Publications

Found 5 results
Filters: Author is S.S. Ahmed  [Clear All Filters]
2012
S. S. Ahmed, Gong, Z. - H., Ji, J. - J., Yin, Y. - X., Xiao, H. - J., Khan, M. A., Rehman, A., and Ahmad, I., Construction of the intermediate vector pVBG2307 by incorporating vital elements of expression vectors pBI121 and pBI221, vol. 11, pp. 3091-3104, 2012.
Ahmed SS, Gong ZH, Khan MA, Yin YX, et al. (2011). Activity and expression of polygalacturonase vary at different fruit ripening stages of sweet pepper cultivars. Genet. Mol. Res. 10: 3275-3290. http://dx.doi.org/10.4238/2011.November.22.10 PMid:22180000   Akiyoshi DE, Klee H, Amasino RM, Nester EW, et al. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 81: 5994-5998. http://dx.doi.org/10.1073/pnas.81.19.5994 PMid:6091129 PMCid:391845   Anonymous (2003). The production and post-harvest handling of sweet pepper in Kenya. Horticultural Crops Development Authority (HCDA), Kenia.   AVRDC (2005). The World Vegetable Centre. Available at [www.avrdc.org/pdf/brief-poverty.pdf]. Accessed July 20, 2011.   Barry GF, Rogers SG, Fraley RT and Brand L (1984). Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci. U. S. A. 81: 4776-4780. http://dx.doi.org/10.1073/pnas.81.15.4776 PMid:16593495 PMCid:391573   Broglie KE, Gaynor JJ and Broglie RM (1986). Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc. Natl. Acad. Sci. U. S. A. 83: 6820-6824. http://dx.doi.org/10.1073/pnas.83.18.6820 PMid:2428042 PMCid:386601   Chen PY, Wang CK, Soong SC and To KY (2003). Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol. Breed. 11: 287-293. http://dx.doi.org/10.1023/A:1023475710642   Chen RG, Yang RP, Gong ZH, Li DW, et al. (2010). Cloning and sequence analysis of the polygalacturonase gene CaPG in pepper. Acta Bot. Boreal.-Occident. Sin. 30: 1941-1945.   Deikman J and Fischer RL (1988). Interaction of a DNA binding factor with the 5'-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J. 7: 3315-3320. PMid:3208738 PMCid:454826   Deikman J, Xu R, Kneissl ML, Ciardi JA, et al. (1998). Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5'-flanking region of the ripening-related E8 gene. Plant Mol. Biol. 37: 1001-1011. http://dx.doi.org/10.1023/A:1006091928367 PMid:9700072   Fischer RL and Bennett AB (1991). Role of cell wall hydrolases in fruit ripening. Annu. Rev. Plant Physiol. 42: 675-703. http://dx.doi.org/10.1146/annurev.pp.42.060191.003331   Giorno F, Wolters-Arts M, Grillo S, Scharf KD, et al. (2010). Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61: 453-462. http://dx.doi.org/10.1093/jxb/erp316 PMid:19854799 PMCid:2803211   Guivarc'h A, Rembur J, Goetz M, Roitsch T, et al. (2002). Local expression of the ipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. J. Exp. Bot. 53: 621-629. http://dx.doi.org/10.1093/jexbot/53.369.621 PMid:11886881   Holdsworth MJ, Bird CR, Ray J, Schuch W, et al. (1987). Structure and expression of an ethylene-related mRNA from tomato. Nucleic Acids Res. 15: 731-739. http://dx.doi.org/10.1093/nar/15.2.731 PMid:3029690 PMCid:340463   Ishikawa M, Murata T, Sato Y, Nishiyama T, et al. (2011). Physcomitrella cyclin-dependent kinase A links cell cycle reactivation to other cellular changes during reprogramming of leaf cells. Plant Cell 23: 2924-2938. http://dx.doi.org/10.1105/tpc.111.088005 PMid:21862705 PMCid:3180801   Kahl G and Winter P (1995). Plant genetic engineering for crop improvement. World J. Microbiol. Biotechnol. 