Found 2 results
Filters: Author is A.A.P. Rolla  [Clear All Filters]
A. M. Polizel, Medri, M. E., Nakashima, K., Yamanaka, N., Farias, J. R. B., de Oliveira, M. C. N., Marin, S. R. R., Abdelnoor, R. V., Marcelino-Guimarães, F. C., Fuganti, R., Rodrigues, F. A., Stolf-Moreira, R., Beneventi, M. A., Rolla, A. A. P., Neumaier, N., Yamaguchi-Shinozaki, K., Carvalho, J. F. C., and Nepomuceno, A. L., Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance, vol. 10, pp. 3641-3656, 2011.
Aragão FJL, Sarokin L, Vianna GR and Rech EL (2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101: 1-6.   Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, et al. (2007). Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep. 26: 1275-1282. PMid:17453213   Bianco RL, Rieger M and Sung SJS (2000). Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol. Plant. 108: 71-78.   Bray EA (1997). Plant responses to water deficit. Trends Plant Sci. 2: 48-54.   Bray EA (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55: 2331-2341. PMid:15448178   Casagrande EC, Farias JRB, Neumaier N, Oya T, et al. (2001). Expressão gênica diferencial durante déficit hídrico em soja. Rev. Bras. Fisiol. Veg. 13: 168-184.   Conab - Companhia Nacional de Abastecimento (2005). Available at []. Accessed......... Cornic G (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture - not by affecting ATP synthesis. Trends Plant Sci. 5: 187-188.   Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2004). Available at []. Accessed....... Fehr WR and Caviness CE (1977). Stages of Soybean Development. State University, Cooperative extension Service, Ames.   Flanders A, McKissick JC and Shepherd T (2007). Georgia economic losses due to 2007 drought. Center Rep. CR: 7-10.   Hasegawa PM, Bressan RA, Zhu JK and Bohnert HJ (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499. PMid:15012199   Hewitt EJ (1966). Sand and Water Culture Methods Used in the Study of Plant Nutrition. 2nd edn. Commonwealth Bureau of Horticulture and Plantation Crops, Maidstone.   Ingram J and Bartels D (1996). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403. PMid:15012294   Johansen DA (1940). Plant Microtechnique. McGraw-Hill Book Company, New York.   Jones HG (1992). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 2nd edn. Cambridge University Press, Cambridge.   Kalefetoğlu T and Ekmekçi Y (2005). The effects of drought on plants and tolerance mechanisms. J. Sci. 18: 723-740.   Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, et al. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287-291. PMid:10096298   Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45: 346-350. PMid:15047884   Kim JS, Jung HJ, Lee HJ, Kim KA, et al. (2008). Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 55: 455-466. PMid:18410480   Kim YO, Kim JS and Kang H (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J. 42: 890-900. PMid:15941401   Kwak KJ, Kim YO and Kang H (2005). Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56: 3007-3016. PMid:16207746   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2_DDCT methods. Methods 25: 402-408. PMid:11846609   Maruyama K, Sakuma Y, Kasuga M, Ito Y, et al. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38: 982-993. PMid:15165189   Oh SJ, Song SI, Kim YS, Jang HJ, et al. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138: 341-351. PMid:15834008 PMCid:1104188   Okamuro JK, Caster B, Villarroel R, Van MM, et al. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 94: 7076-7081. PMid:9192694 PMCid:21287   Oya T, Nepomuceno AL, Neumaier N, Farias JRB, et al. (2004). Drought tolerance characteristics of Brazilian soybean cultivars - evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod. Sci. 7: 129-137.   Panchuk II, Volkov RA and Schoffl F (2002). Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129: 838-853. PMid:12068123 PMCid:161705   Pellegrineschi A, Ribaut JM, Trethowan R, Yamaguchi-Shinozaki K, et al. (2002). Progress in the genetic engineering of wheat for water-limited conditions. JIRCAS Work. Rep. 23: 55-60.   Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, et al. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47: 493-500. PMid:15190366   Pfaffl MW, Horgan GW and Dempfle L (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30: e36. PMid:11972351 PMCid:113859   Qin F, Sakuma Y, Tran LSP, Maruyama K, et al. (2008). Arabidopsis DREB2A-Interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20: 1693-1707. PMid:18552202 PMCid:2483357   Rech EL, Vianna GR and Aragão FJL (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410-418. PMid:18323812   Sachetto-Martins G, Fernandes LD, Félix DB and de Oliveira DE (1995). Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm -derived cells. Int. J. Plant Sci. 156: 460-470.   Sakuma Y, Maruyama K, Osakabe Y, Qin F, et al. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18: 1292-1309. PMid:16617101 PMCid:1456870   Shinozaki K and Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334. PMid:12223810 PMCid:158490   Shinozaki K and Yamaguchi-Shinozaki K (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. PMid:10837265   Taiz L and Zeiger E (2002). Plant Physiology, 3rd edn. Sinauer, Sunderland. PMCid:152206   Tasma IM, Brendel V, Whitham SA and Bhattacharyya MK (2008). Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol. Biochem. 46: 627-637. PMid:18534862   Thomashow MF (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599. PMid:15012220   Turner NC (1997). Further progress in crop water relations. Adv. Agron. 58: 293-338.   Wang CR, Yang AF, Yue GD, Gao Q, et al. (2008). Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227: 1127-1140. PMid:18214529   Zhu JK (2001). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4: 401-406.
