Publications

Found 24 results
Filters: Author is B. Wang  [Clear All Filters]
2016
J. Y. Wang, Li, Z. H., Ye, M., Feng, Q., Chen, Z. M., Ye, X. S., Wu, Z. G., Wang, B., Liu, L., Yao, J., Wang, J. Y., Li, Z. H., Ye, M., Feng, Q., Chen, Z. M., Ye, X. S., Wu, Z. G., Wang, B., Liu, L., and Yao, J., Effect of miR-29c and miR-129-5p on epithelial-mesenchymal transition in experimental biliary atresia mouse models, vol. 15, p. -, 2016.
J. Y. Wang, Li, Z. H., Ye, M., Feng, Q., Chen, Z. M., Ye, X. S., Wu, Z. G., Wang, B., Liu, L., Yao, J., Wang, J. Y., Li, Z. H., Ye, M., Feng, Q., Chen, Z. M., Ye, X. S., Wu, Z. G., Wang, B., Liu, L., and Yao, J., Effect of miR-29c and miR-129-5p on epithelial-mesenchymal transition in experimental biliary atresia mouse models, vol. 15, p. -, 2016.
Z. G. Wu, Li, G. X., Wang, B., Chen, Z. M., Feng, Q., Wu, Z. G., Li, G. X., Wang, B., Chen, Z. M., and Feng, Q., Increased survivin expression and its association with clinical parameters of congenital choledochal cysts, vol. 15, p. -, 2016.
Z. G. Wu, Li, G. X., Wang, B., Chen, Z. M., Feng, Q., Wu, Z. G., Li, G. X., Wang, B., Chen, Z. M., and Feng, Q., Increased survivin expression and its association with clinical parameters of congenital choledochal cysts, vol. 15, p. -, 2016.
C. Gao, Wang, B., Zhou, C. J., Zhang, Q., Gao, C., Wang, B., Zhou, C. J., and Zhang, Q., Multiple sequence alignment based on combining genetic algorithm with chaotic sequences, vol. 15, p. -, 2016.
C. Gao, Wang, B., Zhou, C. J., Zhang, Q., Gao, C., Wang, B., Zhou, C. J., and Zhang, Q., Multiple sequence alignment based on combining genetic algorithm with chaotic sequences, vol. 15, p. -, 2016.
L. M. Yao, Jiang, Y. N., Lu, X. X., Wang, B., Zhou, P., and Wu, T. L., Overexpression of a glycine-rich protein gene in Lablab purpureus improves abiotic stress tolerance, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Ministry of Agriculture “948” Project (#2011-G (5)-16), the Natural Science Foundation of Shanghai (#15ZR1422900) and the Shanghai Municipal Science and Technology Commission Innovation Program (#14391900100). REFERENCESAmey RC, Schleicher T, Slinn J, Lewis M, et al (2008). Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. Eur. J. Plant Pathol. 122: 41-55. http://dx.doi.org/10.1007/s10658-008-9313-2 Clough SJ, Bent AF, et al (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x D’Souza MR, Devaraj VR, et al (2010). Biochemical responses of Hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiol. Plant. 32: 341-353. http://dx.doi.org/10.1007/s11738-009-0412-2 Du H, Wu N, Fu J, Wang S, et al (2012). A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot. 63: 6467-6480. http://dx.doi.org/10.1093/jxb/ers300 Du H, Wu N, Chang Y, Li X, et al (2013). Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol. Biol. 83: 475-488. http://dx.doi.org/10.1007/s11103-013-0103-7 Hammond JP, Bennett MJ, Bowen HC, Broadley MR, et al (2003). Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132: 578-596. http://dx.doi.org/10.1104/pp.103.020941 Kim JY, Kim WY, Kwak KJ, Oh SH, et al (2010a). Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J. Exp. Bot. 61: 2317-2325. http://dx.doi.org/10.1093/jxb/erq058 Kim JY, Kim WY, Kwak KJ, Oh SH, et al (2010b). Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ. 33: 759-768. Kim MK, Jung HJ, Kim DH, Kang H, et al (2012). Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions. Physiol. Plant. 146: 297-307. http://dx.doi.org/10.1111/j.1399-3054.2012.01628.x Kim YO, Pan S, Jung CH, Kang H, et al (2007). A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol. 48: 1170-1181. http://dx.doi.org/10.1093/pcp/pcm087 Long R, Yang Q, Kang J, Zhang T, et al (2013). Overexpression of a novel salt stress-induced glycine-rich protein gene from alfalfa causes salt and ABA sensitivity in Arabidopsis. Plant Cell Rep. 32: 1289-1298. http://dx.doi.org/10.1007/s00299-013-1443-0 Maass BL, Jamnadass RH, Hanson J, Pengelly BC, et al (2005). Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm by using amplified fragment length polymorphism. Genet. Resour. Crop Evol. 52: 683-695. http://dx.doi.org/10.1007/s10722-003-6019-3 Mangeon A, Magioli C, Menezes-Salgueiro AD, Cardeal V, et al (2009). AtGRP5, a vacuole-located glycine-rich protein involved in cell elongation. Planta 230: 253-265. http://dx.doi.org/10.1007/s00425-009-0940-4 Mousavi A, Hotta Y, et al (2005). Glycine-rich proteins: a class of novel proteins. Appl. Biochem. Biotechnol. 120: 169-174. http://dx.doi.org/10.1385/ABAB:120:3:169 Murphy AM, Colucci PE, et al (1999). A tropical forage solution to poor quality ruminant diets: A review of Lablab purpureus. Livest. Res. Rural Dev. 11: 2. Ortega-Amaro MA, Rodríguez-Hernández AA, Rodríguez-Kessler M, Hernández-Lucero E, et al (2015). Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance. Front. Plant Sci. 5: 782. http://dx.doi.org/10.3389/fpls.2014.00782 Ringli C, Keller B, Ryser U, et al (2001). Glycine-rich proteins as structural components of plant cell walls. Cell. Mol. Life Sci. 58: 1430-1441. http://dx.doi.org/10.1007/PL00000786 Shi H, Chen L, Ye T, Liu X, et al (2014). Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 82: 209-217. http://dx.doi.org/10.1016/j.plaphy.2014.06.008 Streitner C, Danisman S, Wehrle F, Schöning JC, et al (2008). The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J. 56: 239-250. http://dx.doi.org/10.1111/j.1365-313X.2008.03591.x Tamura K, Dudley J, Nei M, Kumar S, et al (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 Yang DH, Kwak KJ, Kim MK, Park SJ, et al (2014). Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Sci. 214: 106-112. http://dx.doi.org/10.1016/j.plantsci.2013.10.006 Yao LM, Wang B, Cheng LJ, Wu TL, et al (2013). Identification of key drought stress-related genes in the hyacinth bean. PLoS One 8: e58108. http://dx.doi.org/10.1371/journal.pone.0058108 Yuan J, Yang R, Wu TL, et al (2009). Bayesian mapping QTL for fruit and growth phenological traits in Lablab purpureus (L.) Sweet. Afr. J. Biotechnol. 8: 167-175.  
L. Yang, Wang, X. W., Zhu, L. P., Wang, H. L., Wang, B., Wu, T., Zhao, Q., JinSiHan, D. L. X. T., Wang, X. Y., Yang, L., Wang, X. W., Zhu, L. P., Wang, H. L., Wang, B., Wu, T., Zhao, Q., JinSiHan, D. L. X. T., and Wang, X. Y., Relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and breast cancer chemotherapy response, vol. 15, p. -, 2016.
L. Yang, Wang, X. W., Zhu, L. P., Wang, H. L., Wang, B., Wu, T., Zhao, Q., JinSiHan, D. L. X. T., Wang, X. Y., Yang, L., Wang, X. W., Zhu, L. P., Wang, H. L., Wang, B., Wu, T., Zhao, Q., JinSiHan, D. L. X. T., and Wang, X. Y., Relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and breast cancer chemotherapy response, vol. 15, p. -, 2016.
2015
C. S. Bao, Liu, L., Wang, B., Xia, X. - G., Gu, Y. J., Li, D. J., Zhan, S. L., Chen, G. L., and Yang, F. B., Craniocervical decompression with duraplasty and cerebellar tonsillectomy as treatment for Chiari malformation-I complicated with syringomyelia, vol. 14, pp. 952-960, 2015.
B. Wang, Wang, T., Cao, X. L., and Li, Y., Critical genes in head and neck squamous cell carcinoma revealed by bioinformatic analysis of gene expression data, vol. 14, pp. 17406-17415, 2015.
X. B. Bao, He, C. B., Fu, C. D., Wang, B., Zhao, X. M., Gao, X. G., and Liu, W. D., A C-type lectin fold gene from Japanese scallop Mizuhopecten yessoensis, involved with immunity and metamorphosis, vol. 14, pp. 2253-2267, 2015.
