Publications

Found 3 results
Filters: Author is S.R.R. Marin  [Clear All Filters]
2012
A. A. Droval, Binneck, E., Marin, S. R. R., Paião, F. G., Oba, A., Nepomuceno, A. L., and Shimokomaki, M., A new single nucleotide polymorphism in the ryanodine gene of chicken skeletal muscle, vol. 11, pp. 821-829, 2012.
Altschul SF, Gish W, Miller W, Myers EW, et al. (1997). Basic local alignment search tool. J. Mol. Biol. 215: 403-410. Brewer MS and McKeith FK (1999). Consumer-rated quality characteristics as related to purchase intent of fresh pork. J. Food Sci. 64: 171-174. http://dx.doi.org/10.1111/j.1365-2621.1999.tb09885.x Brini M (2004). Ryanodine receptor defects in muscle genetic diseases. Biochem. Biophys. Res. Commun. 322: 1245-1255. http://dx.doi.org/10.1016/j.bbrc.2004.08.029 PMid:15336972 Candek-Potokar M, Zlender B, Lefaucheur L and Bonneau M (1998). Effects of age and/or weight at slaughter on longissimus dorsi muscle: biochemical traits and sensory quality in pigs. Meat Sci. 48: 287-300. http://dx.doi.org/10.1016/S0309-1740(97)00109-5 Chiang W, Allison CP, Linz JE and Strasburg GM (2004). Identification of two alpha RyR alleles and characterization of alpha RyR transcript variants in turkey skeletal muscle. Gene 330: 177-184. PMid:15087137 Chiang W, Yoon HJ, Linz JE, Airey JA, et al. (2007). Divergent mechanisms in generating molecular variations of alpha RYR and beta RYR in turkey skeletal muscle. J. Muscle Res. Cell Motil. 28: 343-354. http://dx.doi.org/10.1007/s10974-008-9130-4 PMid:18327652 Chiang W, Booren A and Strasburg G (2008). The effect of heat stress on thyroid hormone response and meat quality in turkeys of two genetic lines. Meat Sci. 80: 615-622. http://dx.doi.org/10.1016/j.meatsci.2008.02.012 PMid:22063573 Fujii J, Otsu K, Zorzato F, de Leon S, et al. (1991). Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253: 448-451. http://dx.doi.org/10.1126/science.1862346 PMid:1862346 Guarnieri PD, Soares AL, Olivo R, Schneider JP, et al. (2004). Preslaughter handling with water shower spray inhibits PSE (pale, soft, exudative) broiler breast meat in a commercial plant. Biochemical and ultrastructural observations. J. Food Biochem. 28: 269-277. http://dx.doi.org/10.1111/j.1745-4514.2004.tb00071.x Kissel C, Soares AL, Rossa A and Shimokomaki M (2009). Functional properties of PSE (pale, soft, exudative) broiler meat in the production of mortadella. Braz. Arch. Biol. Tech. 52: 213-217. http://dx.doi.org/10.1590/S1516-89132009000700027 Louis CF, Rempel WE and Mickelson JR (1993). Porcine Stress Syndrome: Biochemical and Genetic Basis of this Inherited Syndrome of Skeletal Muscle. In: Proceedings of the Annual Reciprocal Meat Conference. National Live Stock and Meat Board, Chicago, 89-96. Marchi DF, Trindade MA, Oba A, Soares AL, et al. (2009). Sensitivity to halothane and its relationship to the development of PSE (pale, soft, exudative) meat in female lineage broilers. Braz. Arch. Biol. Technol. 52: 219-223. http://dx.doi.org/10.1590/S1516-89132009000700028 Oda SHI, Nepomuceno AL, Ledur MC, Oliveira MCN, et al. (2009). Quantitative differential expression of alpha and beta ryanodine receptor genes in PSE (pale, soft, exudative) meat from two chicken lines: broiler and layer. Braz. Arch. Biol. Technol. 52: 1519-1525. http://dx.doi.org/10.1590/S1516-89132009000600024 Olivo R, Scares AL, Ida EI and Shimokomaki M (2001). Dietary vitamin E inhibits poultry PSE and improves meat functional properties. J. Food Biochem. 25: 271-283. http://dx.doi.org/10.1111/j.1745-4514.2001.tb00740.x Ottini L, Marziali G, Conti A, Charlesworth A, et al. (1996). Alpha and beta isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochem. J. 315 (Pt 1): 207-216. PMid:8670108    PMCid:1217172 Sanger Institute (2010). Available at [http://pfam.sanger.ac.uk/family?PF01365]. Accessed October 10, 2010. Simões GS, Oba A, Matsuo T, Rossa A, et al. (2009). Vehicle thermal microclimate evaluation during Brazilian summer broiler transport and the occurrence of PSE (pale, soft, exudative) meat. Braz. Arch. Biol. Technol. 52: 195-204. http://dx.doi.org/10.1590/S1516-89132009000700025 Soares AL, Ida EI, Miyamoto S, Hernández-Blazquez J, et al. (2003). Phospholipase A2 activity in poultry PSE, pale, soft, exudative, meat. J. Food Biochem. 