11: 449-460. http://dx.doi.org/10.1007/BF00364620   Kim DH, Kang JG and Kim BD (2007). Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). Plant Mol. Biol. 63: 519-532. http://dx.doi.org/10.1007/s11103-006-9106-y PMid:17238047   Kothari SL, Joshi A, Kachhwaha S and Ochoa-Alejo N (2010). Chilli peppers-a review on tissue culture and transgenesis. Biotechnol. Adv. 28: 35-48. http://dx.doi.org/10.1016/j.biotechadv.2009.08.005 PMid:19744550   Lincoln JE, Cordes S, Read E and Fischer RL (1987). Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proc. Natl. Acad. Sci. U. S. A. 84: 2793-2797. http://dx.doi.org/10.1073/pnas.84.9.2793 PMid:3472237 PMCid:304745   McGarvey DJ, Sirevag R and Christoffersen RE (1992). Ripening-related gene from avocado fruit: ethylene-inducible expression of the mRNA and polypeptide. Plant Physiol. 98: 554-559. http://dx.doi.org/10.1104/pp.98.2.554 PMid:16668676 PMCid:1080225   Miller CO, Skoog F, Okumura FS, Von-Salza MH, et al. (1956). Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Am. Chem. Soc. 78: 1375-1380. http://dx.doi.org/10.1021/ja01588a032   Pruti JS and Sharma RP (1998). Major Spices of India Crop Management and Post Harvest Technology. In: Chapter IV: Chillies or Capsicum. Indian Council of Agricultural Research Publications and Information Division, New Delhi, 558-670.   Sambrook J and Russell DW (2000). Molecular Cloning: A Laboratory Manual. 3rd edn. CSHL Press, New York.   Schnable PS and Wise RP (1998). The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3: 175-180. http://dx.doi.org/10.1016/S1360-1385(98)01235-7   Smith CJ, Watson CF, Bird CR, Ray J, et al. (1990). Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol. Gen. Genet. 224: 477-481. http://dx.doi.org/10.1007/BF00262443 PMid:2266949   Tanaka Y, Nakamura S, Kawamukai M, Koizumi N, et al. (2011). Development of a series of gateway binary vectors possessing a tunicamycin resistance gene as a marker for the transformation of Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 75: 804-807. http://dx.doi.org/10.1271/bbb.110063 PMid:21512216   Wang ZY, MacRae EA, Wright MA, Bolitho KM, et al. (2000). Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production. Plant Mol. Biol. 42: 317-328. http://dx.doi.org/10.1023/A:1006309529922 PMid:10794531   Watson AA, Alm RA and Mattick JS (1996). Construction of improved vectors for protein production in Pseudomonas aeruginosa. Gene 172: 163-164. http://dx.doi.org/10.1016/0378-1119(96)00026-1   Xu G, Sui N, Tang Y, Xie K, et al. (2010). One-step, zero-background ligation-independent cloning intro-containing hairpin RNA constructs for RNAi in plants. New Phytol. 187: 240-250. http://dx.doi.org/10.1111/j.1469-8137.2010.03253.x PMid:20406406   Xu WR, Wang YJ, Wang XP, Hao W, et al. (2005). Construction of the plant expression vectors carrying resistant genes to powdery mildew and adversities in wild species of Vitis in China. Acta Bot. Boreal.-Occident. Sin. 25: 851-857.   Xue GP and Loveridge CW (2004). HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J. 37: 326-339. http://dx.doi.org/10.1046/j.1365-313X.2003.01963.x PMid:14731254   Zhao LX, Lu L, Zhang L, Wang A, et al. (2009). Molecular evolution of the E8 promoter in tomato and some of its relative wild species. J. Biosci. 34: 71-84. http://dx.doi.org/10.1007/s12038-009-0010-x PMid:19430120
W. L. Guo, Chen, R. G., Gong, Z. H., Yin, Y. X., Ahmed, S. S., and He, Y. M., Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress, vol. 11, pp. 4063-4080, 2012.
