Publications

Found 13 results
Filters: Author is B. Liu  [Clear All Filters]
2016
Y. Yao, Wang, J. B., Xin, M. M., Li, H., Liu, B., Wang, L. L., Wang, L. Q., Zhao, L., Yao, Y., Wang, J. B., Xin, M. M., Li, H., Liu, B., Wang, L. L., Wang, L. Q., and Zhao, L., Balance between inflammatory and regulatory cytokines in systemic lupus erythematosus, vol. 15, p. -, 2016.
Y. Yao, Wang, J. B., Xin, M. M., Li, H., Liu, B., Wang, L. L., Wang, L. Q., Zhao, L., Yao, Y., Wang, J. B., Xin, M. M., Li, H., Liu, B., Wang, L. L., Wang, L. Q., and Zhao, L., Balance between inflammatory and regulatory cytokines in systemic lupus erythematosus, vol. 15, p. -, 2016.
Y. S. Chen, Li, S. P., Xiao, H., Xie, Z. Y., Tan, M. X., Liu, B., Zhang, W. M., Chen, Y. S., Li, S. P., Xiao, H., Xie, Z. Y., Tan, M. X., Liu, B., and Zhang, W. M., Metastasis-associated gene 1 expression in human medulloblastoma and its association with invasion and metastasis in medulloblastoma Daoy cell lines, vol. 15, p. -, 2016.
Y. S. Chen, Li, S. P., Xiao, H., Xie, Z. Y., Tan, M. X., Liu, B., Zhang, W. M., Chen, Y. S., Li, S. P., Xiao, H., Xie, Z. Y., Tan, M. X., Liu, B., and Zhang, W. M., Metastasis-associated gene 1 expression in human medulloblastoma and its association with invasion and metastasis in medulloblastoma Daoy cell lines, vol. 15, p. -, 2016.
D. Zhao, Liu, B., Zhang, Y. K., Guo, W., Li, S. Y., Lu, X. J., Li, R. J., Zhao, D., Liu, B., Zhang, Y. K., Guo, W., Li, S. Y., Lu, X. J., and Li, R. J., Structural and biochemical characteristics of chitin-binding protein SeCBP66 from Spodoptera exigua (Hübner), vol. 15, p. -, 2016.
D. Zhao, Liu, B., Zhang, Y. K., Guo, W., Li, S. Y., Lu, X. J., Li, R. J., Zhao, D., Liu, B., Zhang, Y. K., Guo, W., Li, S. Y., Lu, X. J., and Li, R. J., Structural and biochemical characteristics of chitin-binding protein SeCBP66 from Spodoptera exigua (Hübner), vol. 15, p. -, 2016.
2013
M. Y. Yu, Zhao, P. Q., Yan, X. H., Liu, B., Zhang, Q. Q., Wang, R., Ma, C. H., Liang, X. H., Zhu, F. L., and Gao, L. F., Association between the TRAIL single nucleotide polymorphism rs1131580 and type 2 diabetes mellitus in a Han Chinese population, vol. 12, pp. 3455-3464, 2013.
C. Y. Zhang, Wang, N. N., Zhang, Y. H., Feng, Q. Z., Yang, C. W., and Liu, B., DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa), vol. 12, pp. 1269-1277, 2013.
