Publications

Found 4 results
Filters: Author is K.Q. Tang  [Clear All Filters]
2013
K. Q. Tang, Yang, W. C., Zhang, X. X., and Yang, L. G., Effects of polymorphisms in the bovine growth differentiation factor 9 gene on sperm quality in Holstein bulls, vol. 12, pp. 2189-2195, 2013.
S. L. Yang, Mu, Y. M., Tang, K. Q., Jiang, X. K., Bai, W. K., Shen, E., and Hu, B., Enhancement of recombinant adeno-associated virus mediated transgene expression by targeted echo-contrast agent, vol. 12, pp. 1318-1326, 2013.
Aoi A, Watanabe Y, Mori S, Takahashi M, et al. (2008). Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound. Ultrasound Med. Biol. 34: 425-434. http://dx.doi.org/10.1016/j.ultrasmedbio.2007.09.004 PMid:18096302   Bazan-Peregrino M, Arvanitis CD, Rifai B, Seymour LW, et al. (2012). Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model. J. Control Release 157: 235-242. http://dx.doi.org/10.1016/j.jconrel.2011.09.086 PMid:21982902   Bekeredjian R and Shohet RV (2004). Cardiovascular gene therapy: angiogenesis and beyond. Am. J. Med. Sci. 327: 139-148. http://dx.doi.org/10.1097/00000441-200403000-00005 PMid:15090752   Bekeredjian R, Chen S, Grayburn PA and Shohet RV (2005). Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. Ultrasound Med. Biol. 31: 687-691. http://dx.doi.org/10.1016/j.ultrasmedbio.2004.08.002 PMid:15866418   Bekeredjian R, Kuecherer HF, Kroll RD, Katus HA, et al. (2007). Ultrasound-targeted microbubble destruction augments protein delivery into testes. Urology 69: 386-389. http://dx.doi.org/10.1016/j.urology.2006.12.004 PMid:17320694   Boussif O, Gaucheron J, Boulanger C, Santaella C, et al. (2001). Enhanced in vitro and in vivo cationic lipid-mediated gene delivery with a fluorinated glycerophosphoethanolamine helper lipid. J. Gene Med. 3: 109-114. http://dx.doi.org/10.1002/jgm.166 PMid:11318109   Chu D, Sullivan CC, Weitzman MD, Du L, et al. (2003). Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors. J. Thorac. Cardiovasc. Surg. 126: 671-679. http://dx.doi.org/10.1016/S0022-5223(03)00082-5   Coura RS and Nardi NB (2007). The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J. 4: 99. http://dx.doi.org/10.1186/1743-422X-4-99 PMid:17939872 PMCid:2104528   Delalande A, Bureau MF, Midoux P, Bouakaz A, et al. (2010). Ultrasound-assisted microbubbles gene transfer in tendons for gene therapy. Ultrasonics 50: 269-272. http://dx.doi.org/10.1016/j.ultras.2009.09.035 PMid:19857885   Dijkmans PA, Juffermans LJ, Musters RJ, van Wamel A, et al. (2004). Microbubbles and ultrasound: from diagnosis to therapy. Eur. J. Echocardiogr. 5: 245-256. http://dx.doi.org/10.1016/j.euje.2004.02.001 PMid:15219539   Edelstein ML, Abedi MR, Wixon J and Edelstein RM (2004). Gene therapy clinical trials worldwide 1989-2004-an overview. J. Gene Med. 6: 597-602. http://dx.doi.org/10.1002/jgm.619 PMid:15170730   Geis NA, Mayer CR, Kroll RD, Hardt SE, et al. (2009). Spatial distribution of ultrasound targeted microbubble destruction increases cardiac transgene expression but not capillary permeability. Ultrasound Med. Biol. 35: 1119-1126. http://dx.doi.org/10.1016/j.ultrasmedbio.2009.01.008 PMid:19427103   Harriss DJ and Atkinson G (2011). Update - Ethical standards in sport and exercise science research. Int. J. Sports Med. 32: 819-821. http://dx.doi.org/10.1055/s-0031-1287829 PMid:22065312   Hiyama A, Mochida J, Iwashina T, Omi H, et al. (2007). Synergistic effect of low-intensity pulsed ultrasound on growth factor stimulation of nucleus pulposus cells. J. Orthop. Res. 25: 1574-1581. http://dx.doi.org/10.1002/jor.20460 PMid:17593536   Juffermans LJ, Kamp O, Dijkmans PA, Visser CA, et al. (2008). Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. Ultrasound Med. Biol. 34: 502-508. http://dx.doi.org/10.1016/j.ultrasmedbio.2007.09.010 PMid:17993242   Kawada T, Nakazawa M, Nakauchi S, Yamazaki K, et al. (2002). Rescue of hereditary form of dilated cardiomyopathy by rAAV-mediated somatic gene therapy: amelioration of morphological findings, sarcolemmal permeability, cardiac performances, and the prognosis of TO-2 hamsters. Proc. Natl. Acad. Sci. U. S. A. 99: 901-906. http://dx.doi.org/10.1073/pnas.022641799 PMid:11805334 PMCid:117403   Lee M, Rentz J, Bikram M, Han S, et al. (2003). Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther. 10: 1535-1542. http://dx.doi.org/10.1038/sj.gt.3302034 PMid:12907944   Li X, Wang Z, Ran H, Li X, et al. (2008). Experimental research on therapeutic angiogenesis induced by hepatocyte growth factor directed by ultrasound-targeted microbubble destruction in rats. J. Ultrasound Med. 27: 453-460. PMid:18314523   Melo LG, Agrawal R, Zhang L, Rezvani M, et al. (2002). Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 105: 602-607. http://dx.doi.org/10.1161/hc0502.103363 PMid:11827926   Miura S, Tachibana K, Okamoto T and Saku K (2002). In vitro transfer of antisense oligodeoxynucleotides into coronary endothelial cells by ultrasound. Biochem. Biophys. Res. Commun. 298: 587-590. http://dx.doi.org/10.1016/S0006-291X(02)02467-1   Müller OJ, Katus HA and Bekeredjian R (2007). Targeting the heart with gene therapy-optimized gene delivery methods. Cardiovasc. Res. 73: 453-462. http://dx.doi.org/10.1016/j.cardiores.2006.09.021 PMid:17097076   Müller OJ, Schinkel S, Kleinschmidt JA, Katus HA, et al. (2008). Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats. Gene Ther. 15: 1558-1565. http://dx.doi.org/10.1038/gt.2008.111 PMid:18615116   Raake PW, Hinkel R, Muller S, Delker S, et al. (2008). Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Ther. 15: 12-17. http://dx.doi.org/10.1038/sj.gt.3303035 PMid:17943147   Rutanen J, Rissanen TT, Markkanen JE, Gruchala M, et al. (2004). Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine heart. Circulation 109: 1029-1035. http://dx.doi.org/10.1161/01.CIR.0000115519.03688.A2 PMid:14967735   Storek B, Harder NM, Banck MS, Wang C, et al. (2006). Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats. Mol. Pain 2: 4. http://dx.doi.org/10.1186/1744-8069-2-4 PMid:16445862 PMCid:1373607   Su H, Joho S, Huang Y, Barcena A, et al. (2004). Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts. Proc. Natl. Acad. Sci. U. S. A. 101: 16280-16285. http://dx.doi.org/10.1073/pnas.0407449101 PMid:15534198 PMCid:527136   Surace EM and Auricchio A (2008). Versatility of AAV vectors for retinal gene transfer. Vision Res. 48: 353-359. http://dx.doi.org/10.1016/j.visres.2007.07.027 PMid:17923143   Suzuki R, Takizawa T, Negishi Y, Utoguchi N, et al. (2008). Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int. J. Pharm. 354: 49-55. http://dx.doi.org/10.1016/j.ijpharm.2007.10.034 PMid:18082343   Taylor SL, Rahim AA, Bush NL, Bamber JC, et al. (2007). Targeted retroviral gene delivery using ultrasound. J. Gene Med. 9: 77-87. http://dx.doi.org/10.1002/jgm.1003 PMid:17310476   Tokunaga N, Nagaya N, Shirai M, Tanaka E, et al. (2004). Adrenomedullin gene transfer induces therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia: benefits of a novel nonviral vector, gelatin. Circulation 109: 526- 531. http://dx.doi.org/10.1161/01.CIR.0000109700.81266.32 PMid:14732745   Unger EC, Hersh E, Vannan M, Matsunaga TO, et al. (2001). Local drug and gene delivery through microbubbles. Prog. Cardiovasc. Dis. 44: 45-54. http://dx.doi.org/10.1053/pcad.2001.26443 PMid:11533926   Vassalli G, Bueler H, Dudler J, von Segesser LK, et al. (2003). Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int. J. Cardiol. 90: 229-238. http://dx.doi.org/10.1016/S0167-5273(02)00554-5   Wang JF, Wang JB, Chen H, Zhang CM, et al. (2008). Ultrasound-mediated microbubble destruction enhances gene transfection in pancreatic cancer cells. Adv. Ther. 25: 412-421. http://dx.doi.org/10.1007/s12325-008-0051-9 PMid:18463802   Wright MJ, Wightman LM, Lilley C, de Alwis M, et al. (2001). In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res. Cardiol. 96: 227-236. http://dx.doi.org/10.1007/s003950170053 PMid:11403416   Wu XB, Dong XY and Wu ZJ (2000). A novel technique for adeno-associated virus purification. Chin. Sci. Bull. 45: 2071-2075.   Xu HX, Liu GJ, Lu MD, Xie XY, et al. (2006). Characterization of small focal liver lesions using real-time contrast-enhanced sonography: diagnostic performance analysis in 200 patients. J. Ultrasound Med. 25: 349-361. PMid:16495496
K. Q. Tang, Yang, W. C., Li, S. J., and Yang, L. - G., Polymorphisms of the bovine growth differentiation factor 9 gene associated with superovulation performance in Chinese Holstein cows, vol. 12, pp. 390-399, 2013.
