Publications

Found 3 results
Filters: Author is Y.F. Xu  [Clear All Filters]
2016
Y. F. Xu, Liang, X., Chen, Y. R., Li, Y. F., Yang, J. L., Xu, Y. F., Liang, X., Chen, Y. R., Li, Y. F., and Yang, J. L., Wnt7b gene expression and functional analysis in the mussel Mytilus coruscus, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflicts of interest. ACKNOWLEDGMENTS Research supported by the National Natural Science Foundation of China (#31101885 and #41476131), the Peak Discipline Program for Fisheries from the Shanghai Municipal Government, and the Shanghai Ocean University Doctoral Research Foundation (#A2-0203-00-100320). REFERENCES Beretta CA, Brinkmann I, Carl M, et al (2011). All four zebrafish Wnt7 genes are expressed during early brain development. Gene Expr. Patterns 11: 277-284.http://dx.doi.org/10.1016/j.gep.2011.01.004 Cadigan KM, Nusse R, et al (1997). Wnt signaling: a common theme in animal development. Genes Dev. 11: 3286-3305.http://dx.doi.org/10.1101/gad.11.24.3286 Chandramouli KH, Sun J, Mok FS, Liu L, et al (2013). Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete Pseudopolydora vexillosa. J. Proteome Res. 12: 1344-1358.http://dx.doi.org/10.1021/pr3010088 Chang KM, Wu JF, et al (2007). Study on artificial propagation of Mytilus coruscus. South. Chin. Fish. 3: 26-30. Chen XG, Jiang X, Gu J, Xu M, et al (2015). Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proc. Natl. Acad. Sci. USA 112: E5907-E5915.http://dx.doi.org/10.1073/pnas.1516410112 Daneman R, Agalliu D, Zhou L, Kuhnert F, et al (2009). Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl. Acad. Sci. USA 106: 641-646.http://dx.doi.org/10.1073/pnas.0805165106 Gao J, Liu J, Yang Y, Liang J, et al (2016). Identification and expression characterization of three Wnt signaling genes in pearl oyster (Pinctada fucata). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 196-197: 92-101.http://dx.doi.org/10.1016/j.cbpb.2016.03.003 Grzeschik KH, Bornholdt D, Oeffner F, König A, et al (2007). Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat. Genet. 39: 833-835.http://dx.doi.org/10.1038/ng2052 Johnson ML, Rajamannan N, et al (2006). Diseases of Wnt signaling. Rev. Endocr. Metab. Disord. 7: 41-49.http://dx.doi.org/10.1007/s11154-006-9003-3 Kubota T, Michigami T, Ozono K, et al (2009). Wnt signaling in bone metabolism. J. Bone Miner. Metab. 27: 265-271.http://dx.doi.org/10.1007/s00774-009-0064-8 Li YF, Chen YR, Yang JL, Bao WY, et al (2014a). Effects of substratum type on bacterial community structure in biofilms in relation to settlement of plantigrades of the mussel Mytilus coruscus. Int. Biodeter. Biodegr 96: 41-49. http://dx.doi.org/10.1016/j.ibiod.2014.08.012 Li YF, Guo XP, Yang JL, Liang X, et al (2014b). Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 433: 434-441. http://dx.doi.org/10.1016/j.aquaculture.2014.06.031 Lippmann ES, Azarin SM, Kay JE, Nessler RA, et al (2012). Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30: 783-791.http://dx.doi.org/10.1038/nbt.2247 Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods 25: 402-408.http://dx.doi.org/10.1006/meth.2001.1262 Luis TC, Weerkamp F, Naber BAE, Baert MRM, et al (2009). Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113: 546-554.http://dx.doi.org/10.1182/blood-2008-06-163774 McMahon AP, et al (1992). The Wnt family of developmental regulators. Trends Genet. 8: 236-242. http://dx.doi.org/10.1016/0168-9525(92)90393-I Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, et al (2009). Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10: 219.http://dx.doi.org/10.1186/1471-2164-10-219 Miyake M, Yamashiro K, Tabara Y, Suda K, Nagahama Study Groupet al (2015). Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat. Commun. 6: 6689.http://dx.doi.org/10.1038/ncomms7689 Moon RT, et al (1993). In pursuit of the functions of the Wnt family of developmental regulators: insights from Xenopus laevis. BioEssays 15: 91-97.http://dx.doi.org/10.1002/bies.950150204 Nicol B, Guiguen Y, et al (2011). Expression profiling of Wnt signaling genes during gonadal differentiation and gametogenesis in rainbow trout. Sex Dev. 5: 318-329.http://dx.doi.org/10.1159/000334515 Nusse R, Varmus HE, et al (1992). Wnt genes. Cell 69: 1073-1087.http://dx.doi.org/10.1016/0092-8674(92)90630-U Parr BA, Cornish VA, Cybulsky MI, McMahon AP, et al (2001). Wnt7b regulates placental development in mice. Dev. Biol. 237: 324-332.http://dx.doi.org/10.1006/dbio.2001.0373 Peltoketo H, Rivero-Müller A, Ahtiainen P, Poutanen M, et al (2010). Consequences of genetic manipulations of gonadotrophins and gonadotrophin receptors in mice. Ann. Endocrinol. (Paris) 71: 170-176.http://dx.doi.org/10.1016/j.ando.2010.02.022 Prud’homme B, Lartillot N, Balavoine G, Adoutte A, et al (2002). Phylogenetic analysis of the Wnt gene family. Insights from lophotrochozoan members. Curr. Biol. 12: 1395-1400.http://dx.doi.org/10.1016/S0960-9822(02)01068-0 Reya T, Clevers H, et al (2005). Wnt signalling in stem cells and cancer. Nature 434: 843-850.http://dx.doi.org/10.1038/nature03319 Schubert M, Holland LZ, Holland ND, et al (2000). Characterization of two amphioxus Wnt genes (AmphiWnt4 and AmphiWnt7b) with early expression in the developing central nervous system. Dev. Dyn. 217: 205-215.http://dx.doi.org/10.1002/(SICI)1097-0177(200002)217:2<205::AID-DVDY7>3.0.CO;2-F Shu W, Jiang YQ, Lu MM, Morrisey EE, et al (2002). Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129: 4831-4842. Sidow A, et al (1992). Diversification of the Wnt gene family on the ancestral lineage of vertebrates. Proc. Natl. Acad. Sci. USA 89: 5098-5102.http://dx.doi.org/10.1073/pnas.89.11.5098 Siegfried E, Perrimon N, et al (1994). Drosophila wingless: a paradigm for the function and mechanism of Wnt signaling. BioEssays 16: 395-404.http://dx.doi.org/10.1002/bies.950160607 Sullivan JC, Ryan JF, Mullikin JC, Finnerty JR, et al (2007). Conserved and novel Wnt clusters in the basal eumetazoan Nematostella vectensis. Dev. Genes Evol. 217: 235-239.http://dx.doi.org/10.1007/s00427-007-0136-5 Vainio S, Heikkilä M, Kispert A, Chin N, et al (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature 397: 405-409.http://dx.doi.org/10.1038/17068 Van Camp JK, Beckers S, Zegers D, Van Hul W, et al (2014). Wnt signaling and the control of human stem cell fate. Stem Cell Rev. 10: 207-229.http://dx.doi.org/10.1007/s12015-013-9486-8 Wong YH, Wang H, Ravasi T, Qian PY, et al (2012). Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. PLoS One 7: e33323.http://dx.doi.org/10.1371/journal.pone.0033323 Yang JL, Satuito CG, Bao WY, Kitamura H, et al (2007). Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis on different macroalgae. Mar. Biol. 152: 1121-1132. http://dx.doi.org/10.1007/s00227-007-0759-0 Yang JL, Li SH, Li YF, Liu ZW, et al (2013a). Effects of neuroactive compounds, ions and organic solvents on larval metamorphosis of the mussel Mytilus coruscus. Aquaculture 396-399: 106-112. http://dx.doi.org/10.1016/j.aquaculture.2013.02.039 Yang JL, Li SH, Liu ZW, Li WS, et al (2013b). Primary study on neuronal development of the embryo and early larvae of the mussel Mytilus coruscus. J. Fish. Chin. 37: 512-519. http://dx.doi.org/10.3724/SP.J.1231.2013.38433 Yang JL, Shen PJ, Liang X, Li YF, et al (2013c). Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29: 247-259.http://dx.doi.org/10.1080/08927014.2013.764412 Yang JL, Li WS, Liang X, Li YF, et al (2014). Effects of adrenoceptor compounds on larval metamorphosis of the mussel Mytilus coruscus. Aquaculture 426-427: 282-287. http://dx.doi.org/10.1016/j.aquaculture.2014.02.019 Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, et al (2014). Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 74: 2962-2973.http://dx.doi.org/10.1158/0008-5472.CAN-13-2421 Yokoi H, Nishimatsu A, Ozato K, Yoda K, et al (2003). Cloning and embryonic expression of six wnt genes in the medaka (Oryzias latipes) with special reference to expression of wnt5a in the pectoral fin buds. Dev. Growth Differ. 45: 51-61.http://dx.doi.org/10.1046/j.1440-169X.2003.00674.x
Y. F. Xu, Liang, X., Chen, Y. R., Li, Y. F., Yang, J. L., Xu, Y. F., Liang, X., Chen, Y. R., Li, Y. F., and Yang, J. L., Wnt7b gene expression and functional analysis in the mussel Mytilus coruscus, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflicts of interest. ACKNOWLEDGMENTS Research supported by the National Natural Science Foundation of China (#31101885 and #41476131), the Peak Discipline Program for Fisheries from the Shanghai Municipal Government, and the Shanghai Ocean University Doctoral Research Foundation (#A2-0203-00-100320). REFERENCES Beretta CA, Brinkmann I, Carl M, et al (2011). All four zebrafish Wnt7 genes are expressed during early brain development. Gene Expr. Patterns 11: 277-284.http://dx.doi.org/10.1016/j.gep.2011.01.004 Cadigan KM, Nusse R, et al (1997). Wnt signaling: a common theme in animal development. Genes Dev. 11: 3286-3305.http://dx.doi.org/10.1101/gad.11.24.3286 Chandramouli KH, Sun J, Mok FS, Liu L, et al (2013). Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete Pseudopolydora vexillosa. J. Proteome Res. 12: 1344-1358.http://dx.doi.org/10.1021/pr3010088 Chang KM, Wu JF, et al (2007). Study on artificial propagation of Mytilus coruscus. South. Chin. Fish. 3: 26-30. Chen XG, Jiang X, Gu J, Xu M, et al (2015). Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proc. Natl. Acad. Sci. USA 112: E5907-E5915.http://dx.doi.org/10.1073/pnas.1516410112 Daneman R, Agalliu D, Zhou L, Kuhnert F, et al (2009). Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl. Acad. Sci. USA 106: 641-646.http://dx.doi.org/10.1073/pnas.0805165106 Gao J, Liu J, Yang Y, Liang J, et al (2016). Identification and expression characterization of three Wnt signaling genes in pearl oyster (Pinctada fucata). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 196-197: 92-101.http://dx.doi.org/10.1016/j.cbpb.2016.03.003 Grzeschik KH, Bornholdt D, Oeffner F, König A, et al (2007). Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat. Genet. 39: 833-835.http://dx.doi.org/10.1038/ng2052 Johnson ML, Rajamannan N, et al (2006). Diseases of Wnt signaling. Rev. Endocr. Metab. Disord. 7: 41-49.http://dx.doi.org/10.1007/s11154-006-9003-3 Kubota T, Michigami T, Ozono K, et al (2009). Wnt signaling in bone metabolism. J. Bone Miner. Metab. 27: 265-271.http://dx.doi.org/10.1007/s00774-009-0064-8 Li YF, Chen YR, Yang JL, Bao WY, et al (2014a). Effects of substratum type on bacterial community structure in biofilms in relation to settlement of plantigrades of the mussel Mytilus coruscus. Int. Biodeter. Biodegr 96: 41-49. http://dx.doi.org/10.1016/j.ibiod.2014.08.012 Li YF, Guo XP, Yang JL, Liang X, et al (2014b). Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 433: 434-441. http://dx.doi.org/10.1016/j.aquaculture.2014.06.031 Lippmann ES, Azarin SM, Kay JE, Nessler RA, et al (2012). Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30: 783-791.http://dx.doi.org/10.1038/nbt.2247 Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods 25: 402-408.http://dx.doi.org/10.1006/meth.2001.1262 Luis TC, Weerkamp F, Naber BAE, Baert MRM, et al (2009). Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113: 546-554.http://dx.doi.org/10.1182/blood-2008-06-163774 McMahon AP, et al (1992). The Wnt family of developmental regulators. Trends Genet. 8: 236-242. http://dx.doi.org/10.1016/0168-9525(92)90393-I Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, et al (2009). Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10: 219.http://dx.doi.org/10.1186/1471-2164-10-219 Miyake M, Yamashiro K, Tabara Y, Suda K, Nagahama Study Groupet al (2015). Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat. Commun. 6: 6689.http://dx.doi.org/10.1038/ncomms7689 Moon RT, et al (1993). In pursuit of the functions of the Wnt family of developmental regulators: insights from Xenopus laevis. BioEssays 15: 91-97.http://dx.doi.org/10.1002/bies.950150204 Nicol B, Guiguen Y, et al (2011). Expression profiling of Wnt signaling genes during gonadal differentiation and gametogenesis in rainbow trout. Sex Dev. 5: 318-329.http://dx.doi.org/10.1159/000334515 Nusse R, Varmus HE, et al (1992). Wnt genes. Cell 69: 1073-1087.http://dx.doi.org/10.1016/0092-8674(92)90630-U Parr BA, Cornish VA, Cybulsky MI, McMahon AP, et al (2001). Wnt7b regulates placental development in mice. Dev. Biol. 237: 324-332.http://dx.doi.org/10.1006/dbio.2001.0373 Peltoketo H, Rivero-Müller A, Ahtiainen P, Poutanen M, et al (2010). Consequences of genetic manipulations of gonadotrophins and gonadotrophin receptors in mice. Ann. Endocrinol. (Paris) 71: 170-176.http://dx.doi.org/10.1016/j.ando.2010.02.022 Prud’homme B, Lartillot N, Balavoine G, Adoutte A, et al (2002). Phylogenetic analysis of the Wnt gene family. Insights from lophotrochozoan members. Curr. Biol. 12: 1395-1400.http://dx.doi.org/10.1016/S0960-9822(02)01068-0 Reya T, Clevers H, et al (2005). Wnt signalling in stem cells and cancer. Nature 434: 843-850.http://dx.doi.org/10.1038/nature03319 Schubert M, Holland LZ, Holland ND, et al (2000). Characterization of two amphioxus Wnt genes (AmphiWnt4 and AmphiWnt7b) with early expression in the developing central nervous system. Dev. Dyn. 217: 205-215.http://dx.doi.org/10.1002/(SICI)1097-0177(200002)217:2<205::AID-DVDY7>3.0.CO;2-F Shu W, Jiang YQ, Lu MM, Morrisey EE, et al (2002). Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129: 4831-4842. Sidow A, et al (1992). Diversification of the Wnt gene family on the ancestral lineage of vertebrates. Proc. Natl. Acad. Sci. USA 89: 5098-5102.http://dx.doi.org/10.1073/pnas.89.11.5098 Siegfried E, Perrimon N, et al (1994). Drosophila wingless: a paradigm for the function and mechanism of Wnt signaling. BioEssays 16: 395-404.http://dx.doi.org/10.1002/bies.950160607 Sullivan JC, Ryan JF, Mullikin JC, Finnerty JR, et al (2007). Conserved and novel Wnt clusters in the basal eumetazoan Nematostella vectensis. Dev. Genes Evol. 217: 235-239.http://dx.doi.org/10.1007/s00427-007-0136-5 Vainio S, Heikkilä M, Kispert A, Chin N, et al (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature 397: 405-409.http://dx.doi.org/10.1038/17068 Van Camp JK, Beckers S, Zegers D, Van Hul W, et al (2014). Wnt signaling and the control of human stem cell fate. Stem Cell Rev. 10: 207-229.http://dx.doi.org/10.1007/s12015-013-9486-8 Wong YH, Wang H, Ravasi T, Qian PY, et al (2012). Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. PLoS One 7: e33323.http://dx.doi.org/10.1371/journal.pone.0033323 Yang JL, Satuito CG, Bao WY, Kitamura H, et al (2007). Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis on different macroalgae. Mar. Biol. 152: 1121-1132. http://dx.doi.org/10.1007/s00227-007-0759-0 Yang JL, Li SH, Li YF, Liu ZW, et al (2013a). Effects of neuroactive compounds, ions and organic solvents on larval metamorphosis of the mussel Mytilus coruscus. Aquaculture 396-399: 106-112. http://dx.doi.org/10.1016/j.aquaculture.2013.02.039 Yang JL, Li SH, Liu ZW, Li WS, et al (2013b). Primary study on neuronal development of the embryo and early larvae of the mussel Mytilus coruscus. J. Fish. Chin. 37: 512-519. http://dx.doi.org/10.3724/SP.J.1231.2013.38433 Yang JL, Shen PJ, Liang X, Li YF, et al (2013c). Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29: 247-259.http://dx.doi.org/10.1080/08927014.2013.764412 Yang JL, Li WS, Liang X, Li YF, et al (2014). Effects of adrenoceptor compounds on larval metamorphosis of the mussel Mytilus coruscus. Aquaculture 426-427: 282-287. http://dx.doi.org/10.1016/j.aquaculture.2014.02.019 Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, et al (2014). Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 74: 2962-2973.http://dx.doi.org/10.1158/0008-5472.CAN-13-2421 Yokoi H, Nishimatsu A, Ozato K, Yoda K, et al (2003). Cloning and embryonic expression of six wnt genes in the medaka (Oryzias latipes) with special reference to expression of wnt5a in the pectoral fin buds. Dev. Growth Differ. 45: 51-61.http://dx.doi.org/10.1046/j.1440-169X.2003.00674.x
2011
Y. Q. An, Lin, R. M., Wang, F. T., Feng, J., Xu, Y. F., and Xu, S. C., Molecular cloning of a new wheat calreticulin gene TaCRT1 and expression analysis in plant defense responses and abiotic stress resistance, vol. 10, pp. 3576-3585, 2011.
Arun S, Minako I, Taichi Y, Kengo S, et al. (2004). A novel interaction between calreticulin and ubiquitin-like nuclear protein in rice. Plant Cell Physiol. 45: 684-692. http://dx.doi.org/10.1093/pcp/pch077   Chen AH (1998). Research achievement of calreticulin. Chem. Life 18: 22.   Chen F, Hayes PM, Mulrooney DM and Pan A (1994). Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell 6: 835-843. PMid:7914763 PMCid:160482   Chen MH, Tian GW, Gafni Y and Citovsky V (2005). Effects of calreticulin on viral cell-to-cell movement. Plant Physiol. 138: 1866-1876. http://dx.doi.org/10.1104/pp.105.064386 PMid:16006596 PMCid:1183378   Coughlan SJ, Hastings C and Winfrey R, Jr. (1997). Cloning and characterization of the calreticulin gene from Ricinus communis L. Plant Mol. Biol. 34: 897-911. http://dx.doi.org/10.1023/A:1005822327479 PMid:9290642   Denecke J, Ek B, Caspers M, Sinjorgo KMC, et al. (1993). Analysis of sorting signals responsible for the accumulation of soluble reticuloplasmins in the plant endoplasmic reticulum. J. Exp. Bot. 44: 213-221.   Denecke J, Carlsson LE, Vidal S, Hoglund AS, et al. (1995). The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7: 391-406. PMid:7773014 PMCid:160791   Dresselhaus T, Hagel C, Lorz H and Kranz E (1996). Isolation of a full-length cDNA encoding calreticulin from a PCR library of in vitro zygotes of maize. Plant Mol. Biol. 31: 23-34. http://dx.doi.org/10.1007/BF00020603 PMid:8704156   Jia XY, Xu CY, Jing RL, Li RZ, et al. (2008). Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses. J. Exp. Bot. 59: 739-751. http://dx.doi.org/10.1093/jxb/erm369 PMid:18349049   Jia XY, He LH, Jing RL and Li RZ (2009). Calreticulin: conserved protein and diverse functions in plants. Physiol. Plant. 136: 127-138. http://dx.doi.org/10.1111/j.1399-3054.2009.01223.x PMid:19453510   Jin ZL, Hong JK, Yang KA, Koo JC, et al. (2005). Over-expression of Chinese cabbage calreticulin 1, BrCRT1, enhances shoot and root regeneration, but retards plant growth in transgenic tobacco. Transgenic Res. 14: 619-626. http://dx.doi.org/10.1007/s11248-005-5694-6 PMid:16245153   Komatsu S, Yamada E and Furukawa K (2009). Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids 36: 115-123. http://dx.doi.org/10.1007/s00726-008-0039-4 PMid:18278531   Kwiatkowski BA, Zielinska-Kwiatkowska AG, Migdalski A, Kleczkowski LA, et al. (1995). Cloning of two cDNAs encoding calnexin-like and calreticulin-like proteins from maize (Zea mays) leaves: identification of potential calcium-binding domains. Gene 165: 219-222. http://dx.doi.org/10.1016/0378-1119(95)00537-G   Li Z and Komatsu S (2000). Molecular cloning and characterization of calreticulin, a calcium-binding protein involved in the regeneration of rice cultured suspension cells. Eur. J. Biochem. 267: 737-745. http://dx.doi.org/10.1046/j.1432-1327.2000.01052.x PMid:10651810   Li Z, Onodera H, Ugaki M, Tanaka H, et al. (2003). Characterization of calreticulin as a phosphoprotein interacting with cold-induced protein kinase in rice. Biol. Pharm. Bull. 26: 256-261. http://dx.doi.org/10.1248/bpb.26.256 PMid:12576690   Lim CO, Kim HY, Kim MG, Lee SI, et al. (1996). Expressed sequence tags of Chinese cabbage flower bud cDNA. Plant Physiol. 111: 577-588. http://dx.doi.org/10.1104/pp.111.2.577 PMid:8787028 PMCid:157869   Lu H, Zhao X, Wang W, Yin H, et al. (2010). Inhibition effect on tobacco mosaic virus and regulation effect on calreticulin of oligochitosan in tobacco by induced Ca2+ influx. Carbohyd. Polym. 82: 136-142. http://dx.doi.org/10.1016/j.carbpol.2010.04.049   Matsuoka K, Seta K, Yamakawa Y, Okuyama T, et al. (1994). Covalent structure of bovine brain calreticulin. Biochem. J. 298 (Pt 2): 435-442. PMid:8135753 PMCid:1137959   Menegazzi P, Guzzo F, Baldan B, Mariani P, et al. (1993). Purification of calreticulin-like protein(s) from spinach leaves. Biochem. Biophys. Res. Commun. 190: 1130-1135. http://dx.doi.org/10.1006/bbrc.1993.1167 PMid:8439313   Michalak M, Groenendyk J, Szabo E, Gold LI, et al. (2009). Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 417: 651-666. http://dx.doi.org/10.1042/BJ20081847 PMid:19133842   Nelson DE, Glaunsinger B and Bohnert HJ (1997). Abundant accumulation of the calcium-binding molecular chaperone calreticulin in specific floral tissues of Arabidopsis thaliana. Plant Physiol. 114: 29-37. http://dx.doi.org/10.1104/pp.114.1.29 PMid:9159940 PMCid:158275   Ostwald TJ and MacLennan DH (1974). Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249: 974-979. PMid:4272851   Persson S, Rosenquist M, Svensson K, Galvao R, et al. (2003). Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants. Plant Physiol. 133: 1385-1396. http://dx.doi.org/10.1104/pp.103.024943 PMid:14563927 PMCid:281633   Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, et al. (1999). Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J. 18: 6718-6729. http://dx.doi.org/10.1093/emboj/18.23.6718 PMid:10581245 PMCid:1171734   Shen W, Yan P, Gao L, Pan X, et al. (2010). Helper component-proteinase (HC-Pro) protein of Papaya ringspot virus interacts with papaya calreticulin. Mol. Plant Pathol. 11: 335-346. http://dx.doi.org/10.1111/j.1364-3703.2009.00606.x PMid:20447282