S. S. Pereira, Guimarães, F. C. M., Carvalho, J. F. C., Stolf-Moreira, R., Oliveira, M. C. N., Rolla, A. A. P., Farias, J. R. B., Neumaier, N., and Nepomuceno, A. L., Transcription factors expressed in soybean roots under drought stress, vol. 10, pp. 3689-3701, 2011.
Agarwal P, Arora R, Ray S, Singh AK, et al. (2007). Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol. Biol. 65: 467-485. PMid:17610133   Andrade AB (2006). Inibição do Crescimento de Raízes de Soja pela Mimosina: Lignificação e Enzimas Relacionadas. Thesis, Universidade Estadual de Maringá, Maringá.   Chen BJ, Wang Y, Hu YL, Wu Q, et al. (2005). Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia. Plant Sci. 168: 493-500.   Conab - Companhia Nacional de Abastecimento (2005). Available at []. Accessed......... dos Santos WD, Ferrarese ML, Nakamura CV, Mourao KS, et al. (2008). Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. J. Chem. Ecol. 34: 1230-1241.   Du H, Zhang L, Liu L, Tang XF, et al. (2009). Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry 74: 1-11. PMid:19232042   Dubos C, Stracke R, Grotewold E, Weisshaar B, et al. (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci. 15: 573-581. PMid:20674465   Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2004). Available at []. Accessed....... Fan L, Linker R, Gepstein S, Tanimoto E, et al. (2006). Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol. 140: 603-612.   Fornale S, Sonbol FM, Maes T, Capellades M, et al. (2006). Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol. Biol. 62: 809-823. PMid:16941210   Guo Y and Gan S (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46: 601-612. PMid:16640597   Hu Wen-Jing, Harding SA, Lung J, Popko JL, et al. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17: 808-812. PMid:10429249   Jain D, Roy N and Chattopadhyay D (2009). CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance. PLoS One 4: e5154. PMid:19365545 PMCid:2664467   Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, et al. (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7: 106-111.   Kizis D, Lumbreras V and Pagès M (2001). Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett. 498: 187-189.   Kunieda T, Mitsuda N, Ohme-Takagi M, Takeda S, et al. (2008). NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. Plant Cell 20: 2631-2642. PMid:18849494 PMCid:2590734   Liu JX, Srivastava R and Howell SH (2008). Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant Cell Environ. 31: 1735-1743. PMid:18721266   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.   Nijhawan A, Jain M, Tyagi AK and Khurana JP (2008). Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146: 333-350. PMid:18065552 PMCid:2245831   Olsen AN, Ernst HA, Leggio LL and Skriver K (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10: 79-87. PMid:15708345   Sakamoto H, Maruyama K, Sakuma Y, Meshi T, et al. (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136: 2734-2746. PMid:15333755 PMCid:523337   Schenk PM, Kazan K, Manners JM, Anderson JP, et al. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132: 999-1010. PMid:12805628 PMCid:167038   Seo PJ, Xiang F, Qiao M, Park JY, et al. (2009). The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol. 151: 275-289. PMid:19625633 PMCid:2735973   Shinozaki K (2004) Arabidopsis Cys2/His2-Type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136: 2734-2746. PMid:15333755 PMCid:523337   Shinozaki K and Yamaguchi-Shinozaki K (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227. PMid:17075077   Stolf-Moreira R, Lemos EGM, Carareto AL, Marcondes J, et al. (2011a). Transcriptional profiles of roots of different soybean genotypes subjected to drought stress. Plant Mol. Biol. Rep. 29: 19-34.   Stolf-Moreira R, Lemos EGM, Abdelnoor RV, Beneventi MA, et al. (2011b). Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean. Pesq. Agropec. Bras. 46: 58-65.   Sugano S, Kaminaka H, Rybka Z, Catala R, et al. (2003). Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J. 36: 830-841. PMid:14675448   Sun SJ, Guo SQ, Yang X, Bao YM, et al. (2010). Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J. Exp. Bot. 61: 2807-2818. PMid:20460361 PMCid:2882275   Takatsuji H (1999). Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol. Biol. 39: 1073-1078. PMid:10380795   Tian ZD, Zhang Y, Liu J and Xie CH (2010). Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biol. 12: 689-697. PMid:20701691   Wilkins O, Nahal H, Foong J, Provart NJ, et al. (2009). Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol. 149: 981-993. PMid:19091872 PMCid:2633813   Xu S, Wang X and Chen J (2007). Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His- 2-type transcription factor involved in drought and salt stress. Plant Cell Rep. 26: 497-506. PMid:17024447   Yoshimura K, Masuda A, Kuwano M, Yokota A, et al. (2008). Programmed proteome response for drought avoidance/ tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol. 49: 226-241. PMid:18178965