Aebi H (1984). Catalase in vitro. Methods Enzymol. 105: 121-126. http://dx.doi.org/10.1016/S0076-6879(84)05016-3   Arrigoni O, Dipierro S and Borraccino G (1981). Ascorbate free radical reductase; a key enzyme of the ascorbic acid system. FEBS Lett. 125: 242-244. http://dx.doi.org/10.1016/0014-5793(81)80729-6   Bellaire BA, Carmody J, Braud J, Gossett DR, et al. (2000). Involvement of abscisic acid-dependent and -independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radic. Res. 33: 531-545. http://dx.doi.org/10.1080/10715760000301071 PMid:11200086   Bueno P, Piqueras A, Kurepa J, Savouré A, et al. (1998). Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci. 138: 27-34. http://dx.doi.org/10.1016/S0168-9452(98)00154-X   de Azevedo Neto AD, Prisco JT, Eneas-Filho J, Medeiros JV, et al. (2005). Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J. Plant Physiol. 162: 1114-1122. http://dx.doi.org/10.1016/j.jplph.2005.01.007 PMid:16255169   Dhindsa RS, Plumb-Dhindsa P and Thorpe TA (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32: 93-101. http://dx.doi.org/10.1093/jxb/32.1.93   Ding W, Song L, Wang X and Bi Y (2010). Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. Biol. Plantarum 54: 607-613. http://dx.doi.org/10.1007/s10535-010-0110-3   Ghassemian M, Lutes J, Chang HS, Lange I, et al. (2008). Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana. Phytochemistry 69: 2899-2911. http://dx.doi.org/10.1016/j.phytochem.2008.09.020 PMid:19007950   Giannopolitis CN and Ries SK (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59: 309-314. http://dx.doi.org/10.1104/pp.59.2.309 PMid:16659839 PMCid:542387   Griffith OW (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106: 207-212. http://dx.doi.org/10.1016/0003-2697(80)90139-6   Hammerschmidt R, Nuckles EM and Kuc J (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 20: 73-82. http://dx.doi.org/10.1016/0048-4059(82)90025-X   Hodges DM, Lester GE, Munro KD and Toivonen PM (2004). Oxidative stress: importance for postharvest quality. HortScience 39: 924-929.   Hung KT and Kao CH (2003). Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J. Plant Physiol. 160: 871-879. http://dx.doi.org/10.1078/0176-1617-01118 PMid:12964863   Hung KT and Kao CH (2004). Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J. Plant Physiol. 161: 1347-1357. http://dx.doi.org/10.1016/j.jplph.2004.05.011 PMid:15658805   Jiang M and Zhang J (2002). Role of abscissic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radic. Res. 36: 1001-1015. http://dx.doi.org/10.1080/1071576021000006563 PMid:12448826   Korkmaz A, Korkmaz Y and Demirkiran AR (2010). Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ. Exp. Bot. 67: 495-501. http://dx.doi.org/10.1016/j.envexpbot.2009.07.009   Le Martret B, Poage M, Shiel K, Nugent GD, et al. (2011). Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol. J. 9: 661-673. http://dx.doi.org/10.1111/j.1467-7652.2011.00611.x PMid:21450042   Lee DH and Lee CB (2000). Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159: 75-85. http://dx.doi.org/10.1016/S0168-9452(00)00326-5   Li Q, Yu B, Gao Y, Dai AH, et al. (2011). Cinnamic acid pretreatment mitigates chilling stress of cucumber leaves through altering antioxidant enzyme activity. J. Plant Physiol. 168: 927-934. http://dx.doi.org/10.1016/j.jplph.2010.11.025 PMid:21353326   Li W, Qi L, Lin X, Chen H, et al. (2009). The expression of manganese superoxide dismutase gene from Nelumbo nucifera responds strongly to chilling and oxidative stresses. J. Integr. Plant Biol. 51: 279-286. http://dx.doi.org/10.1111/j.1744-7909.2008.00790.x PMid:19261071   Li Y, Liu Y and Zhang JG (2010). Advances in the research on the AsA-GSH cycle in horticultural crops. Front. Agric. China 4: 84-90. http://dx.doi.org/10.1007/s11703-009-0089-8   Liu ZJ, Guo YK and Bai JG (2010). Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. J. Plant Growth Regul. 29: 171-183. http://dx.doi.org/10.1007/s00344-009-9121-8   Logan BA, Grace SC, Adams WW and Demmig-Adams B (1998). Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116: 9-17. http://dx.doi.org/10.1007/PL00013823   Ma XW, Ma FW, Mi YF, Ma YH, et al. (2008). Morphological and physiological responses of two contrasting malus species to exogenous abscisic acid application. Plant Growth Regul. 56: 77-87. http://dx.doi.org/10.1007/s10725-008-9287-2   Mukherjee SP and Choudhuri MA (1983). Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiol. Plant. 58: 166-170. http://dx.doi.org/10.1111/j.1399-3054.1983.tb04162.x   Nakano Y and Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.   Nayyar H, Bains TS and Kumar S (2005). Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environ. Exp. Bot. 54: 275-285. http://dx.doi.org/10.1016/j.envexpbot.2004.09.007   Schaedle M (1977). Chloroplast glutathione reductase. Plant Physiol. 59: 1011-1012. http://dx.doi.org/10.1104/pp.59.5.1011 PMid:16659940 PMCid:543356   Selote DS and Khanna-Chopra R (2006). Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol. Plant. 127: 494-506. http://dx.doi.org/10.1111/j.1399-3054.2006.00678.x   Shan C and Liang Z (2010). Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci. 178: 130-139. http://dx.doi.org/10.1016/j.plantsci.2009.11.002   Stevens R, Page D, Gouble B, Garchery C, et al. (2008). Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ. 31: 1086-1096. http://dx.doi.org/10.1111/j.1365-3040.2008.01824.x PMid:18433441   Verslues PE and Zhu JK (2005). Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem. Soc. Trans. 33: 375-379. http://dx.doi.org/10.1042/BST0330375 PMid:15787610   Wan H, Yuan W, Ruan M, Ye Q, et al. (2011). Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem. Biophys. Res. Commun. 416: 24-30. http://dx.doi.org/10.1016/j.bbrc.2011.10.105 PMid:22086175   Wang YL, Ma FW, Li MJ, Liang D, et al. (2011). Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regul. 64: 63-74. http://dx.doi.org/10.1007/s10725-010-9537-y   Wang Z, Xiao Y, Chen W, Tang K, et al. (2010). Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J. Integr. Plant Biol. 52: 400-409. http://dx.doi.org/10.1111/j.1744-7909.2010.00921.x PMid:20377702   Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, et al. (2010). Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit. Rev. Biotechnol. 30: 222-230. http://dx.doi.org/10.3109/07388551.2010.487186 PMid:20572794   Zhang W, Jiang B, Li W, Song H, et al. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci. Hortic. 122: 200-208. http://dx.doi.org/10.1016/j.scienta.2009.05.013   Zhang Y, Tang HR, Luo Y and Hou YX (2009). Responses of antioxidant enzymes and compounds in strawberry (Fragaria x ananassa 'Toyonaka') to cold stress. New Zeal J. Crop Hort. 37: 383-390. http://dx.doi.org/10.1080/01140671.2009.9687594   Zhou BY, Guo ZF and Liu ZL (2005). Effects of abscisic acid on antioxidant systems of Stylosanthes guianensis (Aublet) Sw. under chilling stress. Crop Sci. 45: 599-605. http://dx.doi.org/10.2135/cropsci2005.0599
H. - F. Zhao, Huang, W., Ahmed, S. S., Gong, Z. - H., and Zhao, L. - M., The pollen wall and tapetum are altered in the cytoplasmic male sterile line RC7 of Chinese cabbage (Brassica campestris ssp pekinensis), vol. 11, pp. 4145-4156, 2012.