L. Yang, Wang, X. Y., Li, Y. T., Wang, H. L., Wu, T., Wang, B., Zhao, Q., Jinsihan, D., and Zhu, L. P., CYP19 gene polymorphisms and the susceptibility to breast cancer in Xinjiang Uigur women, vol. 14, pp. 8473-8482, 2015.
S. Zhang, Gao, X., Ma, Y., Jiang, J., Dai, Z., Yin, X., Min, W., Hui, W., and Wang, B., Expression and significance of SATB1 in the development of breast cancer, vol. 14, pp. 3309-3317, 2015.
X. J. Liu, Wang, B., Jiang, W. G., Li, Y. J., Liu, J. B., and Zhang, M., Multivariate analysis of molecular markers in peripheral blood associated with recurrence and metastasis of hepatocellular carcinoma, vol. 14, pp. 1502-1507, 2015.
R. Li, Wang, B., He, C. Q., Yang, Y. Q., Guo, H., Chen, Y., and Du, T. H., Upregulation of fibroblast growth factor 1 in the synovial membranes of patients with late stage osteoarthritis, vol. 14, pp. 11191-11199, 2015.
2012
Y. Wu, Wang, B., Li, Y. H., Xu, X. G., Luo, Y. J., Chen, J. Z. S., Wei, H. C., Gao, X. H., and Chen, H. D., Meta-analysis demonstrates association between Arg72Pro polymorphism in the P53 gene and susceptibility to keloids in the Chinese population, vol. 11, pp. 1701-1711, 2012.
Al-Attar A, Mess S, Thomassen JM, Kauffman CL, et al. (2006). Keloid pathogenesis and treatment. Plast. Reconstr. Surg. 117: 286-300. http://dx.doi.org/10.1097/01.prs.0000195073.73580.46 PMid:16404281   Atiyeh BS, Costagliola M and Hayek SN (2005). Keloid or hypertrophic scar: the controversy: review of the literature. Ann. Plast. Surg. 54: 676-680. http://dx.doi.org/10.1097/01.sap.0000164538.72375.93 PMid:15900161   Bayat A, McGrouther DA and Ferguson MW (2003). Skin scarring. BMJ 326: 88-92. http://dx.doi.org/10.1136/bmj.326.7380.88 PMid:12521975 PMCid:1125033   Butler PD, Longaker MT and Yang GP (2008). Current progress in keloid research and treatment. J. Am. Coll. Surg. 206: 731-741. http://dx.doi.org/10.1016/j.jamcollsurg.2007.12.001 PMid:18387480   De Felice B, Ciarmiello LF, Mondola P, Damiano S, et al. (2007). Differential p63 and p53 expression in human keloid fibroblasts and hypertrophic scar fibroblasts. DNA Cell Biol. 26: 541-547. http://dx.doi.org/10.1089/dna.2007.0591 PMid:17688405   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Jin J, Gao JH and Lu F (2007). Clinical experiment of susceptible people to keloid. Zhongguo Lin Chuang Jie Pao Xue Za Zhi 25: 320-322.   Ladin DA, Hou Z, Patel D, McPhail M, et al. (1998). p53 and apoptosis alterations in keloids and keloid fibroblasts. Wound Repair Regen. 6: 28-37. http://dx.doi.org/10.1046/j.1524-475X.1998.60106.x PMid:9776848   Liu Y (2007). Preliminary Linkage Analysis of Keloid Susceptibility Loci and Polymorphisms of Correlation Genes in Chinese Han Population. Master's thesis, China Medical University, Shenyang.   Liu YB (2008). The Study of Impaired Apoptosis Function of Fas and P53 Protein in the Fibroblasts Derived from Keloid. PhD thesis, Southern Medical University, Guangzhou.   Liu YB, Gao JH, Duan HJ and Liu XJ (2003). Investigation of p53 gene mutations in keloids using PCR-SSCP. Zhonghua Zheng Xing Wai Ke Za Zhi 19: 258-260. PMid:14628411   Liu W, Jiang YH, Li YL, Lin ZH, et al. (2004). Experimental study on p53 gene mutation in keloid fibroblasts. Zhonghua Shao Shang Za Zhi 20: 85-87. PMid:15312469   Marneros AG and Krieg T (2004). Keloids-clinical diagnosis, pathogenesis, and treatment options. J. Dtsch. Dermatol. Ges. 2: 905-913. http://dx.doi.org/10.1046/j.1439-0353.2004.04077.x PMid:16281608   Matlashewski GJ, Tuck S, Pim D, Lamb P, et al. (1987). Primary structure polymorphism at amino acid residue 72 of human p53. Mol. Cell Biol. 7: 961-963. PMid:3547088 PMCid:365159   McGregor JM, Harwood CA, Brooks L, Fisher SA, et al. (2002). Relationship between p53 codon 72 polymorphism and susceptibility to sunburn and skin cancer. J. Invest. Dermatol. 