Barzegari A, Atashpaz S, Ghabili K, Nemati Z, et al. (2010). Polymorphisms in GDF9 and BMP15 associated with fertility and ovulation rate in Moghani and Ghezel sheep in Iran. Reprod. Domest. Anim. 45: 666-669. PMid:19144040   Bastidas P and Randel RD (1987). Seasonal effects on embryo transfer results in Brahman cows. Theriogenology 28: 531-540. http://dx.doi.org/10.1016/0093-691X(87)90258-5   Chu MX, Yang J, Feng T, Cao GL, et al. (2011). GDF9 as a candidate gene for prolificacy of Small Tail Han sheep. Mol. Biol. Rep. 38: 5199-5204. http://dx.doi.org/10.1007/s11033-010-0670-5 PMid:21184179   Dixit H, Rao LK, Padmalatha VV, Kanakavalli M, et al. (2006). Missense mutations in the BMP15 gene are associated with ovarian failure. Hum. Genet. 119: 408-415. http://dx.doi.org/10.1007/s00439-006-0150-0 PMid:16508750   Dong J, Albertini DF, Nishimori K, Kumar TR, et al. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383: 531-535. http://dx.doi.org/10.1038/383531a0 PMid:8849725   Du ZY, Lin JB, Tan C, Wang JF, et al. (2008). Study on the polymorphisms of exon 2 of GDF9 gene in Guizhou White goat. Anim. Husb. Vet. Med. 40: 46-48.   Elvin JA, Clark AT, Wang P, Wolfman NM, et al. (1999). Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol. Endocrinol. 13: 1035-1048. http://dx.doi.org/10.1210/me.13.6.1035 PMid:10379900   Eppig JJ, Chesnel F, Hirao Y, O'Brien MJ, et al. (1997). Oocyte control of granulosa cell development: how and why. Hum. Reprod. 12: 127-132. PMid:9433969   Feng T, Geng CX, Lang XZ, Chu MX, et al. (2011). Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Mol. Biol. Rep. 38: 5189-5197. http://dx.doi.org/10.1007/s11033-010-0669-y PMid:21181498   Gao Y, Zhang YH, Zhang S, Li F, et al. (2011). Association of A-FABP gene polymorphism in intron 1 with meat quality traits in Junmu No. 1 white swine. Gene 487: 170-173. http://dx.doi.org/10.1016/j.gene.2011.07.005 PMid:21846497   Hanrahan JP, Gregan SM, Mulsant P, Mullen M, et al. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70: 900-909. http://dx.doi.org/10.1095/biolreprod.103.023093 PMid:14627550   Hasler JF (2003). The current status and future of commercial embryo transfer in cattle. Anim. Reprod. Sci. 79: 245-264. http://dx.doi.org/10.1016/S0378-4320(03)00167-2   Joseph S and David WR (2002). Molecular Cloning a Laboratory Manual. 3rd edn. Science Press, Beijing.   Kovanci E, Rohozinski J, Simpson JL, Heard MJ, et al. (2007). Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil. Steril. 87: 143-146. http://dx.doi.org/10.1016/j.fertnstert.2006.05.079 PMid:17156781   Krawczak M, Thomas NS, Hundrieser B, Mort M, et al. (2007). Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum. Mutat. 28: 150-158. http://dx.doi.org/10.1002/humu.20400 PMid:17001642   Laissue P, Christin-Maitre S, Touraine P, Kuttenn F, et al. (2006). Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur. J. Endocrinol. 154: 739-744. http://dx.doi.org/10.1530/eje.1.02135 PMid:16645022   Lee W, Song K, Lim K, Lee S, et al. (2012). Influence of factors during superovulation on embryo production in Korean Holstein cattle. J. Vet. Med. Sci. 74: 167-174. http://dx.doi.org/10.1292/jvms.11-0057 PMid:21959893   Lerner SP, Thayne WV, Baker RD, Henschen T, et al. (1986). Age, dose of FSH and other factors affecting superovulation in Holstein cows. J. Anim. Sci. 63: 176-183. PMid:3090006   Liu BH (1998). Statistical Genomics, Linkage, Mapping and QTL Analysis. CRC Press, Boca Raton, 404-409.   