Found 3 results
Filters: Author is J. Fan  [Clear All Filters]
Z. X. Chu, Ma, Q., Lin, Y. X., Tang, X. L., Zhou, Y. Q., Zhu, S. W., Fan, J., and Cheng, B. J., Genome-wide identification, classification, and analysis of two-component signal system genes in maize, vol. 10, pp. 3316-3330, 2011.
Aoyama T and Oka A (2003). Cytokinin signal transduction in plant cells. J. Plant Res. 116: 221-231. PMid:12836044   Asakura Y, Hagino T, Ohta Y, Aoki K, et al. (2003). Molecular characterization of His-Asp phosphorelay signaling factors in maize leaves: implications of the signal divergence by cytokinin-inducible response regulators in the cytosol and the nuclei. Plant Mol. Biol. 52: 331-341. PMid:12856940   Bailey TL, Williams N, Misleh C and Li WW (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34: W369-W373. PMid:16845028 PMCid:1538909   Brandstatter I and Kieber JJ (1998). Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10: 1009-1019. PMid:9634588 PMCid:144033   D'Agostino IB and Kieber JJ (1999). Phosphorelay signal transduction: the emerging family of plant response regulators. Trends Biochem. Sci. 24: 452-456.   D'Agostino IB, Deruere J and Kieber JJ (2000). Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124: 1706-1717. PMid:11115887 PMCid:59868   Du L, Jiao F, Chu J, Jin G, et al. (2007). The two-component signal system in rice (Oryza sativa L.): a genome-wide study of cytokinin signal perception and transduction. Genomics 89: 697-707. PMid:17408920   Forde BG (2002). Local and long-range signaling pathways regulating plant responses to nitrate. Annu. Rev. Plant Biol. 53: 203-224. PMid:12221973   Grefen C and Harter K (2004). Plant two-component systems: principles, functions, complexity and cross talk. Planta 219: 733-742. PMid:15232695   Gu Z, Cavalcanti A, Chen FC, Bouman P, et al. (2002). Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol. Biol. Evol. 19: 256-262. PMid:11861885   Hass C, Lohrmann J, Albrecht V, Sweere U, et al. (2004). The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J. 23: 3290-3302. PMid:15282545 PMCid:514511   Hutchison CE and Kieber JJ (2002). Cytokinin signaling in Arabidopsis. Plant Cell 14: S47-S59. PMid:12045269 PMCid:151247   Hwang I and Sheen J (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413: 383-389. PMid:11574878   Hwang I, Chen HC and Sheen J (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129: 500-515. PMid:12068096 PMCid:161668   Ildoo H, Huei-Chi C and Jen S (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129: 500-515. PMid:12068096 PMCid:161668   Inoue T, Higuchi M, Hashimoto Y, Seki M, et al. (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409: 1060-1063. PMid:11234017   Lohrmann J, Buchholz G, Keitel C, Sweere U, et al. (1999). Differential expression and nuclear localization of response regulator-like proteins from Arabidopsis thaliana. Plant Biol. 1: 495-505.   Lohrmann J, Sweere U, Zabaleta E, Baurle I, et al. (2001). The response regulator ARR2: a pollen-specific transcription factor involved in the expression of nuclear genes for components of mitochondrial complex I in Arabidopsis. Mol. Genet. Genomics 265: 2-13. PMid:11370868   Mahonen AP, Bonke M, Kauppinen L, Riikonen M, et al. (2000). A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14: 2938-2943. PMid:11114883 PMCid:317089   Martín AC, del Pozo JC, Iglesias J, Rubio V, et al. (2000). Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J. 24: 559-567. PMid:11123795   Mason MG, Mathews DE, Argyros DA, Maxwell BB, et al. (2005). Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17: 3007-3018. PMid:16227453 PMCid:1276026   Mok DW and Mok MC (2001). Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 89-118. PMid:11337393   Pischke MS, Jones LG, Otsuga D, Fernandez DE, et al. (2002). An Arabidopsis histidine kinase is essential for megagametogenesis. Proc. Natl. Acad. Sci. U. S. A. 99: 15800-15805. PMid:12426401 PMCid:137796   Riechmann JL, Heard J, Martin G, Reuber L, et al. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110. PMid:11118137   Riefler M, Novak O, Strnad M and Schmulling T (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18: 40-54. PMid:16361392 PMCid:1323483   Romanov GA, Kieber JJ and Schmulling T (2002). A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signalling. FEBS Lett. 515: 39-43.   