119: 84-90. http://dx.doi.org/10.1046/j.1523-1747.2002.01655.x PMid:12164929   Menezes HL, Juca MJ, Gomes EG, Nunes BL, et al. (2010). Analysis of the immunohistochemical expressions of p53, bcl-2 and Ki-67 in colorectal adenocarcinoma and their correlations with the prognostic factors. Arq. Gastroenterol. 47: 141-147. http://dx.doi.org/10.1590/S0004-28032010000200005 PMid:20721457   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Pezeshki A, Sari-Aslani F, Ghaderi A and Doroudchi M (2006). p53 codon 72 polymorphism in basal cell carcinoma of the skin. Pathol. Oncol. Res. 12: 29-33. http://dx.doi.org/10.1007/BF02893428 PMid:16554913   Saed GM, Ladin D, Olson J, Han X, et al. (1998). Analysis of p53 gene mutations in keloids using polymerase chain reaction-based single-strand conformational polymorphism and DNA sequencing. Arch. Dermatol. 134: 963-967. http://dx.doi.org/10.1001/archderm.134.8.963 PMid:9722726   Sakamuro D, Sabbatini P, White E and Prendergast GC (1997). The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15: 887-898. http://dx.doi.org/10.1038/sj.onc.1201263 PMid:9285684   Sayah DN, Soo C, Shaw WW, Watson J, et al. (1999). Downregulation of apoptosis-related genes in keloid tissues. J. Surg. Res. 87: 209-216. http://dx.doi.org/10.1006/jsre.1999.5761 PMid:10600351   Sjalander A, Birgander R, Kivela A and Beckman G (1995). p53 polymorphisms and haplotypes in different ethnic groups. Hum. Hered. 45: 144-149. http://dx.doi.org/10.1159/000154275 PMid:7615299   Tanaka A, Hatoko M, Tada H, Iioka H, et al. (2004). Expression of p53 family in scars. J. Dermatol. Sci. 34: 17-24. http://dx.doi.org/10.1016/j.jdermsci.2003.09.005 PMid:14757278   Teofoli P, Barduagni S, Ribuffo M, Campanella A, et al. (1999). Expression of Bcl-2, p53, c-jun and c-fos protooncogenes in keloids and hypertrophic scars. J. Dermatol. Sci. 22: 31-37. http://dx.doi.org/10.1016/S0923-1811(99)00040-7   Thomas M, Kalita A, Labrecque S, Pim D, et al. (1999). Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol. Cell Biol. 19: 1092-1100. PMid:9891044 PMCid:116039   Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, et al. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195   Walker KK and Levine AJ (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. U. S. A. 93: 15335-15340. http://dx.doi.org/10.1073/pnas.93.26.15335 PMid:8986812 PMCid:26405   Wang CM, Hiko H and Nakazawa N (2005). Investigation of p53 polymorphism for genetic predisposition of keloid and hypertrophic scar. Zhonghua Zheng Xing Wai Ke Za Zhi 21: 32-35. PMid:15844595   Yan L, Lu XY, Wang CM, Cao R, et al. (2007). Association between p53 gene codon 72 polymorphism and keloid in Chinese population. Zhonghua Zheng Xing Wai Ke Za Zhi 23: 428-430. PMid:18161363   Zhuo Y, Gao JH, Luo SQ, Zeng WS, et al. (2005). p53 gene codon 72 polymorphism and susceptibility to keloid. Zhonghua Zheng Xing Wai Ke Za Zhi 21: 201-203. PMid:16128105   Zhuo Y, Gao JH and Zeng XY (2008). The application of P53 gene detection kit for susceptibility of keloid. Zhongguo Mei Rong Yi Xue 5: 694-696.   Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
2011
D. Wu, Wu, Y., Liu, J. L., Wang, B., and Zhang, X. D., Association between HLA-Cw*0602 polymorphism and psoriasis risk: a meta-analysis, vol. 10, pp. 3109-3120, 2011.
