Publications

Found 18 results
Filters: Author is Y.H. Li  [Clear All Filters]
2016
C. Z. Zhao, Li, Y. H., Dong, H. T., Geng, M. M., Liu, W. H., Li, F., Ni, Z. F., Wang, X. J., Xie, C. J., Sun, Q. X., Zhao, C. Z., Li, Y. H., Dong, H. T., Geng, M. M., Liu, W. H., Li, F., Ni, Z. F., Wang, X. J., Xie, C. J., Sun, Q. X., Zhao, C. Z., Li, Y. H., Dong, H. T., Geng, M. M., Liu, W. H., Li, F., Ni, Z. F., Wang, X. J., Xie, C. J., and Sun, Q. X., Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L., vol. 15, p. -, 2016.
C. Z. Zhao, Li, Y. H., Dong, H. T., Geng, M. M., Liu, W. H., Li, F., Ni, Z. F., Wang, X. J., Xie, C. J., Sun, Q. X., Zhao, C. Z., Li, Y. H., Dong, H. T., Geng, M. M., Liu, W. H., Li, F., Ni, Z. F., Wang, X. J., Xie, C. J., Sun, Q. X., Zhao, C. Z., Li, Y. H., Dong, H. T., Geng, M. M., Liu, W. H., Li, F., Ni, Z. F., Wang, X. J., Xie, C. J., and Sun, Q. X., Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L., vol. 15, p. -, 2016.
C. Z. Zhao, Li, Y. H., Dong, H. T., Geng, M. M., Liu, W. H., Li, F., Ni, Z. F., Wang, X. J., Xie, C. J., Sun, Q. X., Zhao, C. Z., Li, Y. H., Dong, H. T., Geng, M. M., Liu, W. H., Li, F., Ni, Z. F., Wang, X. J., Xie, C. J., Sun, Q. X., Zhao, C. Z., Li, Y. H., Dong, H. T., Geng, M. M., Liu, W. H., Li, F., Ni, Z. F., Wang, X. J., Xie, C. J., and Sun, Q. X., Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L., vol. 15, p. -, 2016.
2012
G. P. Wang, Zhang, X. S., Li, Y. H., Zheng, J. L., Tang, C. Z., and Zhang, W. X., Cloning and prokaryotic expression of rat homolog of Serpina3n and its expression change during liver regeneration, vol. 11, pp. 3175-3185, 2012.
Arkin A, Ross J and McAdams HH (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149: 1633-1648. PMid:9691025 PMCid:1460268   Deng X, Li W, Chen N, Sun Y, et al. (2009). Exploring the priming mechanism of liver regeneration: proteins and protein complexes. Proteomics 9: 2202-2216. http://dx.doi.org/10.1002/pmic.200800648 PMid:19322782   Gesase AP and Kiyama H (2007). Peripheral nerve injury induced expression of mRNA for serine protease inhibitor 3 in the rat facial and hypoglossal nuclei but not in the spinal cord. Ital. J. Anat. Embryol. 112: 157-168. PMid:18078237   Guo F, Nian H, Zhang H, Huang L, et al. (2006). Proteomic analysis of the transition from quiescent to proliferating stages in rat liver hepatectomy model. Proteomics 6: 3075-3086. http://dx.doi.org/10.1002/pmic.200500322 PMid:16619303   Higgins GM and Anderson RM (1931). Experimental pathology of the liver: restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12: 186-202.   Horn TL, Harder JB, Johnson WD, Curry PT, et al. (2008). Integration of in vivo and in vitro approaches to characterize the toxicity of Antalarmin, a corticotropin-releasing hormone receptor antagonist. Toxicology 248: 8-17. http://dx.doi.org/10.1016/j.tox.2008.03.002 PMid:18423834 PMCid:2424198   Jin ZZ (2007). The research progress on the relationship between hepatocyte growth factor and liver injury. J. Med. Sci. Yanbian Univ. 30: 307-309.   