Sakai H, Aoyama T and Oka A (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24: 703-711. PMid:11135105   Schaller GE, Mathews DE, Gribskov M and Walker JC (2002). Two-Component Signalling Elements and Histidyl-Aspartyl Phosphorelays. In: The Arabidopsis book American Society of Plant Biologists (Somerville C and Meyerowitz E, eds.). DOI/10.1199/tab.0086, Available at [http:/]. Accessed...... Schnable PS, Ware D, Fulton RS, Stein JC, et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112-1115.   Stock AM, Robinson VL and Goudreau PN (2000). Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215. PMid:10966457   Suzuki T, Miwa K, Ishikawa K, Yamada H, et al. (2001). The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins. Plant Cell Physiol. 42: 107-113. PMid:11230563   Thomason P and Kay R (2000). Eukaryotic signal transduction via histidine-aspartate phosphorelay. J. Cell Sci. 113: 3141-3150. PMid:10954413   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. PMid:7984417 PMCid:308517   To JP, Haberer G, Ferreira FJ, Deruere J, et al. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16: 658-671. PMid:14973166 PMCid:385279   Ueguchi C, Koizumi H, Suzuki T and Mizuno T (2001). Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol. 42: 231-235. PMid:11230578   Urao T, Yakubov B, Yamaguchi-Shinozaki K and Shinozaki K (1998). Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett. 427: 175-178.   West AH and Stock AM (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26: 369-376.   Yamada S and Shiro Y (2008). Structural basis of the signal transduction in the two-component system. Adv. Exp. Med. Biol. 631: 22-39. PMid:18792680   Yang S, Zhang X, Yue JX, Tian D, et al. (2008). Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol. Genet. Genomics 280: 187-198. PMid:18563445   Yonekura-Sakakibara K, Kojima M, Yamaya T and Sakakibara H (2004). Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 134: 1654-1661. PMid:15064375 PMCid:419839
J. Fan, Francis, F., Liu, Y., Chen, J. L., and Cheng, D. F., An overview of odorant-binding protein functions in insect peripheral olfactory reception, vol. 10. pp. 3056-3069, 2011.
Beale MH, Birkett MA, Bruce TJ, Chamberlain K, et al. (2006). Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Natl. Acad. Sci. U. S. A. 103: 10509-10513. PMid:16798877    PMCid:1502488 Benton R, Sachse S, Michnick SW and Vosshall LB (2006). Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4: e20. PMid:16402857    PMCid:1334387 Benton R, Vannice KS and Vosshall LB (2007). An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450: 289-293. PMid:17943085 Bette S, Breer H and Krieger J (2002). Probing a pheromone binding protein of the silkmoth Antheraea polyphemus by endogenous tryptophan fluorescence. Insect Biochem. Mol. Biol. 32: 241-246. Blomquist GJ and Vogt RG (2003). Insect Pheromone Biochemistry and Molecular Biology. In: The Biosynthesis and Detection of Pheromones and Plant Volatiles (Blomquist GJ and Vogt RG, eds.). Elsevier Academic Press, London, 3-18. Buck L and Axel R (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65: 175-187. Campanacci V, Krieger J, Bette S, Sturgis JN, et al. (2001). Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J. Biol. Chem. 276: 20078-20084. PMid:11274212 Clyne PJ, Warr CG, Freeman MR, Lessing D, et al. (1999). A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22: 327-338. Damberger F, Nikonova L, Horst R, Peng G, et al. (2000). NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci. 9: 1038-1041. PMid:10850815    PMCid:2144629 Damberger FF, Ishida Y, Leal WS and Wuthrich K (2007). Structural basis of ligand binding and release in insect pheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1 at pH 4.5. J. Mol. Biol. 373: 811-819. PMid:17884092 Foret S and Maleszka R (2006). Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 16: 1404-1413. PMid:17065610    PMCid:1626642 Francis F, Vandermoten S, Verheggen F, Lognay G, et al. (2005a). Is the (E)-farnesene only volatile terpenoid in aphids? J. Appl. Entomol. 129: 6-11. Francis F, Martin T, Lognay G and Haubruge E (2005b). Role of (E)-beta-farnesene in systematic aphid prey location by Episyrphus balteatus larvae (Diptera: Syrphidae). Eur. J. Entomol. 102: 431-436. Friedrich RW and Korsching SI (1997). Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18: 737-752. Gao Q, Yuan B and Chess A (2000). Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat. Neurosci. 3: 780-785. PMid:10816314 Gong DP, Zhang HJ, Zhao P, Xia QY, et al. (2009). The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10: 332. PMid:19624863    PMCid:2722677 Ha TS and Smith DP (2006). A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci. 26: 8727-8733. PMid:16928861 Hallem EA, Nicole FA, Zwiebel LJ and Carlson JR (2004). Olfaction: mosquito receptor for human-sweat odorant. Nature 427: 212-213. PMid:14724626 Hekmat-Scafe DS, Scafe CR, McKinney AJ and Tanouye MA (2002). Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 12: 1357-1369. PMid:12213773    PMCid:186648 Hildebrand JG and Shepherd GM (1997). Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20: 595-631. PMid:9056726 Honson N, Johnson MA, Oliver JE, Prestwich GD, et al. (2003). Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem. Senses 28: 479-489. PMid:12907585 Hooper AM, Dufour S, He X, Muck A, et al. (2009). High-throughput ESI-MS analysis of binding between the Bombyx mori pheromone-binding protein BmorPBP1, its pheromone components and some analogues. Chem. Commun. 5725-5727. PMid:19774249 Horst R, Damberger F, Luginbühl P, Güntert P, et al. (2001). NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl. Acad. Sci. U. S. A. 98: 14374-14379. PMid:11724947    PMCid:64689 Jacobs SP, Liggins AP, Zhou JJ, Pickett JA, et al. (2005). OS-D-like genes and their expression in aphids (Hemiptera: Aphididae). Insect Mol. Biol. 14: 423-432. PMid:16033435 Jin X, Ha TS and Smith DP (2008). SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. U. S. A.105: 10996-11001. PMid:18653762    PMCid:2504837 Kaissling KE (1972). Kinetic Studies of Transduction in Olfactory Receptors of Bombyx Mori. In: Int. Symp. Olfaction and Taste IV (Schneider D, ed.). Wissenschaftl Verlagsges, Stuttgart, 207-213. Kaissling KE (1998a). Flux detectors versus concentration detectors: two types of chemoreceptors. Chem. Senses 23: 99-111. PMid:9530975 Kaissling KE (1998b). Pheromone deactivation catalyzed by receptor molecules: a quantitative kinetic model. Chem. Senses 23: 385-395. PMid:9759524 Kaissling KE (2001). Olfactory perireceptor and receptor events in moths: a kinetic model. Chem. Senses 26: 125-150. PMid:11238244 Kaissling KE (2009). Olfactory perireceptor and receptor events in moths: a kinetic model revised. J. Comp Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195: 895-922. PMid:19697043    PMCid:2749182 Kaissling KE and Thorson J (1980). Insect Olfactory Sensilla: Structure, Chemical and Electrical Aspects of the Functional Organization. In: Receptors for Transmitters, Hormones and Pheromones in Insects (Sattelle DB, Hall LM and Hildebrand JG, eds.). Elsevier, Amsterdam, 261-282. Kasang G, von Proff L and Nicholls M (1988). Enzymatic conversion and degradation of sex pheromones in antennae of the male silkworm moth Antheraea polyphemus. Z. Naturforsch. C Biosci. 43c: 275-284. Keller A and Vosshall LB (2007). Influence of odorant receptor repertoire on odor perception in humans and fruit flies. Proc. Natl. Acad. Sci. U. S. A. 104: 5614-5619. PMid:17372215    PMCid:1838502 Kim MS, Repp A and Smith DP (1998). LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150: 711-721. PMid:9755202    PMCid:1460366 Klein U (1987). Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem. 17: 1193-1204. Kruse SW, Zhao R, Smith DP and Jones DN (2003). Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat. Struct. Biol. 10: 694-700. PMid:12881720 Kurtovic A, Widmer A and Dickson BJ (2007). A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446: 542-546. PMid:17392786 Laissue PP and Vosshall LB (2008). The olfactory sensory map in Drosophila. Adv. Exp. Med. Biol. 628: 102-114. PMid:18683641 Lartigue A, Gruez A, Spinelli S, Riviere S, et al. (2003). The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J. Biol. Chem. 278: 30213-30218. PMid:12766173 Laughlin JD, Ha TS, Jones DN and Smith DP (2008). Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133: 1255-1265. PMid:18585358 Lautenschlager C, Leal WS and Clardy J (2005). Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochem. Biophys. Res. Commun. 