Asumalahti K, Laitinen T, Itkonen-Vatjus R, Lokki ML, et al. (2000). A candidate gene for psoriasis near HLA-C, HCR (Pg8), is highly polymorphic with a disease-associated susceptibility allele. Hum. Mol. Genet. 9: 1533-1542. http://dx.doi.org/10.1093/hmg/9.10.1533 PMid:10888604 Attia J, Thakkinstian A and D’Este C (2003). Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J. Clin. Epidemiol. 56: 297-303. http://dx.doi.org/10.1016/S0895-4356(03)00011-8 Brandrup F, Holm N, Grunnet N, Henningsen K, et al. (1982). Psoriasis in monozygotic twins: variations in expression in individuals with identical genetic constitution. Acta Derm. Venereol. 62: 229-236. PMid:6179364 Brazzelli V, Quaglini M, Martinetti M, Nolli G, et al. (2000). A peculiar sequence motif in the alpha-1-domain of the HLA-C molecule in psoriasis. Dermatology 200: 99-103. http://dx.doi.org/10.1159/000018338 PMid:10773694 Chandran V and Raychaudhuri SP (2010). Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J. Autoimmun. 34: J314-J321. http://dx.doi.org/10.1016/j.jaut.2009.12.001 PMid:20034760 Chang YT, Shiao YM, Chin PJ, Liu YL, et al. (2004). Genetic polymorphisms of the HCR gene and a genomic segment in close proximity to HLA-C are associated with patients with psoriasis in Taiwan. Br. J. Dermatol. 150: 1104-1111. http://dx.doi.org/10.1111/j.1365-2133.2004.05972.x PMid:15214895 Chang YT, Liu HN, Shiao YM, Lin MW, et al. (2005). A study of PSORS1C1 gene polymorphisms in Chinese patients with psoriasis. Br. J. Dermatol. 153: 90-96. http://dx.doi.org/10.1111/j.1365-2133.2005.06570.x PMid:16029332 Chang YT, Chou CT, Shiao YM, Lin MW, et al. (2006). Psoriasis vulgaris in Chinese individuals is associated with PSORS1C3 and CDSN genes. Br. J. Dermatol. 155: 663-669. http://dx.doi.org/10.1111/j.1365-2133.2006.07420.x PMid:16965413 Duffin KC, Chandran V, Gladman DD, Krueger GG, et al. (2008). Genetics of psoriasis and psoriatic arthritis: update and future direction. J. Rheumatol. 35: 1449-1453. PMid:18609743    PMCid:2724000 Fan X, Yang S, Sun LD, Liang YH, et al. (2007). Comparison of clinical features of HLA-Cw*0602-positive and -negative psoriasis patients in a Han Chinese population. Acta Derm. Venereol. 87: 335-340. http://dx.doi.org/10.2340/00015555-0253 PMid:17598037 Farber EM, Nall ML and Watson W (1974). Natural history of psoriasis in 61 twin pairs. Arch Dermatol. 109: 207-211. http://dx.doi.org/10.1001/archderm.1974.01630020023005 PMid:4814926 Fojtíková M, Stolfa J, Novota P, Cejkova P, et al. (2009). HLA-Cw*06 class I region rather than MICA is associated with psoriatic arthritis in Czech population. Rheumatol. Int. 29: 1293-1299. http://dx.doi.org/10.1007/s00296-009-0847-1 PMid:19184033 Gonzalez S, Martinez-Borra J, Torre-Alonso JC, Gonzalez-Roces S, et al. (1999). The MICA-A9 triplet repeat polymorphism in the transmembrane region confers additional susceptibility to the development of psoriatic arthritis and is independent of the association of Cw*0602 in psoriasis. Arthritis Rheum. 42: 1010-1016. http://dx.doi.org/10.1002/1529-0131(199905)42:5<1010::AID-ANR21>3.0.CO;2-H Griffiths CE and Barker JN (2007). Pathogenesis and clinical features of psoriasis. Lancet 370: 263-271. http://dx.doi.org/10.1016/S0140-6736(07)61128-3 Gudjonsson JE, Karason A, Antonsdottir A, Runarsdottir EH, et al. (2003). Psoriasis patients who are homozygous for the HLA-Cw*0602 allele have a 2.5-fold increased risk of developing psoriasis compared with Cw6 heterozygotes. Br. J. Dermatol. 148: 233-235. http://dx.doi.org/10.1046/j.1365-2133.2003.05115.x PMid:12588373 Gudjonsson JE, Johnston A, Sigmundsdottir H and Valdimarsson H (2004). Immunopathogenic mechanisms in psoriasis. Clin. Exp. Immunol. 