Kountouras J, Boura P and Lygidakis NJ (2001). Liver regeneration after hepatectomy. Hepatogastroenterology 48: 556-562. PMid:11379353   Li H, Zhang W, Sheng M, Li W, et al. (2010). Cloning, expression, purification of spinach carboxyl-terminal processing protease of D1 protein with hydrolysis activity and preparation of polyclonal antibody. Sheng Wu Gong Cheng Xue Bao 26: 495-502. PMid:20575438   Liu ZW, Zhao MJ and Li ZP (2001). Identification of up-regulated genes in rat regenerating liver tissue by suppression subtractive hybridization. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 33: 191-197.   Liu ZY, Zhang FC, Wang Y and Lv GD (2005). Expression of the antifreeze protein gene of a pyrochroid beetle Dendroides canadensis in prokaryote and detection of the protein biological activity. Acta Entomol. Sin. 48: 179-183.   Ma H and Zhao XY (2007). Construction of pGEX-2TK-Hsbp1 prokaryotic expression vector and expression of HSBP1. J. Zhengzhou Coll. Anim. Husb. Eng. 27: 4-6.   Marchbank T, Weaver G, Nilsen-Hamilton M and Playford RJ (2009). Pancreatic secretory trypsin inhibitor is a major motogenic and protective factor in human breast milk. Am. J. Physiol. Gastrointest. Liver Physiol. 296: G697-G703. http://dx.doi.org/10.1152/ajpgi.90565.2008 PMid:19147803   Michalopoulos GK (2010). Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am. J. Pathol. 176: 2-13. http://dx.doi.org/10.2353/ajpath.2010.090675 PMid:20019184 PMCid:2797862   Wang GP and Xu CS (2010a). Pancreatic secretory trypsin inhibitor: More than a trypsin inhibitor. World J. Gastrointest. Pathophysiol. 1: 85-90. http://dx.doi.org/10.4291/wjgp.v1.i2.85 PMid:21607145 PMCid:3097947   Wang GP and Xu CS (2010b). Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol. Biotechnol. 46: 49-57. http://dx.doi.org/10.1007/s12033-010-9274-5 PMid:20339955   Xu CS, Li YH, Duan RF and Lu AL (2001). Effects of the short interval successive partial hepatectomy on rat survival and liver tissue structure. Dong Wu Xue Bao 47: 659-665.   Xu CS, Yuan JY, Li WQ, Han HP, et al. (2005). Identification of expressed genes in regenerating rat liver in 0-4-8-12 h short interval successive partial hepatectomy. World J. Gastroenterol. 11: 2296-2305. PMid:15818742   Yokoyama Y, Nagino M and Nimura Y (2007). Mechanisms of hepatic regeneration following portal vein embolization and partial hepatectomy: a review. World J. Surg. 31: 367-374. http://dx.doi.org/10.1007/s00268-006-0526-2 PMid:17219273   Zheng ZY, Weng SY and Yu Y (2009). Signal molecule-mediated hepatic cell communication during liver regeneration. World J. Gastroenterol. 15: 5776-5783. http://dx.doi.org/10.3748/wjg.15.5776 PMid:19998497 PMCid:2791269
Y. Wu, Wang, B., Li, Y. H., Xu, X. G., Luo, Y. J., Chen, J. Z. S., Wei, H. C., Gao, X. H., and Chen, H. D., Meta-analysis demonstrates association between Arg72Pro polymorphism in the P53 gene and susceptibility to keloids in the Chinese population, vol. 11, pp. 1701-1711, 2012.