27: 309-320. http://dx.doi.org/10.1111/j.1745-4514.2003.tb00285.x Strasburg GM and Chiang W (2003). Genetic Basis for Pale, Soft and Exudative Turkey Meat. In: Proceedings of the 56th American Meat Science Association. American Meat Science Association, Columbia, 17-22. Strasburg GM and Chiang W (2009). Pale, soft, exudative turkey - The role of ryanodine receptor variation in meat quality. Poult. Sci. 88: 1497-1505. http://dx.doi.org/10.3382/ps.2009-00181 PMid:19531723 Sutko JL and Airey JA (1996). Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function. Phys. Rev. 76: 1027-1071. Untergasser A, Nijveen H, Xiangyu R, Bisseling T, et al. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35: W71-W74. http://dx.doi.org/10.1093/nar/gkm306 PMid:17485472    PMCid:1933133 Wang LJ, Byrem TM, Zarosley J, Booren AM, et al. (1999). Skeletal muscle calcium channel ryanodine binding activity in genetically unimproved and commercial turkey populations. Poult. Sci. 78: 792-797. PMid:10228978 Wilhelm AE, Magaghini MB, Hernández-Blazquez FJ, Ida EI, et al. (2010). Protease activity and the ultrastructure of broiler chicken PSE (pale, soft, exudative) meat. Food Chem. 119: 1201-1204. http://dx.doi.org/10.1016/j.foodchem.2009.08.034 Ziober IL, Paião FG, Marin SRR, Marchi DF, et al. (2009). Molecular cloning of αRYR hotspot region 1 from broiler chicken. Braz. Arch. Biol. Technol. 52: 225-231. http://dx.doi.org/10.1590/S1516-89132009000700029 Ziober IL, Paiao FG, Marchi DF, Coutinho LL, et al. (2010). Heat and chemical stress modulate the expression of the alpha-RYR gene in broiler chickens. Genet. Mol. Res. 9: 1258-1266. PMid:20603811
2011
A. M. Polizel, Medri, M. E., Nakashima, K., Yamanaka, N., Farias, J. R. B., de Oliveira, M. C. N., Marin, S. R. R., Abdelnoor, R. V., Marcelino-Guimarães, F. C., Fuganti, R., Rodrigues, F. A., Stolf-Moreira, R., Beneventi, M. A., Rolla, A. A. P., Neumaier, N., Yamaguchi-Shinozaki, K., Carvalho, J. F. C., and Nepomuceno, A. L., Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance, vol. 10, pp. 3641-3656, 2011.
Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6. http://dx.doi.org/10.1007/s001220051441   Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, et al. (2007). Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep. 26: 1275-1282. http://dx.doi.org/10.1007/s00299-007-0360-5 PMid:17453213   Bianco RL, Rieger M and Sung SJS (2000). Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol. Plant. 108: 71-78. http://dx.doi.org/10.1034/j.1399-3054.2000.108001071.x   Bray EA (1997). Plant responses to water deficit. Trends Plant Sci. 2: 48-54. http://dx.doi.org/10.1016/S1360-1385(97)82562-9   Bray EA (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55: 2331-2341. http://dx.doi.org/10.1093/jxb/erh270 PMid:15448178   Casagrande EC, Farias JRB, Neumaier N, Oya T, et al. (2001). Expressão gênica diferencial durante déficit hídrico em soja. Rev. Bras. Fisiol. Veg. 13: 168-184. http://dx.doi.org/10.1590/S0103-31312001000200006   Conab - Companhia Nacional de Abastecimento (2005). Available at [http://www.conab.gov.br]. Accessed......... Cornic G (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture - not by affecting ATP synthesis. Trends Plant Sci. 5: 187-188.   Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2004). Available at [http://www.cnpso.embrapa.br]. Accessed....... Fehr WR and Caviness CE (1977). Stages of Soybean Development. State University, Cooperative extension Service, Ames.   Flanders A, McKissick JC and Shepherd T (2007). Georgia economic losses due to 2007 drought. Center Rep. CR: 7-10.   Hasegawa PM, Bressan RA, Zhu JK and Bohnert HJ (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499. http://dx.doi.org/10.1146/annurev.arplant.51.1.463 PMid:15012199   Hewitt EJ (1966). Sand and Water Culture Methods Used in the Study of Plant Nutrition. 2nd edn. Commonwealth Bureau of Horticulture and Plantation Crops, Maidstone.   Ingram J and Bartels D (1996). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403. http://dx.doi.org/10.1146/annurev.arplant.47.1.377 PMid:15012294   Johansen DA (1940). Plant Microtechnique. McGraw-Hill Book Company, New York.   Jones HG (1992). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2nd edn. Cambridge University Press, Cambridge.   