Malhi PS, Adams GP, Mapletoft RJ and Singh J (2008). Superovulatory response in a bovine model of reproductive aging. Anim. Reprod. Sci. 109: 100-109. http://dx.doi.org/10.1016/j.anireprosci.2007.12.002 PMid:18374524   Mapletoft RJ, Steward KB and Adams GP (2002). Recent advances in the superovulation in cattle. Reprod. Nutr. Dev. 42: 601-611. http://dx.doi.org/10.1051/rnd:2002046 PMid:12625424   McNatty KP, Juengel JL, Wilson T, Galloway SM, et al. (2003). Oocyte-derived growth factors and ovulation rate in sheep. Reprod. Suppl. 61: 339-351. PMid:14635946   McNatty KP, Juengel JL, Reader KL, Lun S, et al. (2005). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction 129: 481-487. http://dx.doi.org/10.1530/rep.1.00517 PMid:15798023   Melo EO, Silva BDM, Castro EA, Silva TASN, et al. (2008). A novel mutation in the growth and differentiation factor 9 (GDF9) gene is associated, in homozygosis, with increased ovulation rate in Santa Ines sheep. Biol. Reprod. 78: 371.   Montgomery GW, Zhao ZZ, Marsh AJ, Mayne R, et al. (2004). A deletion mutation in GDF9 in sisters with spontaneous DZ twins. Twin Res. 7: 548-555. PMid:15607004   Newcomb R, Christie WB and Rowson LE (1978). Non-surgical recovery of bovine embryos. Vet. Rec. 102: 414-417. http://dx.doi.org/10.1136/vr.102.19.414 PMid:654055   Nicol L, Bishop SC, Pong-Wong R, Bendixen C, et al. (2009). Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction 138: 921-933. http://dx.doi.org/10.1530/REP-09-0193 PMid:19713444   Niu BY, Ye LZ, Li FE, Deng CY, et al. (2009). Identification of polymorphism and association analysis with reproductive traits in the porcine RNF4 gene. Anim. Reprod. Sci. 110: 283-292. http://dx.doi.org/10.1016/j.anireprosci.2008.01.020 PMid:18358646   Orisaka M, Orisaka S, Jiang JY, Craig J, et al. (2006). Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol. Endocrinol. 20: 2456-2468. http://dx.doi.org/10.1210/me.2005-0357 PMid:16740654   Palmer JS, Zhao ZZ, Hoekstra C, Hayward NK, et al. (2006). Novel variants in growth differentiation factor 9 in mothers of dizygotic twins. J. Clin. Endocrinol. Metab. 91: 4713-4716. http://dx.doi.org/10.1210/jc.2006-0970 PMid:16954162   Pang Y, Wang J, Zhang C, Lei C, et al. (2011). The polymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle. Mol. Biol. Rep. 38: 755-759. http://dx.doi.org/10.1007/s11033-010-0163-6 PMid:20376703   Polley S, De S, Brahma B, Mukherjee A, et al. (2010). Polymorphism of BMPR1B, BMP15 and GDF9 fecundity genes in prolific Garole sheep. Trop. Anim. Health Prod. 42: 985-993. http://dx.doi.org/10.1007/s11250-009-9518-1 PMid:20020203   Rico C, Fabre S, Medigue C, di CN, et al. (2009). Anti-mullerian hormone is an endocrine marker of ovarian gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow. Biol. Reprod. 80: 50-59. http://dx.doi.org/10.1095/biolreprod.108.072157 PMid:18784351   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Silva BD, Castro EA, Souza CJ, Paiva SR, et al. (2011). A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Anim. Genet. 42: 89-92. http://dx.doi.org/10.1111/j.1365-2052.2010.02078.x PMid:20528846   Tang KQ, Li SJ, Yang WC, Yu JN, et al. (2011). An MspI polymorphism in the inhibin alpha gene and its associations with superovulation traits in Chinese Holstein cows. Mol. Biol. Rep. 38: 17-21. http://dx.doi.org/10.1007/s11033-010-0072-8 PMid:20238172   Van Laere AS, Nguyen M, Braunschweig M, Nezer C, et al. (2003). A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425: 832-836. http://dx.doi.org/10.1038/nature02064 PMid:14574411   Wang TT, Wu YT, Dong MY, Sheng JZ, et al. (2010). G546A polymorphism of growth differentiation factor-9 contributes to the poor outcome of ovarian stimulation in women with diminished ovarian reserve. Fertil. Steril. 