335: 1044-1050. PMid:16111659 Lautenschlager C, Leal WS and Clardy J (2007). Bombyx mori pheromone-binding protein binding nonpheromone ligands: implications for pheromone recognition. Structure 15: 1148-1154. PMid:17850754    PMCid:2072049 Lazar J, Greenwood DR, Rasmussen LE and Prestwich GD (2002). Molecular and functional characterization of an odorant binding protein of the Asian elephant, Elephas maximus: implications for the role of lipocalins in mammalian olfaction. Biochemistry 41: 11786-11794. PMid:12269821 Leal WS, Chen AM, Ishida Y, Chiang VP, et al. (2005). Kinetics and molecular properties of pheromone binding and release. Proc. Natl. Acad. Sci. U. S. A. 102: 5386-5391. PMid:15784736    PMCid:555038 Leal WS, Barbosa RM, Xu W, Ishida Y, et al. (2008). Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS One 3: e3045. PMid:18725946    PMCid:2516325 Lee D, Damberger FF, Peng G, Horst R, et al. (2002). NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Lett. 531: 314-318. Leite NR, Krogh R, Xu W, Ishida Y, et al. (2009). Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “Lid”. PLoS One 4: e8006. PMid:19956631    PMCid:2778553 Lescop E, Briand L, Pernollet JC, Van Heijenoort C, et al. (2001). Letter to the Editor: 1H, 13C and 15N chemical shift assignment of the honeybee odorant-binding protein ASP2. J. Biomol. NMR 21: 181-182. Mao Y, Xu X, Xu W, Ishida Y, et al. (2010). Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone. Proc. Natl. Acad. Sci. U. S. A. 107: 19102-19107. PMid:20956299    PMCid:2973904 Matsuo T, Sugaya S, Yasukawa J, Aigaki T, et al. (2007). Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol. 5: e118. PMid:17456006    PMCid:1854911 Mohanty S, Zubkov S and Gronenborn AM (2004). The solution NMR structure of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone-binding proteins. J. Mol. Biol. 337: 443-451. PMid:15003458 Mohl C, Breer H and Krieger J (2002). Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus. Invert. Neurosci. 4: 165-174. PMid:12488967 Mori K, Nagao H and Yoshihara Y (1999). The olfactory bulb: coding and processing of odor molecule information. Science 286: 711-715. PMid:10531048 Neuhaus EM, Gisselmann G, Zhang W, Dooley R, et al. (2005). Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat. Neurosci. 8: 15-17. PMid:15592462 Novotny V, Basset Y, Miller SE, Weiblen GD, et al. (2002). Low host specificity of herbivorous insects in a tropical forest. Nature 416: 841-844. PMid:11976681 Pelletier J and Leal WS (2009). Genome analysis and expression patterns of odorant-binding proteins from the Southern House mosquito Culex pipiens quinquefasciatus. PLoS One 4: e6237. PMid:19606229    PMCid:2707629 Pelosi P, Pisanelli AM, Baldaccini NE and Gagliardo A (1981). Binding of [3H]-2-isobutyl-3-methoxypyrazine to cow olfactory mucosa. Chem. Senses 6: 77-85. Pelosi P, Baldaccini NE and Pisanelli AM (1982). Identification of a specific olfactory receptor for 2-isobutyl-3- methoxypyrazine. Biochem. J. 201: 245-248. PMid:7082286    PMCid:1163633 Pelosi P, Zhou JJ, Ban L and Calvello M (2006). Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63: 1658-1676. PMid:16786224 Pesenti ME, Spinelli S, Bezirard V, Briand L, et al. (2008). Structural basis of the honey bee PBP pheromone and pH-induced conformational change. J. Mol. Biol. 380: 158-169. PMid:18508083 Pesenti ME, Spinelli S, Bezirard V, Briand L, et al. (2009). Queen bee pheromone binding protein pH-induced domain swapping favors pheromone release. J. Mol. Biol. 390: 981-990. PMid:19481550 Pophof B (2002). Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells. Naturwissenschaften 89: 515-518. PMid:12451455 Pophof B (2004). Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem. Senses 29: 117-125. PMid:14977808 Qiao H, Tuccori E, He X, Gazzano A, et al. (2009). Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins. Insect Biochem. Mol. Biol. 39: 414-419. PMid:19328854 Sandler BH, Nikonova L, Leal WS and Clardy J (2000). Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem. Biol. 7: 143-151. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, et al. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452: 1002-1006. PMid:18408712 Silbering AF and Benton R (2010). Ionotropic and metabotropic mechanisms in chemoreception: “chance or design”? EMBO Rep. 11: 173-179. PMid:20111052    PMCid:2838705 Strausfeld NJ and Hildebrand JG (1999). Olfactory systems: common design, uncommon origins? Curr. Opin. Neurobiol. 