.org/10.1086/319501 PMid:11254454 Turkson J (2004). STAT proteins as novel targets for cancer drug discovery. Expert. Opin. Ther. Targets. 8: 409-422. http://dx.doi.org/10.1517/14728222.8.5.409 PMid:15469392 Vaclavicek A, Bermejo JL, Schmutzler RK, Sutter C, et al. (2007). Polymorphisms in the Janus kinase 2 (JAK)/signal transducer and activator of transcription (STAT) genes: putative association of the STAT gene region with familial breast cancer. Endocr. Relat. Cancer 14: 267-277. http://dx.doi.org/10.1677/ERC-06-0077 PMid:17639043 Weerasinghe P, Garcia GE, Zhu Q, Yuan P, et al. (2007). Inhibition of Stat3 activation and tumor growth suppression of non-small cell lung cancer by G-quartet oligonucleotides. Int. J. Oncol. 31: 129-136. PMid:17549413 Yang L, Parkin DM, Li LD, Chen YD, et al. (2004). Estimation and projection of the national profile of cancer mortality in China: 1991-2005. Br. J. Cancer 90: 2157-2166. PMid:15150609    PMCid:2409509 Yin W, Cheepala S, Roberts JN, Syson-Chan K, et al. (2006). Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions. Mol. Cancer 5: 15. http://dx.doi.org/10.1186/1476-4598-5-15 PMid:16603078    PMCid:1502137 Yin ZJ, Jin FG, Liu TG, Fu EQ, et al. (2010). Overexpression of STAT3 potentiates growth, survival, and radioresistance of non-small-cell lung cancer (NSCLC) cells. J. Surg. Res. Doi: 10.1016/j.jss.2010.03.053. http://dx.doi.org/10.1016/j.jss.2010.03.053 PMid:20605584 Yu H and Jove R (2004). The STATs of cancer - new molecular targets come of age. Nat. Rev. Cancer 4: 97-105. http://dx.doi.org/10.1038/nrc1275 PMid:14964307 Yu H, Pardoll D and Jove R (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9: 798-809. http://dx.doi.org/10.1038/nrc2734 PMid:19851315