Publications

Found 6 results
Filters: Author is L.Q. Wu  [Clear All Filters]
2011
C. Y. Fang, Xue, J. J., Tan, L., Jiang, C. H., Gao, Q. P., Liang, D. S., and Wu, L. Q., A novel single-base deletion mutation of the RUNX2 gene in a Chinese family with cleidocranial dysplasia, vol. 10, pp. 3539-3544, 2011.
Cooper SC, Flaitz CM, Johnston DA, Lee B, et al. (2001). A natural history of cleidocranial dysplasia. Am. J. Med. Genet. 104: 1-6. http://dx.doi.org/10.1002/ajmg.10024 PMid:11746020   Gelb BD, Cooper E, Shevell M and Desnick RJ (1995). Genetic mapping of the cleidocranial dysplasia (CCD) locus on chromosome band 6p21 to include a microdeletion. Am. J. Med. Genet. 58: 200-205. http://dx.doi.org/10.1002/ajmg.1320580222 PMid:8533817   Golan I, Baumert U, Hrala BP and Mussig D (2003). Dentomaxillofacial variability of cleidocranial dysplasia: clinicoradiological presentation and systematic review. Dentomaxillofac. Radiol. 32: 347-354. http://dx.doi.org/10.1259/dmfr/63490079 PMid:15070835   Golan I, Baumert U, Hrala BP and Mussig D (2004). Early craniofacial signs of cleidocranial dysplasia. Int. J. Paediatr. Dent. 14: 49-53. http://dx.doi.org/10.1111/j.1365-263X.2004.00501.x PMid:14706028   Gutierrez S, Javed A, Tennant DK, van RM, et al. (2002). CCAAT/enhancer-binding proteins (C/EBP) beta and delta activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression. J. Biol. Chem. 277: 1316-1323. http://dx.doi.org/10.1074/jbc.M106611200 PMid:11668178   Komori T, Yagi H, Nomura S, Yamaguchi A, et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755-764. http://dx.doi.org/10.1016/S0092-8674(00)80258-5   Li Y, Pan W, Xu W, He N, et al. (2009). RUNX2 mutations in Chinese patients with cleidocranial dysplasia. Mutagenesis 24: 425-431. http://dx.doi.org/10.1093/mutage/gep025 PMid:19515746 PMCid:2734498   Li YL and Xiao ZS (2007). Advances in Runx2 regulation and its isoforms. Med. Hypotheses 68: 169-175. http://dx.doi.org/10.1016/j.mehy.2006.06.006 PMid:16901655   Lou Y, Javed A, Hussain S, Colby J, et al. (2009). A Runx2 threshold for the cleidocranial dysplasia phenotype. Hum. Mol. Genet. 18: 556-568. http://dx.doi.org/10.1093/hmg/ddn383 PMid:19028669 PMCid:2638795   McNamara CM, O'Riordan BC, Blake M and Sandy JR (1999). Cleidocranial dysplasia: radiological appearances on dental panoramic radiography. Dentomaxillofac. Radiol. 28: 89-97. http://dx.doi.org/10.1038/sj.dmfr.4600417 PMid:10522197   Mundlos S, Otto F, Mundlos C, Mulliken JB, et al. (1997). Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89: 773-779. http://dx.doi.org/10.1016/S0092-8674(00)80260-3   Otto F, Thornell AP, Crompton T, Denzel A, et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765-771. http://dx.doi.org/10.1016/S0092-8674(00)80259-7   Otto F, Kanegane H and Mundlos S (2002). Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum. Mutat. 19: 209-216. http://dx.doi.org/10.1002/humu.10043 PMid:11857736   Shen Z, Zou CC, Yang RW and Zhao ZY (2009). Cleidocranial dysplasia: report of 3 cases and literature review. Clin. Pediatr. 48: 194-198. http://dx.doi.org/10.1177/0009922808323107 PMid:18832541   Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, et al. (1998). Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol. Cell Biol. 18: 4197-4208. PMid:9632804 PMCid:109004   Wang GX, Sun RP and Song FL (2010). A novel RUNX2 mutation (T420I) in Chinese patients with cleidocranial dysplasia. Genet. Mol. Res. 9: 41-47. http://dx.doi.org/10.4238/vol9-1gmr685 PMid:20082269   Zhang C, Zheng S, Wang Y, Zhao Y, et al. (2010). Mutational analysis of RUNX2 gene in Chinese patients with cleidocranial dysplasia. Mutagenesis 25: 594. http://dx.doi.org/10.1093/mutage/geq044 PMid:20702542   Zhou G, Chen Y, Zhou L, Thirunavukkarasu K, et al. (1999). CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum. Mol. Genet. 8: 2311-2316. http://dx.doi.org/10.1093/hmg/8.12.2311 PMid:10545612
L. Q. Wu, Hu, J. J., Xue, J. J., and Liang, D. S., Two novel NPHS1 mutations in a Chinese family with congenital nephrotic syndrome, vol. 10, pp. 2517-2522, 2011.