9: 634-639. Tegoni M, Campanacci V and Cambillau C (2004). Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem. Sci. 29: 257-264. PMid:15130562 Thode AB, Kruse SW, Nix JC and Jones DN (2008). The role of multiple hydrogen-bonding groups in specific alcohol binding sites in proteins: insights from structural studies of LUSH. J. Mol. Biol. 376: 1360-1376. PMid:18234222    PMCid:2293277 Uchida N, Takahashi YK, Tanifuji M and Mori K (2000). Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat. Neurosci. 3: 1035-1043. PMid:11017177 Van den Berg MJ and Ziegelberger G (1991). On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphemus. J. Insect Physiol. 37: 79-85. Vogt RG (2005). Molecular Basis of Pheromone Detection in Insects. In: Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology (Gilbert L, Latro G and Gill S, eds.). Elsevier, London, 753-804. Vogt RG and Riddiford LM (1981). Pheromone binding and inactivation by moth antennae. Nature 293: 161-163. PMid:18074618 Vogt RG and Riddiford LM (1986). Pheromone Reception: A Kinetic Equilibrium. In: Mechanisms in Insect Olfaction (Payne T, Birch M and Kennedy C, eds.). Clarendon Press, Oxford, 201-208. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, et al. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96: 725-736. Vosshall LB, Wong AM and Axel R (2000). An olfactory sensory map in the fly brain. Cell 102: 147-159. Wang P, Lyman RF, Shabalina SA, Mackay TFC, et al. (2007). Association of polymorphisms in odorant-binding protein genes with variation in olfactory response to benzaldehyde in Drosophila. Genetics 177: 1655-1665. PMid:17720903    PMCid:2147940 Wang P, Lyman RF, Mackay TF and Anholt RR (2010). Natural variation in odorant recognition among odorant-binding proteins in Drosophila melanogaster. Genetics 184: 759-767. PMid:20026676    PMCid:2845343 Wetzel CH, Behrendt HJ, Gisselmann G, Stortkuhl KF, et al. (2001). Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc. Natl. Acad. Sci. U. S. A. 98: 9377-9380. PMid:11481494    PMCid:55428 Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, et al. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452: 1007-1011. PMid:18408711 Wogulis M, Morgan T, Ishida Y, Leal WS, et al. (2006). The crystal structure of an odorant binding protein from Anopheles gambiae: evidence for a common ligand release mechanism. Biochem. Biophys. Res. Commun. 339: 157-164. PMid:16300742 Wojtasek H and Leal WS (1999). Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J. Biol. Chem. 274: 30950-30956. PMid:10521490 Xu P, Atkinson R, Jones DN and Smith DP (2005). Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45: 193-200. PMid:15664171 Xu PX, Zwiebel LJ and Smith DP (2003). Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol. Biol. 12: 549-560. PMid:14986916 Xu W and Leal WS (2008). Molecular switches for pheromone release from a moth pheromone-binding protein. Biochem. Biophys. Res. Commun. 372: 559-564. PMid:18503757 Xu X, Xu W, Rayo J, Ishida Y, et al. (2010). NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection. Biochemistry 49: 1469-1476. PMid:20088570    PMCid:2822879 Zhou JJ, Huang W, Zhang GA, Pickett JA, et al. (2004a). “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327: 117-129. PMid:14960367 Zhou JJ, Zhang GA, Huang W, Birkett MA, et al. (2004b). Revisiting the odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination. FEBS Lett. 558: 23-26. Zhou JJ, He XL, Pickett JA and Field LM (2008). Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Mol. Biol. 17: 147-163. PMid:18353104 Zhou JJ, Robertson G, He X, Dufour S, et al. (2009). Characterisation of Bombyx mori Odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J. Mol. Biol. 389: 529-545. PMid:19371749 Zhou JJ, Field LM and He XL (2010a). Insect odorant-binding proteins: do they offer an alternative pest control strategy? Outlooks Pest Manag. 21: 31-34. Zhou JJ, Vieira FG, He XL, Smadja C, et al. (2010b). Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol. Biol. 19 (Suppl 2): 113-122. PMid:20482644 Zubkov S, Gronenborn AM, Byeon IJ and Mohanty S (2005). Structural consequences of the pH-induced conformational switch in A. polyphemus pheromone-binding protein: mechanisms of ligand release. J. Mol. Biol. 354: 1081-1090. PMid:16289114