Al-Attar A, Mess S, Thomassen JM, Kauffman CL, et al. (2006). Keloid pathogenesis and treatment. Plast. Reconstr. Surg. 117: 286-300. http://dx.doi.org/10.1097/01.prs.0000195073.73580.46 PMid:16404281   Atiyeh BS, Costagliola M and Hayek SN (2005). Keloid or hypertrophic scar: the controversy: review of the literature. Ann. Plast. Surg. 54: 676-680. http://dx.doi.org/10.1097/01.sap.0000164538.72375.93 PMid:15900161   Bayat A, McGrouther DA and Ferguson MW (2003). Skin scarring. BMJ 326: 88-92. http://dx.doi.org/10.1136/bmj.326.7380.88 PMid:12521975 PMCid:1125033   Butler PD, Longaker MT and Yang GP (2008). Current progress in keloid research and treatment. J. Am. Coll. Surg. 206: 731-741. http://dx.doi.org/10.1016/j.jamcollsurg.2007.12.001 PMid:18387480   De Felice B, Ciarmiello LF, Mondola P, Damiano S, et al. (2007). Differential p63 and p53 expression in human keloid fibroblasts and hypertrophic scar fibroblasts. DNA Cell Biol. 26: 541-547. http://dx.doi.org/10.1089/dna.2007.0591 PMid:17688405   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Jin J, Gao JH and Lu F (2007). Clinical experiment of susceptible people to keloid. Zhongguo Lin Chuang Jie Pao Xue Za Zhi 25: 320-322.   Ladin DA, Hou Z, Patel D, McPhail M, et al. (1998). p53 and apoptosis alterations in keloids and keloid fibroblasts. Wound Repair Regen. 6: 28-37. http://dx.doi.org/10.1046/j.1524-475X.1998.60106.x PMid:9776848   Liu Y (2007). Preliminary Linkage Analysis of Keloid Susceptibility Loci and Polymorphisms of Correlation Genes in Chinese Han Population. Master's thesis, China Medical University, Shenyang.   Liu YB (2008). The Study of Impaired Apoptosis Function of Fas and P53 Protein in the Fibroblasts Derived from Keloid. PhD thesis, Southern Medical University, Guangzhou.   Liu YB, Gao JH, Duan HJ and Liu XJ (2003). Investigation of p53 gene mutations in keloids using PCR-SSCP. Zhonghua Zheng Xing Wai Ke Za Zhi 19: 258-260. PMid:14628411   Liu W, Jiang YH, Li YL, Lin ZH, et al. (2004). Experimental study on p53 gene mutation in keloid fibroblasts. Zhonghua Shao Shang Za Zhi 20: 85-87. PMid:15312469   Marneros AG and Krieg T (2004). Keloids-clinical diagnosis, pathogenesis, and treatment options. J. Dtsch. Dermatol. Ges. 2: 905-913. http://dx.doi.org/10.1046/j.1439-0353.2004.04077.x PMid:16281608   Matlashewski GJ, Tuck S, Pim D, Lamb P, et al. (1987). Primary structure polymorphism at amino acid residue 72 of human p53. Mol. Cell Biol. 7: 961-963. PMid:3547088 PMCid:365159   McGregor JM, Harwood CA, Brooks L, Fisher SA, et al. (2002). Relationship between p53 codon 72 polymorphism and susceptibility to sunburn and skin cancer. J. Invest. Dermatol. 119: 84-90. http://dx.doi.org/10.1046/j.1523-1747.2002.01655.x PMid:12164929   Menezes HL, Juca MJ, Gomes EG, Nunes BL, et al. (2010). Analysis of the immunohistochemical expressions of p53, bcl-2 and Ki-67 in colorectal adenocarcinoma and their correlations with the prognostic factors. Arq. Gastroenterol. 47: 141-147. http://dx.doi.org/10.1590/S0004-28032010000200005 PMid:20721457   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Pezeshki A, Sari-Aslani F, Ghaderi A and Doroudchi M (2006). p53 codon 72 polymorphism in basal cell carcinoma of the skin. Pathol. Oncol. Res. 12: 29-33. http://dx.doi.org/10.1007/BF02893428 PMid:16554913   Saed GM, Ladin D, Olson J, Han X, et al. (1998). Analysis of p53 gene mutations in keloids using polymerase chain reaction-based single-strand conformational polymorphism and DNA sequencing. Arch. Dermatol. 