Boyko A, Kathiria P, Zemp FJ, Yao Y, et al. (2007). Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res. 35: 1714-1725. http://dx.doi.org/10.1093/nar/gkm029 PMid:17311811 PMCid:1865051   Chan SW, Henderson IR and Jacobsen SE (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6: 351-360. http://dx.doi.org/10.1038/nrg1601 PMid:15861207   Chinnusamy V and Zhu JK (2009). Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 12: 133-139. http://dx.doi.org/10.1016/j.pbi.2008.12.006 PMid:19179104 PMCid:3139470   Delauney AJ and Verma DPS (1993). Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215-223. http://dx.doi.org/10.1046/j.1365-313X.1993.04020215.x   Dong ZY, Wang YM, Zhang ZJ, Shen Y, et al. (2006). Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor. Appl. Genet. 113: 196-205. http://dx.doi.org/10.1007/s00122-006-0286-2 PMid:16791687   Hare P and Cress W (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21: 79-102. http://dx.doi.org/10.1023/A:1005703923347   Hu CA, Delauney AJ and Verma DP (1992). A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. U. S. A. 89: 9354-9358. http://dx.doi.org/10.1073/pnas.89.19.9354 PMid:1384052 PMCid:50125   Jain M, Nijhawan A, Tyagi AK and Khurana JP (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345: 646-651. http://dx.doi.org/10.1016/j.bbrc.2006.04.140 PMid:16690022   Karan R, DeLeon T, Biradar H and Subudhi PK (2012). Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7: e40203. http://dx.doi.org/10.1371/journal.pone.0040203 PMid:22761959 PMCid:3386172   Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K and Shinozaki K (1996). A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8: 1323-1335. PMid:8776899 PMCid:161248   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Lutts S, Majerus V and Kinet JM (1999). NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105: 450-458. http://dx.doi.org/10.1034/j.1399-3054.1999.105309.x   Mattioli R, Costantino P and Trovato M (2009). Proline accumulation in plants: not only stress. Plant Signal. Behav. 4: 1016-1018. http://dx.doi.org/10.4161/psb.4.11.9797 PMid:20009553 PMCid:2819507   Molinier J, Ries G, Zipfel C and Hohn B (2006). Transgeneration memory of stress in plants. Nature 442: 1046-1049. http://dx.doi.org/10.1038/nature05022 PMid:16892047   Nanjo T, Fujita M, Seki M, Kato T, et al. (2003). Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol. 44: 541-548. http://dx.doi.org/10.1093/pcp/pcg066 PMid:12773641   Peng Z, Lu Q and Verma DP (1996). Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol. Gen. Genet. 253: 334-341. http://dx.doi.org/10.1007/PL00008600 PMid:9003320   Rangwala SH and Richards EJ (2004). The value-added genome: building and maintaining genomic cytosine methylation landscapes. Curr. Opin. Genet. Dev. 14: 686-691. http://dx.doi.org/10.1016/j.gde.2004.09.009 PMid:15531165   Richards EJ (2006). Inherited epigenetic variation - revisiting soft inheritance. Nat. Rev. Genet. 7: 395-401. http://dx.doi.org/10.1038/nrg1834 PMid:16534512   Roosens NH, Thu TT, Iskandar HM and Jacobs M (1998). Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol. 117: 263-271. http://dx.doi.org/10.1104/pp.117.1.263 PMid:9576796 PMCid:35011   Saradhi PP, Alia, Arora S and Prasad KV (1995). Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem. Biophys. Res. Commun. 209: 1-5. http://dx.doi.org/10.1006/bbrc.1995.1461 PMid:7726821   Siripornadulsil S, Traina S, Verma DP and Sayre RT (2002). Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14: 2837-2847. http://dx.doi.org/10.1105/tpc.004853 PMid:12417705 PMCid:152731   Tariq M and Paszkowski J (2004). DNA and histone methylation in plants. Trends Genet. 20: 244-251. http://dx.doi.org/10.1016/j.tig.2004.04.005 PMid:15145577   Verbruggen N and Hermans C (2008). Proline accumulation in plants: a review. Amino Acids 35: 753-759. http://dx.doi.org/10.1007/s00726-008-0061-6 PMid:18379856   Verbruggen N, Hua XJ, May M and Van Montagu M (1996). Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc. Natl. Acad. Sci. U. S. A. 93: 8787-8791. http://dx.doi.org/10.1073/pnas.93.16.8787 PMid:8710950 PMCid:38752   Verslues PE and Sharma S (2010). Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8: e0140. PMid:22303265 PMCid:3244962   Zang A, Xu X, Neill S and Cai W (2010). Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress. J. Exp. Bot. 61: 777-789. http://dx.doi.org/10.1093/jxb/erp341 PMid:20018899 PMCid:2814108
2012
R. H. Yu, Wang, Y. L., Sun, Y., and Liu, B., Analysis of genetic distance by SSR in waxy maize, vol. 11, pp. 254-260, 2012.