135: 1-8. http://dx.doi.org/10.1111/j.1365-2249.2004.02310.x PMid:14678257    PMCid:1808928 Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919 Holm SJ, Sanchez F, Carlen LM, Mallbris L, et al. (2005a). HLA-Cw*0602 associates more strongly to psoriasis in the Swedish population than variants of the novel 6p21.3 gene PSORS1C3. Acta Derm. Venereol. 85: 2-8. http://dx.doi.org/10.1080/00015550410023527 Holm SJ, Sakuraba K, Mallbris L, Wolk K, et al. (2005b). Distinct HLA-C/KIR genotype profile associates with guttate psoriasis. J. Invest. Dermatol. 125: 721-730. http://dx.doi.org/10.1111/j.0022-202X.2005.23879.x PMid:16185272 Jobim M, Jobim LF, Salim PH, Cestari TF, et al. (2008). A study of the killer cell immunoglobulin-like receptor gene KIR2DS1 in a Caucasoid Brazilian population with Psoriasis vulgaris. Tissue Antigens 72: 392-396. http://dx.doi.org/10.1111/j.1399-0039.2008.01096.x PMid:18643961 Liu Y, Helms C, Liao W, Zaba LC, et al. (2008). A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4: e1000041. http://dx.doi.org/10.1371/journal.pgen.1000041 PMid:18369459    PMCid:2274885 Lowes MA, Bowcock AM and Krueger JG (2007). Pathogenesis and therapy of psoriasis. Nature 445: 866-873. http://dx.doi.org/10.1038/nature05663 PMid:17314973 Luft FC (2005). Light shed on the common skin scourge, psoriasis. J. Mol. Med. 83: 933-934. http://dx.doi.org/10.1007/s00109-005-0724-7 PMid:16323032 Luszczek W, Kubicka W, Cislo M, Nockowski P, et al. (2003). Strong association of HLA-Cw6 allele with juvenile psoriasis in Polish patients. Immunol. Lett. 85: 59-64. http://dx.doi.org/10.1016/S0165-2478(02)00212-2 Mallbris L, Wolk K, Sanchez F and Stahle M (2009). HLA-Cw*0602 associates with a twofold higher prevalence of positive streptococcal throat swab at the onset of psoriasis: a case control study. BMC Dermatol. 9: 5. http://dx.doi.org/10.1186/1471-5945-9-5 PMid:19480679    PMCid:2696405 Martínez-Borra J, Gonzalez S, Santos-Juanes J, Sanchez del RJ, et al. (2003). Psoriasis vulgaris and psoriatic arthritis share a 100 kb susceptibility region telomeric to HLA-C. Rheumatology 42: 1089-1092. http://dx.doi.org/10.1093/rheumatology/keg304 PMid:12730526 Martínez-Borra J, Brautbar C, Gonzalez S, Enk CD, et al. (2005). The region of 150 kb telometic to HLA-C is associated with psoriasis in the Jewish population. J. Invest. Dermatol. 125: 928-932. PMid:16297191 Nair RP, Stuart PE, Nistor I, Hiremagalore R, et al. (2006). Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78: 827-851. http://dx.doi.org/10.1086/503821 PMid:16642438 Naldi L and Mercuri SR (2010). Epidemiology of comorbidities in psoriasis. Dermatol. Ther. 23: 114-118. http://dx.doi.org/10.1111/j.1529-8019.2010.01304.x PMid:20415817 Nestle FO, Kaplan DH and Barker J (2009). Psoriasis. N. Engl. J. Med. 361: 496-509. http://dx.doi.org/10.1056/NEJMra0804595 PMid:19641206 Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236 Płoski R, Luszczek W, Kuśnierczyk P, Nockowski P, et al. (2006). A role for KIR gene variants other than KIR2DS1 in conferring susceptibility to psoriasis. Hum. Immunol. 67: 521-526. http://dx.doi.org/10.1016/j.humimm.2006.04.001 PMid:16829306 Rani R, Narayan R, Fernandez-Vina MA and Stastny P (1998). Role of HLA-B and C alleles in development of psoriasis in patients from North India. Tissue Antigens 51: 618-622. http://dx.doi.org/10.1111/j.1399-0039.1998.tb03004.x PMid:9694354 Raychaudhuri SP and Gross J (2000a). A comparative study of pediatric onset psoriasis with adult onset psoriasis. Pediatr. Dermatol. 