134: 963-967. http://dx.doi.org/10.1001/archderm.134.8.963 PMid:9722726   Sakamuro D, Sabbatini P, White E and Prendergast GC (1997). The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15: 887-898. http://dx.doi.org/10.1038/sj.onc.1201263 PMid:9285684   Sayah DN, Soo C, Shaw WW, Watson J, et al. (1999). Downregulation of apoptosis-related genes in keloid tissues. J. Surg. Res. 87: 209-216. http://dx.doi.org/10.1006/jsre.1999.5761 PMid:10600351   Sjalander A, Birgander R, Kivela A and Beckman G (1995). p53 polymorphisms and haplotypes in different ethnic groups. Hum. Hered. 45: 144-149. http://dx.doi.org/10.1159/000154275 PMid:7615299   Tanaka A, Hatoko M, Tada H, Iioka H, et al. (2004). Expression of p53 family in scars. J. Dermatol. Sci. 34: 17-24. http://dx.doi.org/10.1016/j.jdermsci.2003.09.005 PMid:14757278   Teofoli P, Barduagni S, Ribuffo M, Campanella A, et al. (1999). Expression of Bcl-2, p53, c-jun and c-fos protooncogenes in keloids and hypertrophic scars. J. Dermatol. Sci. 22: 31-37. http://dx.doi.org/10.1016/S0923-1811(99)00040-7   Thomas M, Kalita A, Labrecque S, Pim D, et al. (1999). Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol. Cell Biol. 19: 1092-1100. PMid:9891044 PMCid:116039   Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, et al. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195   Walker KK and Levine AJ (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. U. S. A. 93: 15335-15340. http://dx.doi.org/10.1073/pnas.93.26.15335 PMid:8986812 PMCid:26405   Wang CM, Hiko H and Nakazawa N (2005). Investigation of p53 polymorphism for genetic predisposition of keloid and hypertrophic scar. Zhonghua Zheng Xing Wai Ke Za Zhi 21: 32-35. PMid:15844595   Yan L, Lu XY, Wang CM, Cao R, et al. (2007). Association between p53 gene codon 72 polymorphism and keloid in Chinese population. Zhonghua Zheng Xing Wai Ke Za Zhi 23: 428-430. PMid:18161363   Zhuo Y, Gao JH, Luo SQ, Zeng WS, et al. (2005). p53 gene codon 72 polymorphism and susceptibility to keloid. Zhonghua Zheng Xing Wai Ke Za Zhi 21: 201-203. PMid:16128105   Zhuo Y, Gao JH and Zeng XY (2008). The application of P53 gene detection kit for susceptibility of keloid. Zhongguo Mei Rong Yi Xue 5: 694-696.   Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
2011
Y. Wu, Wang, B., Liu, J. L., Gao, X. H., Chen, H. D., and Li, Y. H., Association of -619C/T polymorphism in CDSN gene and psoriasis risk: a meta-analysis, vol. 10, pp. 3632-3640, 2011.
Ahnini RT, Camp NJ, Cork MJ, Mee JB, et al. (1999). Novel genetic association between the corneodesmosin (MHC S) gene and susceptibility to psoriasis. Hum. Mol. Genet. 8: 1135-1140. http://dx.doi.org/10.1093/hmg/8.6.1135   Ameen M, Allen MH, Fisher SA, Lewis CM, et al. (2005). Corneodesmosin (CDSN) gene association with psoriasis vulgaris in Caucasian but not in Japanese populations. Clin. Exp. Dermatol. 30: 414-418. http://dx.doi.org/10.1111/j.1365-2230.2005.01789.x PMid:15953084   Asumalahti K, Laitinen T, Itkonen-Vatjus R, Lokki ML, et al. (2000). A candidate gene for psoriasis near HLA-C, HCR (Pg8), is highly polymorphic with a disease-associated susceptibility allele. Hum. Mol. Genet. 9: 1533-1542. http://dx.doi.org/10.1093/hmg/9.10.1533 PMid:10888604   Attia J, Thakkinstian A and D'Este C (2003). Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J. Clin. Epidemiol. 56: 297-303. http://dx.doi.org/10.1016/S0895-4356(03)00011-8   Genetics and Molecular Research 10 (4): 3632-3640 (2011) Butt C, Rahman P, Siannis F, Farewell VT, et al. (2005). Corneodesmosin polymorphisms in psoriatic arthritis. Rheumatology 44: 684-685.   Capon F, Munro M, Barker J and Trembath R (2002). Searching for the major histocompatibility complex psoriasis susceptibility gene. J. Invest. Dermatol. 118: 745-751. http://dx.doi.org/10.1046/j.1523-1747.2002.01749.x PMid:11982750   Capon F, Toal IK, Evans JC, Allen MH, et al. (2003). Haplotype analysis of distantly related populations implicates corneodesmosin in psoriasis susceptibility. J. Med. Genet. 