Fu TL (1995). The analysis of genetic principal component and distance of 33 glutinous maize inbred lines. Sci. Agric. Sin. 28: 46-53. Liu YJ, Huang YB, Rong TZ, Tian ML, et al. (2005). Comparative analysis of genetic diversity in landraces of waxy maize from Yunnan and Guizhou using SSR markers. Sci. Agric. Sin. 4: 648-653. Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 Novy RG, Vorsa N, Kobak C and Goffreda J (1994). RAPDs identify varietal misclassification and regional divergence in cranberry [Vaccinium macrocarpon (Ait.) Pursh]. Theor. Appl. Genet. 88: 1004-1010. http://dx.doi.org/10.1007/BF00220808 Reif JC, Melchinger AE, Xia XC, Warburton ML, et al. (2003a). Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci. 43: 1275-1282. http://dx.doi.org/10.2135/cropsci2003.1275 Reif JC, Melchinger AE, Xia XC, Warburton ML, et al. (2003b). Use of SSRs for establishing heterotic groups in subtropical maize. Theor. Appl. Genet. 107: 947-957. http://dx.doi.org/10.1007/s00122-003-1333-x PMid:12830388 Senior ML, Murphy JP, Goodman MM and Stuber CW (1998). Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci. 38: 1088-1098. http://dx.doi.org/10.2135/cropsci1998.0011183X003800040034x Shehata AI, Al-Ghethar HA and Al-Homaidan AA (2009). Application of simple sequence repeat (SSR) markers for molecular diversity and heterozygosity analysis in maize inbred lines. Saudi J. Biol. Sci. 16: 57-62. http://dx.doi.org/10.1016/j.sjbs.2009.10.001 Smith JSC and Weissinger H (1984). Rapid monitoring of purity in seed lots of hybrid maize: modifications of current technologies. Maize Genet. Coop. Newslett. 2: 103-105. Smith JSC, Chin ECL, Shu H, Smith OS, et al. (1997). An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays): Comparisons with data from RFLPs and pedigree. Theor. Appl. Genet. 95: 163-173. http://dx.doi.org/10.1007/s001220050544 Wang C, Bian K, Zhang H-X and Zhou Z-M (1994). Polyacrylamide gel electrophoresis of salt-soluble proteins for maize variety identification and genetic purity assessment. Seed Sci. Technol. 22: 51-57. Wu MS, Dai JR and Wang SC (1999). Application of RAPD in cultivar identification and purity test in maize. Acta Agron. Sin. 25: 489-493. Xia XC, Hoisington DA and Warburton ML (2004). Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I. Lowland tropical maize. Crop Sci. 44: 2230-2237. http://dx.doi.org/10.2135/cropsci2004.2230 Yao Q, Yang K, Pan G and Rong T (2007). Genetic diversity of maize (Zea mays L.) landraces from southwest China based on SSR data. J. Genet. Genomics 34: 851-859. http://dx.doi.org/10.1016/S1673-8527(07)60096-4
X. H. Shan, Li, Y. D., Liu, X. M., Wu, Y., Zhang, M. Z., Guo, W. L., Liu, B., and Yuan, Y. P., Comparative analyses of genetic/epigenetic diversities and structures in a wild barley species (Hordeum brevisubulatum) using MSAP, SSAP and AFLP, vol. 11, pp. 2749-2759, 2012.
Ashikawa I (2001). Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars. Plant Mol. Biol. 45: 31-39. http://dx.doi.org/10.1023/A:1006457321781 PMid:11247604   Cervera MT, Ruiz-Garcia L and Martinez-Zapater JM (2002). Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol. Genet. Genomics 268: 543-552. http://dx.doi.org/10.1007/s00438-002-0772-4 PMid:12471452   Choi CS and Sano H (2007). Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet. Genomics 277: 589-600. http://dx.doi.org/10.1007/s00438-007-0209-1 PMid:17273870   Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020   Herrera CM and Bazaga P (2010). Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187: 867-876. http://dx.doi.org/10.1111/j.1469-8137.2010.03298.x PMid:20497347   Kalisz S and Purugganan MD (2004). Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol. Evol. 19: 309-314. http://dx.doi.org/10.1016/j.tree.2004.03.034 PMid:16701276   Keyte AL, Percifield R, Liu B and Wendel JF (2006). Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J. Hered. 97: 444-450. http://dx.doi.org/10.1093/jhered/esl023 PMid:16987937   Li YD, Chu ZZ, Liu XG, Jing HC, et al. (2010). A cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants. J. Integr. Plant Biol. 52: 1036-1042. http://dx.doi.org/10.1111/j.1744-7909.2010.01001.x PMid:21106003   Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, et al. (2010). Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5: e10326. http://dx.doi.org/10.1371/journal.pone.0010326 PMid:20436669 PMCid:2859934   Lukens LN and Zhan S (2007). The plant genome's methylation status and response to stress: implications for plant improvement. Curr. Opin. Plant Biol. 10: 317-322. http://dx.doi.org/10.1016/j.pbi.2007.04.012 PMid:17468039   Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220. PMid:6018555   Miller MP (1997). Tools for Population Genetic Analyses (TFPGA) v. 1.3: A Windows Program for the Analysis of Allozyme and Molecular Genetic Data. Department of Biological Sciences, Northern Arizona University, Phoenix.   Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321 PMid:4519626 PMCid:427228   Papa R and Gepts P (2003). Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor. Appl. Genet. 106: 239-250. PMid:12582849   Rapp RA and Wendel JF (2005). Epigenetics and plant evolution. New Phytol. 168: 81-91. http://dx.doi.org/10.1111/j.1469-8137.2005.01491.x PMid:16159323   Richards EJ (2011). Natural epigenetic variation in plant species: a view from the field. Curr. Opin. Plant Biol. 14: 204-209. http://dx.doi.org/10.1016/j.pbi.2011.03.009 PMid:21478048   Salmon A, Ainouche ML and Wendel JF (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol. Ecol. 14: 1163-1175. http://dx.doi.org/10.1111/j.1365-294X.2005.02488.x PMid:15773943   Schneider S, Schneider S and Excoffier L (2000). Arlequin Version 2000, A Software for Population Genetics Data Analysis. University of Geneva, Geneva.   Shen S, Wang Z, Shan X, Wang H, et al. (2006). Alterations in DNA methylation and genome structure in two rice mutant lines induced by high pressure. Sci. China C. Life Sci. 49: 97-104. http://dx.doi.org/10.1007/s11427-006-0097-3 PMid:16704112   Tan MP (2010). Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol. Biochem. 48: 21-26. http://dx.doi.org/10.1016/j.plaphy.2009.10.005 PMid:19889550   Tang S and Knapp SJ (2003). Microsatellites uncover extraordinary diversity in native American land races and wild populations of cultivated sunflower. Theor. Appl. Genet. 106: 990-1003. PMid:12671746   Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, et al. (2007). Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5: e174. http://dx.doi.org/10.1371/journal.pbio.0050174 PMid:17579518 PMCid:1892575   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Waugh R, McLean K, Flavell AJ, Pearce SR, et al. (1997). Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253: 687-694. http://dx.doi.org/10.1007/s004380050372 PMid:9079879   Wright SI, Bi IV, Schroeder SG, Yamasaki M, et al. (2005). The effects of artificial selection on the maize genome. Science 308: 1310-1314. http://dx.doi.org/10.1126/science.1107891 PMid:15919994   Yeh FC, Yang RC, Boyle TBJ and Ye ZH (1997). POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Version 1.21. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.   Yi C, Zhang S, Liu X and Bui HT (2010). Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol. 10: 259. http://dx.doi.org/10.1186/1471-2229-10-259 PMid:21092236 PMCid:3017842
2011
B. Liu, Li, J. Q., Liu, X. D., Shahid, M. Q., Shi, L. G., and Lu, Y. G., Identification of neutral genes at pollen sterility loci Sd and Se of cultivated rice (Oryza sativa) with wild rice (O. rufipogon) origin, vol. 10, pp. 3435-3445, 2011.
Chen J, Ding J, Ouyang Y, Du H, et al. (2008). A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc. Natl. Acad. Sci. U. S. A. 105: 11436-11441. http://dx.doi.org/10.1073/pnas.0804761105 PMid:18678896 PMCid:2516230 Ding XH, Zhang ZM, Zeng RZ and Li WT (2003). Genotypic identification of Sb locus in the indica-compatible japonica lines of rice (Oryza sativa). Chin. J. Rice Sci. 17: 297-301. Ikehashi H and Araki H (1984). Varietal screening for compatibility types revealed in F1 fertility of distant crosses in rice. Jpn. J. Breed. 