Kalefetoğlu T and Ekmekçi Y (2005). The effects of drought on plants and tolerance mechanisms. J. Sci. 18: 723-740.   Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, et al. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287-291. http://dx.doi.org/10.1038/7036 PMid:10096298   Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346-350. http://dx.doi.org/10.1093/pcp/pch037 PMid:15047884   Kim JS, Jung HJ, Lee HJ, Kim KA, et al. (2008). Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 55: 455-466. http://dx.doi.org/10.1111/j.1365-313X.2008.03518.x PMid:18410480   Kim YO, Kim JS and Kang H (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J. 42: 890-900. http://dx.doi.org/10.1111/j.1365-313X.2005.02420.x PMid:15941401   Kwak KJ, Kim YO and Kang H (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56: 3007-3016. http://dx.doi.org/10.1093/jxb/eri298 PMid:16207746   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2_DDCT methods. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Maruyama K, Sakuma Y, Kasuga M, Ito Y, et al. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38: 982-993. http://dx.doi.org/10.1111/j.1365-313X.2004.02100.x PMid:15165189   Oh SJ, Song SI, Kim YS, Jang HJ, et al. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138: 341-351. http://dx.doi.org/10.1104/pp.104.059147 PMid:15834008 PMCid:1104188   Okamuro JK, Caster B, Villarroel R, Van MM, et al. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 94: 7076-7081. http://dx.doi.org/10.1073/pnas.94.13.7076 PMid:9192694 PMCid:21287   Oya T, Nepomuceno AL, Neumaier N, Farias JRB, et al. (2004). Drought tolerance characteristics of Brazilian soybean cultivars - evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod. Sci. 7: 129-137. http://dx.doi.org/10.1626/pps.7.129   Panchuk II, Volkov RA and Schoffl F (2002). Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129: 838-853. http://dx.doi.org/10.1104/pp.001362 PMid:12068123 PMCid:161705   Pellegrineschi A, Ribaut JM, Trethowan R, Yamaguchi-Shinozaki K, et al. (2002). Progress in the genetic engineering of wheat for water-limited conditions. JIRCAS Work. Rep. 23: 55-60.   Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, et al. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47: 493-500. http://dx.doi.org/10.1139/g03-140 PMid:15190366   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. http://dx.doi.org/10.1093/nar/30.9.e36 PMid:11972351 PMCid:113859   Qin F, Sakuma Y, Tran LSP, Maruyama K, et al. (2008). Arabidopsis DREB2A-Interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20: 1693-1707. http://dx.doi.org/10.1105/tpc.107.057380 PMid:18552202 PMCid:2483357   Rech EL, Vianna GR and Aragão FJL (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. http://dx.doi.org/10.1038/nprot.2008.9 PMid:18323812   Sachetto-Martins G, Fernandes LD, Félix DB and de Oliveira DE (1995). Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm -derived cells. Int. J. Plant Sci. 156: 460-470. http://dx.doi.org/10.1086/297268   Sakuma Y, Maruyama K, Osakabe Y, Qin F, et al. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18: 1292-1309. http://dx.doi.org/10.1105/tpc.105.035881 PMid:16617101 PMCid:1456870   Shinozaki K and Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334. http://dx.doi.org/10.1104/pp.115.2.327 PMid:12223810 PMCid:158490   Shinozaki K and Yamaguchi-Shinozaki K (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. PMid:10837265   Taiz L and Zeiger E (2002). Plant Physiology, 3rd edn. Sinauer, Sunderland. PMCid:152206   Tasma IM, Brendel V, Whitham SA and Bhattacharyya MK (2008). Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol. Biochem. 46: 627-637. http://dx.doi.org/10.1016/j.plaphy.2008.04.015 PMid:18534862   Thomashow MF (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599. http://dx.doi.org/10.1146/annurev.arplant.50.1.571 PMid:15012220   Turner NC (1997). Further progress in crop water relations. Adv. Agron. 58: 293-338. http://dx.doi.org/10.1016/S0065-2113(08)60258-8   Wang CR, Yang AF, Yue GD, Gao Q, et al. (2008). Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227: 1127-1140. http://dx.doi.org/10.1007/s00425-007-0686-9 PMid:18214529   Zhu JK (2001). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4: 401-406. http://dx.doi.org/10.1016/S1369-5266(00)00192-8