17: 174-178. http://dx.doi.org/10.1046/j.1525-1470.2000.01746.x PMid:10886746 Raychaudhuri SP and Gross J (2000b). Psoriasis risk factors: role of lifestyle practices. Cutis 66: 348-352. PMid:11107520 Raychaudhuri SP and Farber EM (2001). The prevalence of psoriasis in the world. J. Eur. Acad. Dermatol. Venereol. 15: 16-17. http://dx.doi.org/10.1046/j.1468-3083.2001.00192.x PMid:11451313 Reveille JD and Williams FM (2006). Infection and musculoskeletal conditions: Rheumatologic complications of HIV infection. Best Pract. Res. Clin. Rheumatol. 20: 1159-1179. http://dx.doi.org/10.1016/j.berh.2006.08.015 Sánchez F, Holm SJ, Mallbris L, O’Brien KP, et al. (2004). STG does not associate with psoriasis in the Swedish population. Exp. Dermatol. 13: 413-418. http://dx.doi.org/10.1111/j.0906-6705.2004.00170.x PMid:15217361 Schon MP and Boehncke WH (2005). Psoriasis. N. Engl. J. Med. 352: 1899-1912. http://dx.doi.org/10.1056/NEJMra041320 PMid:15872205 Szczerkowska-Dobosz A (2005). Human leukocyte antigens as psoriasis inheritance and susceptibility markers. Arch. Immunol. Ther. Exp. 53: 428-433. Valdimarsson H (2007). The genetic basis of psoriasis. Clin. Dermatol. 25: 563-567. http://dx.doi.org/10.1016/j.clindermatol.2007.08.010 PMid:18021893 Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, et al. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195 Watson W, Cann HM, Farber EM and Nall ML (1972). The genetics of psoriasis. Arch. Dermatol. 105: 197-207. http://dx.doi.org/10.1001/archderm.1972.01620050011002 PMid:5060862 Zhang XJ, Zhang AP, Yang S, Gao M, et al. (2003). Association of HLA class I alleles with Psoriasis vulgaris in southeastern Chinese Hans. J. Dermatol. Sci. 33: 1-6. http://dx.doi.org/10.1016/S0923-1811(03)00157-9 Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
Y. Wu, Wang, B., Liu, J. L., Gao, X. H., Chen, H. D., and Li, Y. H., Association of -619C/T polymorphism in CDSN gene and psoriasis risk: a meta-analysis, vol. 10, pp. 3632-3640, 2011.
Ahnini RT, Camp NJ, Cork MJ, Mee JB, et al. (1999). Novel genetic association between the corneodesmosin (MHC S) gene and susceptibility to psoriasis. Hum. Mol. Genet. 8: 1135-1140. http://dx.doi.org/10.1093/hmg/8.6.1135   Ameen M, Allen MH, Fisher SA, Lewis CM, et al. (2005). Corneodesmosin (CDSN) gene association with psoriasis vulgaris in Caucasian but not in Japanese populations. Clin. Exp. Dermatol. 30: 414-418. http://dx.doi.org/10.1111/j.1365-2230.2005.01789.x PMid:15953084   Asumalahti K, Laitinen T, Itkonen-Vatjus R, Lokki ML, et al. (2000). A candidate gene for psoriasis near HLA-C, HCR (Pg8), is highly polymorphic with a disease-associated susceptibility allele. Hum. Mol. Genet. 9: 1533-1542. http://dx.doi.org/10.1093/hmg/9.10.1533 PMid:10888604   Attia J, Thakkinstian A and D'Este C (2003). Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J. Clin. Epidemiol. 56: 297-303. http://dx.doi.org/10.1016/S0895-4356(03)00011-8   Genetics and Molecular Research 10 (4): 3632-3640 (2011) Butt C, Rahman P, Siannis F, Farewell VT, et al. (2005). Corneodesmosin polymorphisms in psoriatic arthritis. Rheumatology 44: 684-685.   Capon F, Munro M, Barker J and Trembath R (2002). Searching for the major histocompatibility complex psoriasis susceptibility gene. J. Invest. Dermatol. 118: 745-751. http://dx.doi.org/10.1046/j.1523-1747.2002.01749.x PMid:11982750   Capon F, Toal IK, Evans JC, Allen MH, et al. (2003). Haplotype analysis of distantly related populations implicates corneodesmosin in psoriasis susceptibility. J. Med. Genet. 40: 447-452. http://dx.doi.org/10.1136/jmg.40.6.447 PMid:12807967 PMCid:1735499   Caubet C, Jonca N, Brattsand M, Guerrin M, et al. (2004). Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J. Invest. Dermatol. 122: 1235-1244. http://dx.doi.org/10.1111/j.0022-202X.2004.22512.x PMid:15140227   Chang YT, Tsai SF, Lin MW, Liu HN, et al. (2003). SPR1 gene near HLA-C is unlikely to be a psoriasis susceptibility gene. Exp. Dermatol. 12: 307-314. http://dx.doi.org/10.1034/j.1600-0625.2003.00039.x PMid:12823445   Chang YT, Chou CT, Shiao YM, Lin MW, et al. (2006). Psoriasis vulgaris in Chinese individuals is associated with PSORS1C3 and CDSN genes. Br. J. Dermatol. 155: 663-669. http://dx.doi.org/10.1111/j.1365-2133.2006.07420.x PMid:16965413   Griffiths CE and Barker JN (2007). Pathogenesis and clinical features of psoriasis. Lancet 370: 263-271. http://dx.doi.org/10.1016/S0140-6736(07)61128-3   Guerrin M, Simon M, Montezin M, Haftek M, et al. (1998). Expression cloning of human corneodesmosin proves its identity with the product of the S gene and allows improved characterization of its processing during keratinocyte differentiation. J. Biol. Chem. 273: 22640-22647. http://dx.doi.org/10.1074/jbc.273.35.22640 PMid:9712893   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Hui J, Oka A, Tamiya G, Tomizawa M, et al. (2002). Corneodesmosin DNA polymorphisms in MHC haplotypes and Japanese patients with psoriasis. Tissue Antigens 60: 77-83. http://dx.doi.org/10.1034/j.1399-0039.2002.600110.x PMid:12366786   Krueger JG, Krane JF, Carter DM and Gottlieb AB (1990). Role of growth factors, cytokines, and their receptors in the pathogenesis of psoriasis. J. Invest. Dermatol. 94: 135S-140S. http://dx.doi.org/10.1111/1523-1747.ep12876121 PMid:2161887   Liu Y, Krueger JG and Bowcock AM (2007). Psoriasis: genetic associations and immune system changes. Genes Immun. 8: 1-12. http://dx.doi.org/10.1038/sj.gene.6364351 PMid:17093502   O'Brien KP, Holm SJ, Nilsson S, Carlen L, et al. (2001). The HCR gene on 6p21 is unlikely to be a psoriasis susceptibility gene. J. Invest. Dermatol. 116: 750-754. http://dx.doi.org/10.1046/j.0022-202x.2001.01323.x PMid:11348465   Orrù S, Giuressi E, Casula M, Loizedda A, et al. (2002). Psoriasis is associated with a SNP haplotype of the corneodesmosin gene (CDSN). Tissue Antigens 60: 292-298. http://dx.doi.org/10.1034/j.1399-0039.2002.600403.x PMid:12472658   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in metaanalysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Romphruk AV, Oka A, Romphruk A, Tomizawa M, et al. (2003). Corneodesmosin gene: no evidence for PSORS 1 gene in North-eastern Thai psoriasis patients. Tissue Antigens 62: 217-224. http://dx.doi.org/10.1034/j.1399-0039.2003.00056.x PMid:12956875   Schmitt-Egenolf M, Windemuth C, Hennies HC, Albis-Camps M, et al. (2001). Comparative association analysis reveals that corneodesmosin is more closely associated with psoriasis than HLA-Cw*0602-B*5701 in German families. Tissue Antigens 57: 440-446. http://dx.doi.org/10.1034/j.1399-0039.2001.057005440.x PMid:11556968   Terui T, Ozawa M and Tagami H (2000). Role of neutrophils in induction of acute inflammation in T-cell-mediated immune dermatosis, psoriasis: a neutrophil-associated inflammation-boosting loop. Exp. Dermatol. 9: 1-10. http://dx.doi.org/10.1034/j.1600-0625.2000.009001001.x PMid:10688368   Vandenbroucke JP, von EE, Altman DG, Gotzsche PC, et al. (2007). Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195   Zenz R, Eferl R, Kenner L, Florin L, et al. (2005). Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437: 369-375. http://dx.doi.org/10.1038/nature03963 PMid:16163348   Zintzaras E and Loannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093