40: 447-452. http://dx.doi.org/10.1136/jmg.40.6.447 PMid:12807967 PMCid:1735499   Caubet C, Jonca N, Brattsand M, Guerrin M, et al. (2004). Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J. Invest. Dermatol. 122: 1235-1244. http://dx.doi.org/10.1111/j.0022-202X.2004.22512.x PMid:15140227   Chang YT, Tsai SF, Lin MW, Liu HN, et al. (2003). SPR1 gene near HLA-C is unlikely to be a psoriasis susceptibility gene. Exp. Dermatol. 12: 307-314. http://dx.doi.org/10.1034/j.1600-0625.2003.00039.x PMid:12823445   Chang YT, Chou CT, Shiao YM, Lin MW, et al. (2006). Psoriasis vulgaris in Chinese individuals is associated with PSORS1C3 and CDSN genes. Br. J. Dermatol. 155: 663-669. http://dx.doi.org/10.1111/j.1365-2133.2006.07420.x PMid:16965413   Griffiths CE and Barker JN (2007). Pathogenesis and clinical features of psoriasis. Lancet 370: 263-271. http://dx.doi.org/10.1016/S0140-6736(07)61128-3   Guerrin M, Simon M, Montezin M, Haftek M, et al. (1998). Expression cloning of human corneodesmosin proves its identity with the product of the S gene and allows improved characterization of its processing during keratinocyte differentiation. J. Biol. Chem. 273: 22640-22647. http://dx.doi.org/10.1074/jbc.273.35.22640 PMid:9712893   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Hui J, Oka A, Tamiya G, Tomizawa M, et al. (2002). Corneodesmosin DNA polymorphisms in MHC haplotypes and Japanese patients with psoriasis. Tissue Antigens 60: 77-83. http://dx.doi.org/10.1034/j.1399-0039.2002.600110.x PMid:12366786   Krueger JG, Krane JF, Carter DM and Gottlieb AB (1990). Role of growth factors, cytokines, and their receptors in the pathogenesis of psoriasis. J. Invest. Dermatol. 94: 135S-140S. http://dx.doi.org/10.1111/1523-1747.ep12876121 PMid:2161887   Liu Y, Krueger JG and Bowcock AM (2007). Psoriasis: genetic associations and immune system changes. Genes Immun. 8: 1-12. http://dx.doi.org/10.1038/sj.gene.6364351 PMid:17093502   O'Brien KP, Holm SJ, Nilsson S, Carlen L, et al. (2001). The HCR gene on 6p21 is unlikely to be a psoriasis susceptibility gene. J. Invest. Dermatol. 116: 750-754. http://dx.doi.org/10.1046/j.0022-202x.2001.01323.x PMid:11348465   Orrù S, Giuressi E, Casula M, Loizedda A, et al. (2002). Psoriasis is associated with a SNP haplotype of the corneodesmosin gene (CDSN). Tissue Antigens 60: 292-298. http://dx.doi.org/10.1034/j.1399-0039.2002.600403.x PMid:12472658   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in metaanalysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Romphruk AV, Oka A, Romphruk A, Tomizawa M, et al. (2003). Corneodesmosin gene: no evidence for PSORS 1 gene in North-eastern Thai psoriasis patients. Tissue Antigens 62: 217-224. http://dx.doi.org/10.1034/j.1399-0039.2003.00056.x PMid:12956875   Schmitt-Egenolf M, Windemuth C, Hennies HC, Albis-Camps M, et al. (2001). Comparative association analysis reveals that corneodesmosin is more closely associated with psoriasis than HLA-Cw*0602-B*5701 in German families. Tissue Antigens 57: 440-446. http://dx.doi.org/10.1034/j.1399-0039.2001.057005440.x PMid:11556968   Terui T, Ozawa M and Tagami H (2000). Role of neutrophils in induction of acute inflammation in T-cell-mediated immune dermatosis, psoriasis: a neutrophil-associated inflammation-boosting loop. Exp. Dermatol. 9: 1-10. http://dx.doi.org/10.1034/j.1600-0625.2000.009001001.x PMid:10688368   Vandenbroucke JP, von EE, Altman DG, Gotzsche PC, et al. (2007). Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195   Zenz R, Eferl R, Kenner L, Florin L, et al. (2005). Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437: 369-375. http://dx.doi.org/10.1038/nature03963 PMid:16163348   Zintzaras E and Loannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093