34: 304-312. Kato S (1930). On the affinity of the cultivated rice varieties of rice plants, Oryza sativa L. J. Depart. Agr. Kyushu Imp. Univ. 2: 241-275. Li JQ, Lu YG, Feng JH and Zhao XJ (2007). The crossability and F1 hybrid fertility between Oryza sativa and other AA genome species. J. Plant Genet. Res. 8: 1-6. Li WT, Zeng RZ, Zhang ZM and Zhang GQ (2003). Analysis of introgressed segments in near-isogenic lines for F1 pollen sterility in rice (Oryza sativa). Chin. J. Rice Sci. 17: 95-99. Li WT, Zeng RZ, Zhang ZM, Ding XH, et al. (2006). Fine mapping of locus S-b for F1 pollen sterility in rice (Oryza sativa L.). Chin. Sci. Bull. 51: 404-408. http://dx.doi.org/10.1007/s11434-006-0675-6 Li WT, Zeng RZ, Zhang ZM, Ding XH, et al. (2008). Identification and fine mapping of S-d, a new locus conferring the partial pollen sterility of intersubspecific F1 hybrids in rice (Oryza sativa L.). Theor. Appl. Genet. 116: 915-922. http://dx.doi.org/10.1007/s00122-008-0723-5 PMid:18274725 Lian ZX, Shi LG, Lu YG and Fu XL (2008). Pollen fertility and its developmental characteristics of the F1 between Oryza rufipogon Griff. indigenous to Gaozhou, Guangdong Province and Japonica rice. J. Plant Genet. Resour. 9: 6-10. Liu HY, Xu CG and Zhang Q (2004). Male and female gamete abortions, and reduced affinity between the uniting gametes as the causes for sterility in an indica/japonica hybrid in rice. Sex. Plant Rep. 17: 55-62. http://dx.doi.org/10.1007/s00497-004-0214-z Long Y, Zhao L, Niu B, Su J, et al. (2008). Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc. Natl. Acad. Sci. U. S. A. 105: 18871-18876. http://dx.doi.org/10.1073/pnas.0810108105 PMid:19033192 PMCid:2596266 Oka HI (1964). Consideration on the Genetic Basis of Intervarietal Sterility in Oryza sativa. In: Rice Genetics and Cytogenetics, International Rice Research Institute, 158-174. Shahid MQ, Sun JF, Wei CM and Zhang P (2010). Studies on the abnormality of embryo sac and pollen fertility in autotetraploid rice during different growing seasons. Pak. J. Bot. 42: 7-19. Shi LG, Liu XD, Liu B and Zhao XJ (2009). Identifying neutral allele Sb at pollen-sterility loci in cultivated rice with Oryza rufipogon origin. Chin. Sci. Bull. 54: 1-9. http://dx.doi.org/10.1007/s11434-009-0571-y Song X, Qiu SQ, Xu CG, Li XH, et al. (2005). Genetic dissection of embryo sac fertility, pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theor. Appl. Genet. 110: 205-211. http://dx.doi.org/10.1007/s00122-004-1798-2 PMid:15672255 Wan JM and Ikehashi H (1997). Identification of two types of differentiation in cultivated rice (Oryza sativa L.) detected by polymorphism of isozymes and hybrid sterility. Euphytica 94: 151-161. http://dx.doi.org/10.1023/A:1002907421839 Yang CY, Chen ZZ, Zhuang CX and Mei MT (2004). Genetic map and fine physical mapping of the gene S-c for F1 pollen sterility in cultivated rice (Oryza sativa L.). Chin. Sci. Bull. 49: 1273-1277. Yang YX, Wu JW, Chen ZX and Wang L (2009). Mining rice new germplasm containing S5n gene by functional molecular marker and sequencing. Chin. Sci. Bull. 54: 3258-3264. http://dx.doi.org/10.1007/s11434-009-0466-y Yi CD, Yan CJ, Liang GH, Zhu LH, et al. (2001). RFLP analysis of the effect of wide compatibility genes in Aus variety 'Dular'. Yi Chuan Xue Bao 28: 540-549. PMid:11431987 Yokoo M (1984). Female sterility in an indica-japonica cross of rice. Jpn. J. Breed. 34: 219-227. Yuan LP (1987). Strategic hypotheses of breeding for hybrid rice. Hybrid Rice 1: 1-3. Zhang GQ and Lu YG (1989). Genetic studies of the hybrid sterility in cultivated rice (Oryza sativa). I. Diallel analysis of the hybrid sterility among isogenic F1 sterile lines. Chin. J. Rice Sci. 3: 97-101. Zhang GQ and Lu YG (1993). Genetic studies of the hybrid sterility in cultivated rice (Oryza sativa). II. A genic model for F1 pollen sterility. Acta Genet. Sin. 20: 222-228. Zhang GQ, Lu YG, Liu GF and Yang JC (1993). Genetic studies of the hybrid sterility in cultivated rice (Oryza sativa). III. Allele differentiation of F1 pollen sterility in different types of varieties. Acta Genet. Sin. 20: 541-551. Zhang ZS, Lu YG, Liu XD, Feng JH, et al. (2006). Cytological mechanism of pollen abortion resulting from allelic interaction of F1 pollen sterility locus in rice (Oryza sativa L.). Genetica 127: 295-302. http://dx.doi.org/10.1007/s10709-005-4848-z PMid:16850233 Zheng KL, Huang N, Bennett J and Khush GS (1995). PCR-based phylogenetic analysis of wide compatibility varieties in Oryza sativa L. Theor. Appl. Genet. 88: 65-69. Zhu WY, Li WT, Ding XH and Zhang ZM (2008). Preliminary identification of F1 pollen sterility gene S-e in Oryza sativa. J. South China Agr. Univ. 1: 1-5.