94: 2490-2492. http://dx.doi.org/10.1016/j.fertnstert.2010.03.070 PMid:20451184   Yan C, Wang P, DeMayo J, DeMayo FJ, et al. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15: 854-866. http://dx.doi.org/10.1210/me.15.6.854 PMid:11376106   Yang WC, Li SJ, Tang KQ, Hua GH, et al. (2010). Polymorphisms in the 5' upstream region of the FSH receptor gene, and their association with superovulation traits in Chinese Holstein cows. Anim. Reprod. Sci. 119: 172-177. http://dx.doi.org/10.1016/j.anireprosci.2010.02.004 PMid:20207511   Zhao H, Qin Y, Kovanci E, Simpson JL, et al. (2007). Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil. Steril. 88: 1474-1476. http://dx.doi.org/10.1016/j.fertnstert.2007.01.021 PMid:17482612 PMCid:2767161
2011
W. C. Yang, Tang, K. Q., Mei, J., Zeng, W. B., and Yang, L. G., Genetic diversity analysis of an indigenous Chinese buffalo breed and hybrids based on microsatellite data, vol. 10, pp. 3421-3426, 2011.
Arora R, Lakhchaura BD, Prasad RB, Tantia MS, et al. (2004). Genetic diveristy analysis of two buffalo populations of northern India using microsatellite markers. J. Anim. Breed. Genet. 121: 111-118. http://dx.doi.org/10.1111/j.1439-0388.2004.00451.x   Barker JSF, Moore SS, Hetzel DJS, Evans D, et al. (1997). Genetic diversity of Asian water buffalo (Bubalus bubalis): microsatellite variation and a comparison with protein-coding loci. Anim. Genet. 28: 103-115. http://dx.doi.org/10.1111/j.1365-2052.1997.00085.x PMid:9172308   Flamand JRB, Vankan D, Gairhe KP, Duong H, et al. (2003). Genetic identification of wild Asian water buffalo in Nepal. Anim. Conserv. 6: 265-270. http://dx.doi.org/10.1017/S1367943003003329   Hoffmann I, Marsan PA, Barker JSF, Cothran EG, et al. (2004). New MoDAD Marker Sets to be Used in Diversity Studies for the Major Farm Animal Species: Recommendations of a Joint ISAG/FAO Working Group. In: Proceedings of 29th International Conference on Animal Genetics, Tokyo.   Huang P and Huang F (2006). Review and Prospect of Buffalo Scientific and Technical Development in China. Proceedings of the 5th Asian Buffalo Congress. Central Compilation and Translation Press, Nanning, China, 40-63.   Kimura M and Crow JF (1964). The number of alleles that can be maintained in a finite population. Genetics 49: 725-738. PMid:14156929 PMCid:1210609   Kumar S, Gupta J, Kumar N, Dikshit K, et al. (2006). Genetic variation and relationships among eight Indian riverine buffalo breeds. Mol. Ecol. 15: 593-600. http://dx.doi.org/10.1111/j.1365-294X.2006.02837.x PMid:16499687   May B, Krueger CC, Eng C and Paul E (1995). Genes in Populations, Version 2.0: A Computer Program for Analysis of Genetic Data. Cornell Laboratory for Ecological and Evolutionary Genetics, Cornell University, Ithaca, New York.   Moioli B, Georgoudis A, Napolitano F, Catillo G, et al. (2001). Genetic diversity between Italian, Greek and Egyptian buffalo populations. Livest. Prod. Sci. 70: 203-211. http://dx.doi.org/10.1016/S0301-6226(01)00175-0   Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844 PMCid:1213855   Ota T (1993). DISPAN: Genetic Distance and Phylogenetic Analysis. The Pennsylvania State University Park, Pennsylvania.   Raymond M and Rousset F (1995). Genepop (version 3.3): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.   Yang B, Zeng XLQ, Qin J and Yang C (2007). Dairy buffalo breeding in countryside of China. Ital. J. Anim. Sci. 6: 25-29.   Zhang Y, Sun D, Yu Y and Zhang Y (2007). Genetic diversity and differentiation of Chinese domestic buffalo based on 30 microsatellite markers. Anim. Genet. 38: 569-575. http://dx.doi.org/10.1111/j.1365-2052.2007.01648.x PMid:17980000