Aarts MG, Hodge R, Kalantidis K, Florack D, et al. (1997). The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J. 12: 615-623. http://dx.doi.org/10.1046/j.1365-313X.1997.d01-8.x PMid:9351246   Ariizumi T, Hatakeyama K, Hinata K, Sato S, et al. (2003). A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol. Biol. 53: 107-116. http://dx.doi.org/10.1023/B:PLAN.0000009269.97773.70 PMid:14756310   Ariizumi T, Hatakeyama K, Hinata K, Sato S, et al. (2005). The HKM gene, which is identical to the MS1 gene of Arabidopsis thaliana, is essential for primexine formation and exine pattern formation. Sex. Plant Reprod. 18: 1-7. http://dx.doi.org/10.1007/s00497-005-0242-3   Athwal DS, Phul PS and Mimocha JL (1967). Genetic male sterility in wheat. Euphytica 16: 354-360. http://dx.doi.org/10.1007/BF00028942   Bedinger P (1992). The remarkable biology of pollen. Plant Cell 4: 879-887. PMid:1392600 PMCid:160181   Biasi R, Falasca G, Speranza A, De Stradis A, et al. (2001). Biochemical and ultrastructural features related to male sterility in the dioecious species Actinidia deliciosa. Plant Physiol. Biochem. 39: 395-406. http://dx.doi.org/10.1016/S0981-9428(01)01255-4   Boavida LC, Becker JD and Feijo JA (2005). The making of gametes in higher plants. Int. J. Dev. Biol. 49: 595-614. http://dx.doi.org/10.1387/ijdb.052019lb PMid:16096968   Chaloner WG (1976). The Evolution of Adaptive Features in Fossil Exines. In: The Evolutionary Significance of the Exine (Ferguson IK and Muller J, eds.). Academic Press, London, 1-14.   Crouzillat D, de la Canal L, Perrault A, Ledoigt G, et al. (1991). Cytoplasmic male sterility in sunflower: comparison of molecular biology and genetic studies. Plant Mol. Biol. 16: 415-426. http://dx.doi.org/10.1007/BF00023992 PMid:1680010   Drew MC, He CJ and Morgan PW (2000). Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 5: 123-127. http://dx.doi.org/10.1016/S1360-1385(00)01570-3   Duvick DN (1959). The use of cytoplasmic male-sterility in hybrid seed production. Econ. Bot. 13: 167-195. http://dx.doi.org/10.1007/BF02860581   Ellis RE, Yuan J and Horvitz HR (1991). Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7: 663-698. http://dx.doi.org/10.1146/annurev.cb.07.110191.003311 PMid:1809356   Fei HM and Sawhney VK (2001). Ultrastructural characterization of male sterile33 (ms33) mutant in Arabidopsis affected in pollen desiccation and maturation. Can. J. Bot. 79: 118-129.   Fischer K and Weber A (2002). Transport of carbon in non-green plastids. Trends Plant Sci. 7: 345-351. http://dx.doi.org/10.1016/S1360-1385(02)02291-4   Frankel R and Galun E (1977). Pollination Mechanism, Reproduction and Plant Breeding. Springer Verlag, Berlin, Heidelberg, New York, 214-216. http://dx.doi.org/10.1007/978-3-642-81059-6 PMid:912984   Guan YF, Huang XY, Zhu J, Gao JF, et al. (2008). RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol. 147: 852-863. http://dx.doi.org/10.1104/pp.108.118026 PMid:18434608 PMCid:2409014   Guilford WJ, Schneider DM, Labovitz J and Opella SJ (1988). High resolution solid state C NMR spectroscopy of sporopollenins from different plant taxa. Plant Physiol. 86: 134-136. http://dx.doi.org/10.1104/pp.86.1.134 PMid:16665854 PMCid:1054442   Heslop-Harrison J (1971). Wall pattern formation in angiosperm microsporogenesis. Symp. Soc. Exp. Biol. 25: 277-300. PMid:4940549   Jan A, Nakamura H, Handa H, Ichikawa H, et al. (2006). Gibberellin regulates mitochondrial pyruvate dehydrogenase activity in rice. Plant Cell Physiol. 