Ahvenainen EK, Hallman N and Hjelt L (1956). Nephrotic syndrome in newborn and young infants. Ann. Paediatr. Fenn. 2: 227-241. PMid:13373132 Fuchshuber A, Niaudet P, Gribouval O, Jean G, et al. (1996). Congenital nephrotic syndrome of the Finnish type: linkage to the locus in a non-Finnish population. Pediatr. Nephrol. 10: 135-138. PMid:8703694 Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, et al. (2007). Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119: e907-e919. http://dx.doi.org/10.1542/peds.2006-2164 PMid:17371932 Jones N, Blasutig IM, Eremina V, Ruston JM, et al. (2006). Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 440: 818-823. http://dx.doi.org/10.1038/nature04662 PMid:16525419 Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, et al. (1998). Positionally cloned gene for a novel glomerular protein - nephrin - is mutated in congenital nephrotic syndrome. Mol. Cell 1: 575-582. http://dx.doi.org/10.1016/S1097-2765(00)80057-X Khoshnoodi J, Sigmundsson K, Ofverstedt LG, Skoglund U, et al. (2003). Nephrin promotes cell-cell adhesion through homophilic interactions. Am. J. Pathol. 163: 2337-2346. http://dx.doi.org/10.1016/S0002-9440(10)63590-0 Koziell A, Grech V, Hussain S, Lee G, et al. (2002). Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum. Mol. Genet. 11: 379-388. http://dx.doi.org/10.1093/hmg/11.4.379 PMid:11854170 Lenkkeri U, Männikkö M, McCready P, Lamerdin J, et al. (1999). Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am. J. Hum. Genet. 64: 51-61. http://dx.doi.org/10.1086/302182 Liu L, Doné SC, Khoshnoodi J, Bertorello A, et al. (2001). Defective nephrin trafficking caused by missense mutations in the NPHS1 gene: insight into the mechanisms of congenital nephrotic syndrome. Hum. Mol. Genet. 10: 2637-2644. http://dx.doi.org/10.1093/hmg/10.23.2637 PMid:11726550 Mao J, Zhang Y, Du L, Dai Y, et al. (2007). NPHS1 and NPHS2 gene mutations in Chinese children with sporadic nephrotic syndrome. Pediatr. Res. 61: 117-122. http://dx.doi.org/10.1203/01.pdr.0000250041.19306.3d PMid:17211152 Norio R (1966). Heredity in the congenital nephrotic syndrome. A genetic study of 57 Finnish families with a review of reported cases. Ann. Paediatr. Fenn. 12: 1-94. Patrakka J, Kestila M, Wartiovaara J, Ruotsalainen V, et al. (2000). Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. Kidney Int. 58: 972-980. http://dx.doi.org/10.1046/j.1523-1755.2000.00254.x PMid:10972661 Schoeb DS, Chernin G, Heeringa SF, Matejas V, et al. (2010). Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS). Nephrol. Dial. Transplant. 25: 2970-2976. http://dx.doi.org/10.1093/ndt/gfq088 PMid:20172850    PMCid:2948833 Shi Y, Ding J, Liu JC, Wang H, et al. (2005). NPHS1 mutations in a Chinese family with congenital nephrotic syndrome. Zhonghua Er Ke Za Zhi 43: 805-809. PMid:16316524 Tsukaguchi H, Sudhakar A, Le TC, Nguyen T, et al. (2002). NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease-associated allele. J. Clin. Invest. 110: 1659-1666. PMid:12464671    PMCid:151634