47: 244-253. http://dx.doi.org/10.1093/pcp/pci241 PMid:16352697   Jiang P, Zhang X, Zhu Y, Zhu W, et al. (2007). Metabolism of reactive oxygen species in cotton cytoplasmic male sterility and its restoration. Plant Cell Rep. 26: 1627-1634. http://dx.doi.org/10.1007/s00299-007-0351-6 PMid:17426978   Jones A (2000). Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci. 5: 225-230. http://dx.doi.org/10.1016/S1360-1385(00)01605-8   Kang ZS (1996). Ultrastructure of Plant Pathogenic Fungi. China Science and Technology Press, Beijing.   Kaul LHM (1988). Male Sterility in Higher Plants. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-642-83139-3 PMCid:1711714   Kuriyama H and Fukuda H (2002). Developmental programmed cell death in plants. Curr. Opin. Plant Biol. 5: 568-573. http://dx.doi.org/10.1016/S1369-5266(02)00305-9   Owen HA and Makaroff CA (1995). Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185: 7-21. http://dx.doi.org/10.1007/BF01272749   Panavas T and Rubinstein B (1998). Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci. 133: 125-138. http://dx.doi.org/10.1016/S0168-9452(98)00034-X   Papini A, Mosti S and Brighigna L (1999). Programmed-cell-death events during tapetum development of angiosperms. Protoplasma 207: 213-221. http://dx.doi.org/10.1007/BF01283002   Paxson-Sowders DM, Owen HA and Makaroff CA (1997). A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma 198: 53-65. http://dx.doi.org/10.1007/BF01282131   Paxson-Sowders DM, Dodrill CH, Owen HA and Makaroff CA (2001). DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol. 127: 1739-1749. http://dx.doi.org/10.1104/pp.010517 PMid:11743117 PMCid:133577   Pennell RI and Lamb C (1997). Programmed cell death in plants. Plant Cell. 9: 1157-1168. http://dx.doi.org/10.1105/tpc.9.7.1157 PMid:12237381 PMCid:156988   Piffanelli P, Ross JHE and Murphy DJ (1998). Biogenesis and function of the lipidic structures of pollen grains. Sex. Plant Reprod. 11: 65-80. http://dx.doi.org/10.1007/s004970050122   Sanders EL and Wride MA (1995). Programmed cell death in development. Int. Rev. Cytol. 163: 105-173. http://dx.doi.org/10.1016/S0074-7696(08)62210-X   Shukla AK, Vijayaraghavan MR and Chaudhry B (1998). Biology of Pollen. APH Publishing Corporation, New Delhi.   Sodhi YS, Chandra A, Verma JK, Arumugam N, et al. (2006). A new cytoplasmic male sterility system for hybrid seed production in Indian oilseed mustard Brassica juncea. Theor. Appl. Genet. 114: 93-99. http://dx.doi.org/10.1007/s00122-006-0413-0 PMid:17036218   Sun Q, Hu C, Hu J, Li S, et al. (2009). Quantitative proteomic analysis of CMS-related changes in Honglian CMS rice anther. Protein J. 28: 341-348. http://dx.doi.org/10.1007/s10930-009-9199-7 PMid:19756991   Vizcay-Barrena G and Wilson ZA (2006). Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J. Exp. Bot. 57: 2709-2717. http://dx.doi.org/10.1093/jxb/erl032 PMid:16908508   Ying M, Dreyer F, Cai D and Jung C (2003). Molecular markers for genic male sterility in Chinese cabbage. Euphytica 132: 227-234. http://dx.doi.org/10.1023/A:1024642717416   Yui R, Iketani S, Mikami T and Kubo T (2003). Antisense inhibition of mitochondrial pyruvate dehydrogenase E1a subunit in anther tapetum causes male sterility. Plant J. 34: 57-66. http://dx.doi.org/10.1046/j.1365-313X.2003.01704.x PMid:12662309   Zhao LM and Ke GL (2007). Breeding of a radish CMS in Chinese cabbage (RC_7) and the research of its traits. Acta Bot. Boreal.-Occident. Sin. 27: 2404-2410.
2011
S. S. Ahmed, Gong, Z. - H., Khan, M. A., Yin, Y. - X., Guo, W. - L., and Imran, J., Activity and expression of polygalacturonase vary at different fruit ripening stages of sweet pepper cultivars, vol. 10, pp. 3275-3290, 2011.
Ahmed AE and Labavitch JM (1980). Cell wall metabolism in ripening fruit II. Changes in carbohydrate-degrading enzymes in ripening ‘Bartlett’ pears. Plant Physiol. 65: 1014-1016. http://dx.doi.org/10.1104/pp.65.5.1014 PMid:16661276    PMCid:440467 Arancibia RA and Motsenbocker CE (2006). Pectin methylesterase activity in vivo differs from activity in vitro and enhances polygalacturonase-mediated pectin degradation in tabasco pepper. J. Plant Physiol. 163: 488-496. http://dx.doi.org/10.1016/j.jplph.2005.06.022 PMid:16473653 Barrett DM and Gonzalez C (1994). Activity of softening enzymes during cherry maturation. Food Sci. 59: 574-577. http://dx.doi.org/10.1111/j.1365-2621.1994.tb05565.x Biggs SM and Handa AK (1989). Temporal regulation of polygalacturonase gene expression in fruit of normal, mutant, and heterozygous tomato genotypes. Plant Physiol. 89: 117-125. http://dx.doi.org/10.1104/pp.89.1.117 PMid:16666501    PMCid:1055806 Bird CR, Smith CJS, Ray JA, Moureau P, et al. (1988). The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol. Biol. 11: 651-662. http://dx.doi.org/10.1007/BF00017465 Brady CJ (1987). Annual review. Plant Physiol. 38: 155. http://dx.doi.org/10.1146/annurev.pp.38.060187.001103 Brummell DA and Harpster MH (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47: 311-340. http://dx.doi.org/10.1023/A:1010656104304 PMid:11554479 Chen RG, Yang RP, Gong ZH, Li DW, et al. (2010). Cloning and sequence analysis of the polygalacturonase gene CaPG in pepper. Acta Bot. Boreal-Occidentalia Sin. 30: 1941-1945. Crookes PR and Grierson D (1983). Ultrastructure of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation. Plant Physiol. 72: 1088-1093. http://dx.doi.org/10.1104/pp.72.4.1088 PMid:16663125    PMCid:1066379 Del E, Perez MC, Álvarez CO, Arrazate ACH, et al. (2007). Morphological variation in Guajillo chilli pepper plant (Capsicum annum L.). Afr. Crop Sci. Conf. Proceed. 8: 327-332. DellaPenna D, Kates DS and Bennett AB (1987). Polygalacturonase gene expression in rutgers, rin, nor and Nr tomato fruits. Plant Physiol. 85: 502-507. http://dx.doi.org/10.1104/pp.85.2.502 PMid:16665727    PMCid:1054285 Errington N, Mitchell JR and Tucker GA (1997). Changes in the force relaxation and compression responses of tomatoes during ripening: the effect of continual testing and polygalacturonase activity. Postharvest Biol. Tech. 11: 141-147. http://dx.doi.org/10.1016/S0925-5214(97)00020-3 Fenwick KM, Jarvis MC, Apperley DC, Seymour GB, et al. (1996). Polymer mobility in cell walls of transgenic tomatoes with reduced polygalacturonase activity. Phytochemistry 42: 301-307. http://dx.doi.org/10.1016/0031-9422(95)00873-X Geleta LF, Labuschagne MT and Viljoen CD (2005). Genetic variability in pepper (Capsicum annuum L.) estimated by morphological data and amplified fragment length polymorphism markers. Biodivers. Conserv. 14: 2361-2375. http://dx.doi.org/10.1007/s10531-004-1669-9 Georgia O, Ilias I, Giannakoula A and Papadopoulou P (2010). Comparative study on the effects of various plant growth regulators on growth, quality and physiology of Capsicum annum L. Pak. J. Bot. 42: 805-814. Giorno F, Wolters AM, Grillo S, Scharf KD, et al. (2010). Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61: 453-462. http://dx.doi.org/10.1093/jxb/erp316 PMid:19854799    PMCid:2803211 Giovannoni JJ (2001). Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 725-749. http://dx.doi.org/10.1146/annurev.arplant.52.1.725 PMid:11337414 Giovannoni JJ, DellaPenna D, Bennett AB and Fischer RL (1989). Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1: 53-63. PMid:2535467    PMCid:159736 Giovannoni JJ, DellaPenna D, Bennett A and Fischer R (1991). Polygalacturonase and tomato fruit ripening. Hort. Rev. 13: 67-103. Hasegawa S, Maier VP, Kaszycki HP and Crawford JK (1969). Polygalacturonase content of dates and its relation to maturity and softness. J. Food Sci. 34: 527-529. http://dx.doi.org/10.1111/j.1365-2621.1969.tb12078.x Hobson GE (1965). The firmness of tomato fruit in relation to polygalacturonase activity. J. Hort. Sci. 40: 66-72. Huber DJ (1983). The role of cell wall hydrolases in fruit softening. Hort. Rev. 5: 169-219. Jarvis MC (1984). Structure and properties of pectin gels in plant cell walls. Plant Cell Environ. 7: 153-164. Ketsa S and Daengkanit T (1999). Firmness and activities of polygalacturonase, pectinesterase, β-galactosidase and cellulase in ripening durain harvested at different stages of maturity. Sci. Hort. 80: 181-188. http://dx.doi.org/10.1016/S0304-4238(98)00242-8 Ketsa SS, Chidtragool S, Klein JD, Luire S, et al. (1998). Effect of heat treatment on changes in softening, pectic substances and activities of polygalacturonase, pectinesterase and β-galactosidase of ripening mango. J. Plant Physiol. 153: 457- 461. http://dx.doi.org/10.1016/S0176-1617(98)80174-0 Khan MA, Cheng ZH, Xiao XM, Khan AR, et al. (2011). Ultrastructural studies of the inhibition effect against Phytophthora capsici of root exudates collected from two garlic cultivars along with their qualitative analysis. Crop Prot. 30: 1149-1155. Li YG, Zheng YZ, Feng FZ, Liang D, et al. (2010). Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tiss. Org. Cult. 102: 337-345. http://dx.doi.org/10.1007/s11240-010-9738-0 Nagy S, Marshall W, Wardowski WF and Rouseff RL (1985). Postharvest creasing of Robinson tangerines as affected by harvest date, pectinesterase activity and calcium content. J. Hort. Sci. 60: 137-140. Osteryoung KW, Toenjes K, Hall B, Winkler V, et al. (1990). Analysis of tomato polygalacturonase expression in transgenic tobacco. Plant Cell 2: 1239-1248. PMid:2152163    PMCid:159969 Paull RE and Chen NJ (1983). Postharvest variation in cell wall-degrading enzymes of papaya (Carica papaya L.) during fruit ripening. Plant Physiol. 72: 382-385. http://dx.doi.org/10.1104/pp.72.2.382 PMid:16663010    PMCid:1066241 Peigen ZL, Zhouyou Q, Xiaoyu and Bangliang W (1991). The relationship between fruit softening and changes in pectin and relative enzymes during ripening of peaches. J. Nanjing Agric. Univ. China 14: 33-37. Rao GU and Paran I (2003). Polygalacturonase: a candidate gene for the soft flesh and deciduous fruit mutation in Capsicum. Plant Mol. Biol. 51: 135-141. PMid:12602897 Roland JC and Vian B (1981). Use of purified endopolygalacturonase for a topochemical study of elongating cell walls at the ultrastructural level. J. Cell Sci. 48: 333-343. PMid:7276094 Seymour GB and Gross KC (1996). Cell wall disassembly and fruit softening. Postharvest News Inform. 7: 45-52. Smith CJ, Watson CF, Bird CR, Ray J, et al. (1990). Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol. Gen. Genet. 224: 477-481. http://dx.doi.org/10.1007/BF00262443 Themmen AP, Tucker GA and Grierson D (1982). Degradation of isolated tomato cell walls by purified polygalacturonase in vitro. Plant Physiol. 69: 122-124. http://dx.doi.org/10.1104/pp.69.1.122 PMid:16662142    PMCid:426158 Wang ZY, MacRae EA, Wright MA, Bolitho KM, et al. (2000). Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production. Plant Mol. Biol. 42: 317-328. http://dx.doi.org/10.1023/A:1006309529922 PMid:10794531 Xue GP and Loveridge CW (2004). HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J. 37: 326-339. http://dx.doi.org/10.1046/j.1365-313X.2003.01963.x Yoshida K and Komae K (2006). A rice family 9 glycoside hydrolase isozyme with broad substrate specificity for hemicelluloses type II cell wall. Plant Cell Physiol. 47: 1541-1554. http://dx.doi.org/10.1093/pcp/pcl020 PMid:17056618 Zauberman GM and Schiffmann-Nadel M (1972). Pectinmethylesterase and polygalacturonase in avocado fruit at various stages of development. Plant Physiol. 49: 864-865. http://dx.doi.org/10.1104/pp.49.5.864 PMid:16658064    PMCid:366068 Zhu W, Lu MH, Gong ZH and Cheng RG (2011). Cloning and expression of a small heat shock protein gene CaHSP24 from pepper under abiotic stress. Afri. J. Biotechnol. 10: 4968-4976.